03

Зажигание борсодержащих высокоэнергетических материалов на основе окислителя и полимерного связующего

© А.Г. Коротких,^{1,2} И.В. Сорокин,¹ К.В. Слюсарский,¹ В.А. Архипов²

 ¹ Национальный исследовательский Томский политехнический университет, 634050 Томск, Россия
 ² Национальный исследовательский Томский государственный университет, 634050 Томск, Россия e-mail: korotkikh@tpu.ru

Поступило в Редакцию 28 ноября 2020 г. В окончательной редакции 22 января 2021 г. Принято к публикации 25 января 2021 г.

Использование боридов алюминия является перспективным направлением развития современных топливных композиций и летательных аппаратов. Представлены экспериментальные данные кинетики окисления микроразмерных порошков алюминия, аморфного бора, боридов алюминия AlB_2 и AlB_{12} в воздухе при нагреве с постоянной скоростью 10° C/min, а также результаты лазерного зажигания высокоэнергетических материалов на основе перхлората аммония, нитрата аммония, инертного и активного горючих-связующих, содержащих указанные порошки металлов. Установлено, что применение борсодержащих порошков позволяет снизить значения температур начала и интенсивного окисления, увеличить их полноту окисления по сравнению с чистым алюминием. Полученные зависимости времени задержки зажигания от плотности теплового потока показали, что наиболее эффективным металлическим горючим являются порошки AlB_2 и AlB_{12} в составе топлива на основе перхлората аммония, нитрата аммония и активного горючего-связующего, с точки зрения снижения времени задержки зажигания и подводимого потока тепла.

Ключевые слова: высокоэнергетический материал, алюминий, бор, борид алюминия, окисление, зажигание, энергия активации, время задержки зажигания.

DOI: 10.21883/JTF.2021.06.50861.329-20

Введение

Порошки металлов являются высокоэнергетическими компонентами современных смесевых твердых и гибридных топлив [1], используемых в твердотопливных ракетных двигателях и летательных аппаратах. Наиболее распространенным металлическим горючим в высокоэнергетических материалах (ВЭМ), используемых в аэрокосмической промышленности, является порошок алюминия разной дисперсности [2]. В настоящее время актуальным вопросом является возможность повышения теплоты сгорания ВЭМ за счет использования борсодержащих компонентов. Удельная теплота сгорания бора составляет 58.1 MJ/kg [3], что значительно превышает значение теплоты сгорания алюминия (31 MJ/kg) [3,4]. Однако при нагреве и воспламенении частиц бора на поверхности образуется плотный оксидный слой В2О3 [5], который препятствует полному окислению частиц бора при относительно низких температурах. Теоретический прирост массы при полном окислении бора составляет около 218%. В термическом анализе при нагреве порошка бора в кислороде до температуры 1000°С увеличение массы бора составляет $\sim 140\%$ [6], а при нагреве в воздухе до 1500°С прирост массы бора составляет ~ 160% [7]. Таким образом, в реакцию окисления вступает не более 75 и 82 mass.% от исходной массы бора соответственно.

Использование различных сплавов на основе Al-B (бориды алюминия) [8-10] или механической смеси алюминий/бор в различных соотношениях [11-13] является перспективным решением преодоления недостатков порошков бора и алюминия. Использование боридов алюминия в качестве горючих компонентов ВЭМ является актуальным в связи с разработкой новых двигательных установок летательных аппаратов. Данные металлические горючие имеют высокую плотность 2.50-2.84 g/cm³, удельную теплоту сгорания 43-54 MJ/kg [3] на уровне бора. Кроме того, в работах [12-14] показано, что бориды алюминия обладают лучшей реакционной способностью в процессе их нагрева и горения, из-за наличия в них алюминия, бора, а также отсутствия огнеупорного слоя оксида алюминия Al₂O₃ на поверхности частиц. Использование боридов алюминия может найти широкое применение в высокоэнергетических составах, поскольку степень окисления AlB₂ составляет ~ 80% при степени окисления исходных порошков бора $\sim 20\%$ и алюминия $\sim 67\%$ [15]. Значения удельной теплоты сгорания боридов металлов на 40-70% выше теплоты сгорания чистого алюминия [3]. Кроме того, в работе [16] экспериментально определено, что полнота сгорания составов на основе перхлората калия и политетрафторэтилена с наноразмерным порошком AlB₂ на 5-20% выше, чем для состава с микроразмерным порошком диборида

Состав ВЭМ	Содержание компонентов, mass.%								
	ПХА, (размер, µm)	НА, (размер, µm)	Связующее	Металл, марка	α^*				
1-1	$69.0 \ (165 - 315, < 50)$	-	16.0, СКДМ-80	15.0, Al	0.50				
1-2	74.0 $(165 - 315, < 50)$	_	11.0, СКДМ-80	15.0, B	0.50				
1-3	71.4(165-315, < 50)	_	13.6, СКДМ-80	15.0, AlB ₂	0.50				
1-4	73.2(165-315, < 50)	_	11.8, СКДМ-80	15.0, AlB ₁₂	0.50				
2-1	21.3 (165-315)	49.8 (50-100)	13.9, СКДМ-80	15.0, Al	0.50				
2-2	22.5 (165-315)	52.5 (50-100)	10.0, СКДМ-80	15.0, B	0.48				
2-3	21.9 (165-315)	51.3 (50-100)	11.8, СКДМ-80	15.0, AlB ₂	0.50				
2-4	22.5 (165-315)	52.5 (50-100)	10.0, СКДМ-80	15.0, AlB ₁₂	0.50				
3-1	15.0 (160-315)	35.0 (<100)	20.0, МПВТ-АСП	30.0, Al	0.66				
3-2	18.0 (160-315)	42.0 (< 100)	25.0, МПВТ-АСП	15.0, B	0.65				
3-3	15.6 (160-315)	36.4 (< 100)	23.0, МПВТ-АСП	25.0, AlB ₂	0.57				
3-4	17.7 (160-315)	40.3 (< 100)	25.0, МПВТ-АСП	17.0, AlB ₁₂	0.63				

Таблица 1. Исследуемые составы ВЭМ

 Π римечание. *
 α — коэффициент избытка окислителя.

алюминия. Также отметим, что при взаимодействии Ti и Al с бором выделяется большое количество энергии, обеспечивающее основу для процесса самораспространяющегося высокотемпературного синтеза (CBC) при получении боридов [17–18].

Целью настоящей работы является определение параметров процесса окисления микроразмерных порошков алюминия, аморфного бора и боридов алюминия (AlB₂ и AlB₁₂) на основании экспериментальных данных термического анализа, а также установление закономерностей зажигания и влияния бора в составах ВЭМ на время задержки зажигания при лучистом подводе тепла.

1. Материалы и методика исследования

1.1. Составы ВЭМ

В изготовлении смесевых составов ВЭМ использовались микроразмерные порошки алюминия (средний диаметр частиц d₄₃ = 10.8 µm), аморфного бора $(d_{43} = 2.0 \,\mu\text{m})$ и боридов алюминия AlB₂ $(d_{43} = 6.2 \,\mu\text{m})$, AlB_{12} ($d_{43} = 2.3 \,\mu m$), которые получали CBC методом в инертной среде (НИИ ПММ ТГУ). Путем смешения в заданном соотношении компонентов Al и B с последующим их прессованием на гидравлическом прессе получали цилиндрические образцы, которые помещались в СВС-реактор с аргоном. Спеченные в ходе СВС образцы металлов размельчались в шаровой мельнице в течение 30 минут. С использованием рентгеновского дифрактометра Shimadzu XRD-6000В в готовом продукте порошков контролировался фазовый состав боридов алюминия, который соответствовал массовому соотношению алюминия и бора в AlB₂ — 55.5 mass.% Al и 44.5 mass.% B, в AlB₁₂ — 17.2 mass.% Al и 82.8 mass.% B [3].

В исследование характеристик зажигания смесевых составов ВЭМ использовались три компонентных со-

става ВЭМ (табл. 1), содержащих перхлорат аммония (ПХА) и бутадиеновый каучука марки СКДМ-80 (состав 1), ПХА, нитрат аммония (НА) и СКДМ-80 (состав 2), ПХА, НА и метилполивинилтетразол марки МПВТ-АСП (состав 3).

1.2. Экспериментальные установки

В исследовании закономерностей окисления порошков металлов в воздухе использовался совмещенный ТГ-ДСК анализатор Netzsch STA 449 F3 Jupiter. В анализе применялись керамические тигли, в которые засыпалась навеска порошка металла массой 5–8 mg. Нагрев образцов порошка металла осуществлялся в печи от 30 до 1200°C с постоянной скоростью нагрева печи 10°C/min и объемным расходом воздуха 150 ml/min.

Определение основных характеристик зажигания смесевых составов ВЭМ осуществляли на экспериментальном стенде, включающем непрерывный СО2-лазер РЛС-200 с длиной волны излучения 10.6 µm и максимальной мощностью 200 W, блок электропитания, системы охлаждения и регистрации параметров зажигания. Диаметр лазерного луча на выходе из полупрозрачного зеркала СО2-лазера был примерно равен диаметру образца. Образцы ВЭМ, содержащие порошки металлов, диаметром 10 и высотой 30 mm изготавливали методом проходного прессования с последующим отверждением в сушильном шкафу, которые перед опытом нарезались в виде таблеток высотой 5 mm. Плотность отвержденных образцов ВЭМ составляла 1.76-1.78 g/cm³. Описание работы экспериментальной установки представлено в работе [10]. Время задержки зажигания t_{ign} состава ВЭМ определяли по разности электрических сигналов фотодиодов, регистрирующих времена начала инициирования образца (открытия электромагнитного затвора) и появления пламени вблизи поверхности топлива. В опытах варьировались значения плотности теплового

Рис. 1. Линии ТГ (a) и ДСК (b) анализов порошков Al, B, AlB₂ и AlB₁₂ при скорости нагрева 10°С/тіп в воздухе.

потока, падающего на торцевую поверхность образца, в диапазоне q = 60-220 W/cm². Регулирование выходной мощности лазерного излучения осуществлялось с помощью системы управления параметров импульсов накачки и высокочастотной мощности разрядных электродов лазерной головки. Относительная погрешность разброса данных времени задержки tign составляла 5-15% при величине доверительной вероятности 0.95.

2. Результаты и обсуждение

2.1. Термический анализ

В результате проведенных термогравиметрического анализа (ПГ) и дифференциальной сканирующей калориметрии (ДСК) получены кривые изменения относительной массы (рис. 1, a) и удельного теплового потока (рис. 1, b) порошков Al, B, AlB₂ и AlB₁₂.

При нагреве образца микроразмерного порошка Al процесс окисления в воздухе проходит в две стадии. Первая стадия окисления протекает до начала плавления алюминия в диапазоне температур $560-640^{\circ}$ C и сопровождается незначительным ростом массы навески (~2%). При температуре 660° C происходит эндотермическое плавление порошка алюминия (рис. 1, *b*), после которого в диапазоне температур $800-1060^{\circ}$ C наблюдается интенсивное увеличение массы образца (до 34%, вторая стадия), сопровождающееся интенсивным выделением тепла ($Q_{max} = 11.9$ W/g).

При нагреве порошков аморфного бора и боридов алюминия процесс окисления протекает одностадийно (рис. 1). Для образца порошка аморфного бора процесс интенсивного окисления проходит в интервале температур 560–800°С с максимальным удельным тепловым потоком $Q_{\text{max}} = 27.7 \text{ W/g}$, при этом масса бора увеличивается на 140% от начальной массы навески аморфного бора (рис. 1, *a*). Последующий нагрев порошка бора в воздухе до температуры 1200°С протекает менее

интенсивно с плавным увеличением массы образца на $\sim 10\%$

ТГ и ДСК-кривые для порошка AlB_2 (рис. 1) показывают, что большое содержание алюминия в составе AlB_2 (по сравнению с AlB_{12} или B) сдвигает процесс окисления диборида в сторону более высоких температур. Интенсивный процесс окисления порошка AlB_2 проходит в диапазоне температур $880-1120^{\circ}$ С с максимальным удельным тепловым потоком 10.6 W/g, при этом прирост массы образца составляет 108%. Наличие двух пиков на ДСК-кривой (рис. 1, b) для порошка AlB_2 при температурах 960 и 1010° С может свидетельствовать о его нестабильности и разложении при температуре выше 900° С с образованием алюминия и AlB_{12} , или образованием других фаз боридов и сплавов бора и алюминия, что отмечается авторами в [19,20].

Порошок додекаборида алюминия AlB_{12} , как и аморфный бор, имеет одностадийный процесс окисления (рис. 1), но его интенсивное окисление проходит при более высоких температурах 750–950°С с максимальным удельным тепловым потоком 28.9 W/g. При нагреве до 1200°С прирост массы образца AlB_{12} в воздухе составляет 118%.

По экспериментальным данным ТГ-ДСК анализа для порошков металлов определены значения температуры начала интенсивного окисления T_{on} , прироста массы Δm , суммарного теплового эффекта реакции окисления Q и скорости окисления v_{ox} (табл. 2).

Среди исследуемых порошков наивысшим тепловым эффектом при окислении в воздухе обладает порошок аморфного бора с Q = 21550 J/g. Наибольшее значение скорости окисления определено для порошка AlB₁₂, которое составляет $v_{\rm ox} = 0.624 \,\mu$ g/min в диапазоне температур 780–870°С.

Проведенный ранее расчет кинетических параметров окисления [21] показал, что при степени конверсии (окисленности) 0.10–0.25 для порошков алюминия и диборида алюминия значения энергии активации принимают наибольшие значения 300–370 kJ/mol, а для по-

Таблица 2. Параметры окисления порошков металлов и бора

Порошок	$T_{\rm on}, ^{\circ}{\rm C}$	Δm , mass.%	Q, J/g	$v_{\rm ox}$, mg/min (в диапазоне температур, °C)
Al	800	34	3680	0.119 (970-1040)
В	560	150	21550	0.534 (650-750)
AlB_2	880	108	5230	0.306 (1000-1080)
AlB ₁₂	750	118	20270	0.624 (780-870)

Таблица 3. Значения констант a и b в уравнении аппроксимации $t_{ing}(q) = a \cdot q^{-b}$ составов ВЭМ, содержащих порошки металлов

ВЭМ	1-1	1-2	1-3	1-4	2-1	2-2	2-3	2-4	3-1	3-2	3-3	3-4
$a \cdot 10^{-4}$	6.92	2.77	18.3	58.1	18.7	14.0	199	385	142	32.1	10.0	87.4
b	1.51	1.45	1.70	1.97	1.64	1.65	2.15	2.28	1.83	1.72	1.45	1.87

Таблица 4. Значения коэффициента K_{ign} составов ВЭМ в зависимости от плотности теплового потока

Coorten POM	$K_{ m ign}$										
COCIAB DOM	1	2	3	1	2	3	1	2	3		
q, W/cm ²		$t_{\rm ing}^{\rm Al}/t_{\rm ing}^{\rm B}$		$t_{\rm ing}^{\rm Al}/t_{\rm ing}^{\rm AlB_2}$			$t_{ m ing}^{ m Al}/t_{ m ing}^{ m B_{12}}$				
70 110 150 210	1.92 1.87 1.83 1.80	1.38 1.39 1.39 1.39	2.76 2.63 2.54 2.45	0.85 0.93 0.98 1.05	0.80 1.01 1.18 1.40	2.75 2.31 2.05 1.80	0.84 1.03 1.19 1.39	0.73 0.98 1.19 1.48	1.93 1.96 1.99 2.02		

рошков бора и додекаборида алюминия при одинаковом значении степени конверсии значение энергии активации меняется в пределах 50-200 kJ/mol. Энергия активации окисления для порошка Al в интервале степени конверсии 0.4-0.8 значительно выше (300-450 kJ/mol), чем значения энергии активации для аморфного бора, AlB₂ и AlB₁₂, которые лежат в диапазоне значений 120-350, 200-250 и 50-90 kJ/mol соответственно.

В диапазоне степени конверсии 0.2-0.8 порошок додекаборида алюминия AlB_{12} имеет наименьшие значения энергии активации окисления по сравнению со значениями для порошков Al, B и AlB_2 . Однако при степени конверсии 0.1-0.2, которая в большей степени характеризует процесс зажигания порошков, для AlB_{12} значение энергии активации ниже, чем для порошка бора.

2.2. Время задержки зажигания

Для исследуемых составов ВЭМ, содержащих порошки металлов, определены значения времени задержки зажигания образцов в зависимости от плотности теплового потока при инициировании лазерным импульсом. Результаты измерения представлены в виде точек на рис. 2. Кадры скоростной видеосъемки процесса зажигания состава 3 ВЭМ, содержащего ПХА, НА и МПВТ-АСП, при инициировании лучистым потоком тепла плотностью q = 68 W/cm² представлены на рис. 3. Расчетные значения параметров аппроксимации степенной зависимости $t_{ign}(q)$ и коэффициента K_{ign} , равного отношению времени задержки зажигания состава ВЭМ, содержащего Al, ко времени задержки зажигания ВЭМ, содержащего B, AlB₂ и AlB₁₂, представлены в табл. 3 и 4.

Анализ полученных экспериментальных данных показал, что наименьшие значения времени задержки зажигания ВЭМ зафиксированы для состава 1 на основе ПХА/СКДМ-80/Ме, а наибольшие значения для состава 3 на основе ПХА/НА/МПВТ-АСП/Ме при одинаковых условиях зажигания и содержании металлического горючего. Время задержки зажигания состава 1-1, содержащего чистый Al, в 3.0-4.1 раза меньше по сравнению со значением tign состава 3-1 (рис. 2, a), т.е. применение активного горючего-связующего в ВЭМ значительно увеличивает период прогрева и зажигания топлива по сравнению с ВЭМ на основе инертного связующего. При замене чистого ПХА (состав 1-1) на смесь окислителей ПХА/НА (состав 2-1) в составе ВЭМ на основе инертного связующего СКДМ-80 времена ting увеличиваются в 1.1-1.7 раза при одинаковых условиях зажигания.

В случае замены порошка Al на аморфный бор во всех исследуемых составах ВЭМ времена задержки зажигания уменьшаются во всем диапазоне *q*. При этом отношение *t*_{ing} состава 3-2 на основе ПХА/НА/МПВТ к *t*_{ing} состава 1-2 на основе ПХА/СКДМ-80, содержащего чистый B, составляет 2.5–2.9 в зависимости от

Рис. 2. Время задержки зажигания образца в зависимости от плотности теплового потока для составов ВЭМ: *a* — 1-1, 2-1, 3-1 с Al; *b* — 1-2, 2-2, 3-2 с B; *c* — 1-3, 2-3, 3-3 с AlB₂; *d* — 1-4, 2-4, 3-4 с AlB₁₂.

значений q (рис. 2, b). Отношение t_{ing} состава 2-2 на основе ПХА/НА/СКДМ-80 к t_{ing} состава 1-2 на основе ПХА/СКДМ-80, содержащего бор, составляет 1.4–2.1.

В случае использования диборида алюминия AlB_2 в составе 1-3 на основе ПХА/СКДМ-80 значения t_{ing} снижаются в 1.2—1.9 раза и в 1.4—1.8 раза, по сравнению с t_{ing} составов 2-3 и 3-3 на основе ПХА/НА/СКДМ-80 и ПХА/НА/МПВТ соответственно (рис. 2, *c*). Типичная ситуация наблюдается для составов ВЭМ 1-4, 2-4 и 3-4, содержащих додекаборид алюминия AlB_{12} (рис. 2, *d*).

В составах ВЭМ на основе бутадиенового каучука СКДМ-80, ПХА или ПХА/НА (составы 1 и 2) при замене Al на бориды алюминия AlB₂ и AlB₁₂ времена задержки зажигания t_{ing} увеличиваются на 2–20% при значениях плотности теплового потока $q \le 110$ W/cm² (табл. 3). При значениях q > 160 W/cm² времена задержки зажигания указанных составов ВЭМ снижаются. Отметим, что при использовании аморфного бора в составах 1 и 2 ВЭМ на основе СКДМ-80 времена задержки зажигания снижаются в 1.9 и 1.4 раза соответственно во всем диапазоне плотности теплового потока.

При использовании боридов алюминия AlB_2 и AlB_{12} в составе 3 ВЭМ на основе активного горючегосвязующего и ПХА/НА времена задержки зажигания образцов значительно снижаются в 1.8-2.8 раза в зависимости от значений q по сравнению с ВЭМ, содержащим чистый Al.

Согласно полученным данным тепловизионной съемки, в момент оттока продуктов разложения с поверхности образца топлива и появления пламени наблюдается резкое увеличение температуры по всей площади торцевой поверхности и скорости оттока продуктов разложения, что обусловлено дополнительным подводом тепла из зоны химических реакций в газовой фазе. Продукты разложения с поверхности реакционного слоя увлекают за собой частицы порошка, что вносит дополнительный приток тепла за счет экзотермического окисления металлических частиц. Отметим, что для состава ВЭМ, содержащего чистый алюминий, период прогрева и формирования реакционного слоя топлива достаточно длительный по сравнению с другими составами ВЭМ, содержащими бор или бориды алюминия, и основная доля подводимого тепла от источника излуче-

Рис. 3. Кадры скоростной видеосьемки зажигания состава ВЭМ на основе ПХА/НА/МПВТ-АСП, содержащего: a — Al; b — B; c — AlB₂; d — AlB₁₂ при q = 68 W/cm².

ния идет на кондуктивный прогрев поверхностного слоя, разложение компонентов и плавление частиц алюминия, находящихся вблизи поверхности образца. Наличие значительной доли крупных частиц в составе порошка Al и огнеупорного оксидного слоя на его поверхности увеличивает температуру начала интенсивного окисления в сравнении с аморфным бором или AlB₁₂, что приводит к снижению устойчивости зажигания образца и доли выделяемого тепла при окислении частиц вблизи поверхности топлива. Кроме того, предполагается, что порошок бора увеличивает поглощательную способность поверхности топлива и тем самым снижает время задержки зажигания ВЭМ.

Заключение

Получены экспериментальные данные ТГ/ДСК анализа микроразмерных порошков алюминия, бора и боридов алюминия при нагреве их в воздухе 30 до 1200°С. На основе данных термического анализа определены значения температуры начала окисления, прироста массы образца, теплового эффекта реакции окисления и максимальной скорости окисления порошков металла и бора. Окисление порошка алюминия протекает в две

Журнал технической физики, 2021, том 91, вып. 6

стадии, при этом первая стадия окисления не играет существенной роли (прирост массы навески составляет $\sim 2\%$) и проходит ниже температуры плавления алюминия. Основной процесс окисления алюминия протекает в диапазоне температур 800–1060°С. Для порошков бора и боридов алюминия окисление проходит в одну стадию. Отметим, что для порошка диборида алюминия наблюдается незначительный эндотермический пик, который связан с процессом разложения AlB₂ и образованием других фаз боридов и сплавов бора с алюминием, при значениях температур воздуха 965 и 1013°С.

Наибольшим тепловым эффектом реакции окисления обладают порошки аморфного бора и додекаборида алюминия (21.6 и 20.3 kJ/g соответственно), значения которых значительно превосходят значения теплового эффекта порошка Al (3.7 kJ/g) и AlB₂ (5.2 kJ/g). При этом максимальной скоростью окисления обладает порошок AlB₁₂, значения которой на 15% выше скорости окисления B, и в 2.0 и 5.2 раза больше, чем у порошков AlB₂ и Al.

Результаты экспериментального исследования процесса зажигания составов ВЭМ, содержащих порошки Al, B, AlB₂ или AlB₁₂, показали, что при использовании в составах ВЭМ двойного окислителя ПХА/НА и активного горючего-связующего МПВТ-АСП времена прогрева и задержки зажигания увеличиваются по сравнению с ВЭМ на основе ПХА и бутадиенового каучука СКДМ-80.

При замещении микронного алюминия на аморфный бор времена задержки зажигания снижаются для всех рассматриваемых составов ВЭМ. Наибольшая эффективность замены Al на бориды алюминия AlB₂ и AlB₁₂ обнаружена для состава ВЭМ на основе двойного окислителя и активного связующего (ПХА/НА/МПВТ-АСП), в результате которого увеличивается устойчивость зажигания и снижается время задержки зажигания в 1.8–2.8 раза при одинаковых значениях плотности теплового потока. При использовании AlB₂ и AlB₁₂ в составах ВЭМ на основе инертного связующего (ПХА/СКДМ-80 и ПХА/НА/СКДМ-80) времена прогрева и задержки зажигания топлив снижаются при плотности теплового потока q > 160 W/cm².

Финансирование работы

Исследование выполнено при финансовой поддержке РФФИ, проект № 20-03-00588.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] E.L. Dreizin. Prog. Energ. Combust., **35** (2), 141 (2009). DOI: 10.1016/j.pecs.2008.09.001
- [2] A. Gromov, L.T. Deluca, A.P. Il'in, U. Teipel, A. Petrova, D. Prokopiev. Int. J. Energ. Mater. Chem. Propul., 13 (5), 399 (2014).
- DOI: 10.1615/IntJEnergeticMaterialsChemProp.2014011255
- [3] Л.С. Яновский. Энергоемкие горючие для авиационных и ракетных двигателей (Физматлит, М., 2009), с. 400.
- [4] Д.С. Сандарам, В. Янг, В.Е. Зарко. ФГВ, 51 (2), 37 (2015).
- [5] Y. Sun, K.L. Chintersingh, M. Schoenitz, E.L. Dreizin. J. Phys. Chem. C, **123** (18), 11807 (2019).
 DOI: 10.1021/acs.jpcc.9b03363
- [6] X. Liu, J. Gonzales, M. Schoenitz, E.L. Dreizin. Thermochim. Acta, 652, 17 (2017).
- [7] D. Yu, C. Kong, J.-K. Zhuo, S.Q. Li, Q. Yao. Sci. China Technol. Sci., 58 (12), 2016 (2015).
 DOI: 10.1007/s11431-015-5841-0
- [8] V. Arkhipov, L. Savelieva, P. Ponomarev. MATEC Web Conf. 110, 01075 (2017). DOI: 10.1051/matecconf/201711001075
- [9] В.А. Архипов, А.С. Жуков, В.Т. Кузнецов, Н.Н. Золотарев, Н.А. Осипова, К.Г. Перфильева. ФГВ, 54 (6), 68 (2018). DOI: 10.15372/FGV20180608
- [10] А.Г. Коротких, В.А. Архипов, И.В. Сорокин, Е.А. Селихова. Хим. физ. мезоскопия, **20** (1), 5 (2018).
- [11] M.L. Whittaker, R.A. Cutler, P.E. Anderson. MRS Symp. Proc., 1405, 96 (2011). DOI: 10.1557/opl.2012.64
- [12] D. Liang, R. Xiao, J. Liu, Y. Wang. Aerospace Sci. Technol., 84, 1081 (2019).
- [13] S. Adil, B.S. Murty. Thermochim. Acta, 678, 178306 (2019).

- [14] M.L. Whittaker, H.Y. Sohn, R.A. Cutler. J. Solid State Chem., 207, 163 (2013).
- [15] I. Zhukov, A. Vorozhtsov, V. Promakhov, Y. Dubkova,
 A. Zhukov, A. Khrustalev. MATEC Web Conf. 243 (00015),
 1 (2018). DOI: 10.1051/matecconf/201824300015
- [16] Д.А. Ягодников, А.В. Воронецкий, В.И. Сарабьев. ΦΓВ, 52 (3), 51 (2016).
- [17] В.В. Промахов, М.Х. Зиатдинов, И.А. Жуков, С.А. Ворожцов, А.Е. Матвеев, С.С. Титов. Ползуновский вестник, 1 (4), 76 (2016).
- [18] И.А. Жуков, М.Х. Зиатдинов, А.Б. Ворожцов, А.С. Жуков,
 С.А. Ворожцов, В.В. Промахов. Изв. вузов. Физика, **59** (8),
 177 (2016). [I.A. Zhukov, M.K. Ziatdinov, A.B. Vorozhtsov,
 A.S. Zhukov, S.A. Vorozhtsov, V.V. Promakhov. Russ. Phys. J.
 59 (8), 1324 (2016). DOI: 10.1007/s11182-016-0911-8]
- [19] Ш.Л. Гусейнов, С.Г. Федоров, А.Ю. Тузов, С.И. Малашин, А.И. Драчев, М.Р. Киселев, Б.В. Певченко, О.В. Воронько. Российские нанотехнологии, 10 (5-6), 79 (2015).
 [S.L. Guseinov, S.G. Fedorov, А.Ү. Тиzov, S.I. Malashin, A.I. Drachev, M.R. Kisilev, B.V. Pevchenko, O.V. Voron'ko. Nanotechnol. Russ., 10 (5-6), 420 (2015). DOI: 10.1134/S199507801503009X]
- [20] Н.В. Кириллова, А.И. Харламов, С.В. Лойченко. Неорг. матер., **36** (8), 937 (2000). [N.V. Kirillova, A.I. Kharlamov, S.V. Loichenko. Inorg. Mater., **36** (8), 776 (2000). DOI: 10.1007/BF02758596]
- [21] А.Г. Коротких, К.В. Слюсарский, И.В. Сорокин. Хим. физ. мезоскопия, 22 (2), 164 (2020). DOI: 10.15350/17270529.2020.2.16