06

К 125-летию со дня рождения лауреата Нобелевской премии академика Николая Николаевича Семенова

Полуэмпирические методы расчета температур ликвидуса в оксидных системах

© В.А. Ворожцов,^{1,2} В.Л. Столярова^{1,2}

¹ Санкт-Петербургский государственный университет,
 199034 Санкт-Петербург, Россия
 ² Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова РАН,
 199034 Санкт-Петербург, Россия
 e-mail: v.stolyarova@spbu.ru

Поступило в Редакцию 9 октября 2020 г. В окончательной редакции 23 декабря 2020 г. Принято к публикации 2 января 2021 г.

Предложены два полуэмпирических метода (геометрический и полиномиальный) для расчета температур ликвидуса в трехкомпонентных и четырехкомпонентных системах по данным о равновесиях в соответствующих бинарных системах. Рассмотрены достоинства, ограничения и особенности применения предложенных полуэмпирических методов. Проиллюстрирована достоверность результатов выполненного расчета значений температур ликвидуса в системе $Gd_2O_3 - Y_2O_3 - ZrO_2$ при сопоставлении с имеющимися данными о фазовых равновесиях. Показана возможность оценки положения эвтектических линий в многокомпонентных оксидных системах в координатах температура-состав. Отмечено, что предложенные полуэмпирические методы могут найти дальнейшее применение при оценках значений температур ликвидуса в многокомпонентных оксидных системах с целью сокращения объема экспериментальных исследований фазовых равновесий при высоких температурах.

Ключевые слова: температуры ликвидуса, оксидные системы, оксид циркония, оксиды редкоземельных элементов, фазовые равновесия, термодинамика.

DOI: 10.21883/JTF.2021.06.50858.287-20

Введение

Среди богатейшего научного наследия академика Николая Николаевича Семенова одними из наиболее ярких являются работы, связанные с изучением кинетики химических процессов, включая создание теорий самовоспламенения и цепных реакций [1-4]. Дальнейшее развитие исследований в данном направлении оказалось возможным именно благодаря междисциплинарному подходу, одной из особенностей которого было использование физических представлений при рассмотрении широкого спектра химических проблем [5,6]. Важным следствием этого подхода явилось возникновение новой дисциплины — химической физики, родоначальником которой в нашей стране стал академик Н.Н. Семенов. Необходимо особенно подчеркнуть, что в работах, выполненных при активном участии Н.Н. Семенова, неоднократно показана неразрывная связь химии и физики для развития новых фундаментальных и прикладных направлений исследований, подобно тому как вследствие применения теорий классической физики в химии было сформировано термодинамическое учение о равновесии — основная глава физической химии [1,6].

Как известно, термодинамический подход представляет собой один из основополагающих элементов теоретического анализа широкого круга явлений, связанных с изучением физико-химических свойств оксидных материалов при высоких температурах. В настоящее время успешная разработка керамики, стекол и стеклокерамики нового поколения во многом определяется наличием достоверной информации о фазовых соотношениях и термодинамических характеристиках в многокомпонентных системах [7–9]. Получение такой информации невозможно без всестороннего экспериментального исследования с привлечением различных взаимодополняющих методик изучения физико-химических свойств при высоких температурах. Однако, как правило, увеличение компонентности исследуемой системы приводит к значительному увеличению объема и трудоемкости экспериментальных исследований. Для оптимизации проведения экспериментального изучения фазовых равновесий и термодинамических свойств в многокомпонентных системах с этой точки зрения представляется весьма актуальным привлечение полуэмпирических методов расчета положения линии ликвидуса. С учетом того что фазовые равновесия в значительной степени более изучены в бинарных системах по сравнению с многокомпонентными, целесообразно рассмотреть возможность расчета линий ликвидуса в последних по данным о соответствующих бинарных системах [10]. Расчетные полуэмпирические методы не только упрощают проведение экспериментальных исследований фазовых равновесий, но и способствуют выявлению закономерностей изменения фазовых диаграмм в рядах аналогичных тугоплавких оксидных систем [11].

Основополагающий вклад в развитие физико-химического анализа в части развития учения о диаграмме состав-свойство внес академик Н.С. Курнаков. В частности, в область его научных интересов входило внедрение геометрических идей и методов в химию при исследовании соответствий между составом и свойствами многокомпонентных систем [12]. В рамках научной школы Н.С. Курнакова активно разрабатывалось направление рассмотрения диаграмм состав-свойство многокомпонентных систем на основе принципов многомерной геометрии [13]. Особую роль в данном направлении сыграли профессора В.Я. Аносов, С.А. Погодин [14] и В.П. Радищев [15].

Среди работ, выполненных ранее в области расчета фазовых равновесий в бинарных и квазибинарных системах, необходимо выделить подход Эпстейна и Гоуленда [10,16] с использованием уравнения Шредера; метод Суворова, позволяющий проводить оценку температур ликвидуса и состава эвтектики в бинарных системах [17]; а также подход Бондарь с коллегами [11] с привлечением статистической обработки экспериментальных данных. Отметим, что в работах [10,16] предполагалось идеальное поведение рассматриваемых систем, а в [11] для расчета температур ликвидуса в изученных системах были необходимы экспериментальные данные.

Необходимо подчеркнуть, что наряду с указанными выше подходами в мировой литературе разработан и успешно применяется более строгий метод термодинамического моделирования, получивший название подхода Calphad (Calculation of Phase Diagrams) [18]. В данном подходе все имеющиеся в литературе термодинамические свойства и данные о фазовых равновесиях в исследуемой системе совместно оптимизируются для получения согласующегося набора уравнений концентрационных и температурных зависимостей энергии Гиббса для всех фаз. На основе принципа минимума общей энергии Гиббса системы в состоянии равновесия полученный набор модельных уравнений позволяет рассчитать равновесную фазовую диаграмму изучаемой системы, включая температуры ликвидуса. Более того, подход Calphad дает возможность расчета фазовых равновесий в многокомпонентных системах, если предварительно были оптимизированы данные для соответствующих бинарных систем. Однако для более корректного физико-химического описания многокомпонентных систем в рамках обсуждаемого подхода все же необходимы экспериментальные данные как о фазовых равновесиях, так и о термодинамических свойствах не только в бинарных, но и во многокомпонентной системе.

К недостаткам подхода Calphad следует отнести необходимость времязатратного анализа и отбора имеющихся в литературе экспериментальных данных об исследуемой системе, трудоемкого согласования наборов модельных уравнений, оптимизированных при рассмотрении различных бинарных и многокомпонентных систем, а также использования дорогостоящих коммерческих программных продуктов, таких как ThermoCalc [19], MTData [20] или FactSage [21] и платных баз данных.

Таким образом, очевидна актуальность разработки методов расчета температур ликвидуса в многокомпонентных системах по соответствующим данным в бинарных системах. Такие методы должны позволять быстро, с наименьшими усилиями и без обращения к платным продуктам получить предварительную информацию о фазовых равновесиях в исследуемой системе, что необходимо для планирования последующих экспериментальных исследований, а также критически важно в условиях ограниченного времени, например, при упреждающем прогнозировании возможности протекания тяжелой аварии на атомной электрической станции.

Ранее были предприняты попытки расчета термодинамических свойств трехкомпонентных и четырехкомпонентных систем на основе имеющихся данных в соответствующих бинарных системах различными полуэмпирическими подходами, в частности профессором А.Г. Морачевским с соавторами [22–24] и с участием авторов настоящей работы [25–27]. При сопоставлении с экспериментальными данными показана [25–27] возможность применения метода Колера [28] и уравнения Редлиха-Кистера [29] для оценки термодинамических свойств в трехкомпонентных системах. В этой связи целесообразно рассмотреть корректность использования полуэмпирических методов для расчета температур ликвидуса в многокомпонентных системах по данным о равновесиях в соответствующих бинарных системах.

В настоящей работе предложены два новых независимых подхода для оценки температур ликвидуса в многокомпонентных системах по данным о равновесиях в бинарных. Отличительной особенностью двух предложенных полуэмпирических подходов является простота использования, отсутствие необходимости обращения к программам и базам данных ограниченного распространения, а также возможность расчета линий ликвидуса без привлечения данных о термодинамическом описании и экспериментальных значений температур ликвидуса в исследуемых многокомпонентных системах. Простота и высокая скорость получения необходимых величин, присущие предложенным подходам, требуются в условиях, когда время на проведение моделирования значительно ограничено и недостаточно для проведения строгого, трудоемкого и времязатратного термодинамического анализа, например, при прогнозировании возможности протекания аварии на атомных энергетических станциях [30].

При дальнейшем изложении в разд. 1 дано общее описание предложенных методов для расчета температур ликвидуса в трехкомпонентных и четырехкомпонентных системах. Тестирование предлагаемых в настоящей работе методов на примере системы Gd₂O₃-Y₂O₃-ZrO₂ проведено в разд. 2. Отметим, что фазовая диаграмма этой системы была не только детально изучена экспериментально, но и оптимизирована в рамках подхода Calphad [18,31]. Впервые полученные результаты о положении линий ликвидуса в четырехкомпонентной системе на примере системы Sm₂O₃-Gd₂O₃-Y₂O₃-ZrO₂, рассчитанные с использованием как геометрического, так и полиномиального подходов, приведены в разд. 3. Выбор рассматриваемых систем для расчета линий ликвидуса является не случайным, а продиктован использованием керамики на основе указанной четырехкомпонентной системы для получения материалов высшей огнеупорности, в частности, термобарьерных покрытий и форм для литья лопаток газотурбинных двигателей [32-34].

Таким образом, настоящая работа представляет интерес не только для расчета фазовых равновесий в многокомпонентных оксидных системах при высоких температурах, но и для рассмотрения потенциальных возможностей использования оксидных материалов в экстремальных условиях.

1. Геометрический и полиномиальный подходы для оценки температур ликвидуса в многокомпонентных системах

Рассмотрим предложенные в настоящей работе полуэмпирические методы оценки температур ликвидуса в многокомпонентных системах по имеющимся данным в соответствующих бинарных системах. Оба полуэмпирических метода основаны на предположении о том, что температура ликвидуса заданного состава в многокомпонентной системе представляет собой математическую линейную комбинацию температур ликвидуса соответствующих бинарных систем. Отметим, однако, что предложенные подходы не позволяют предсказать возможность образования соединений, ликвационных областей, перитектических реакций в многокомпонентных системах, если указанные особенности не характерны для соответствующих бинарных систем.

В первом из предложенных методов сделано допущение о том, что температура ликвидуса для конкретного состава многокомпонентной системы рассчитывается путем взвешенного суммирования температур ликвидуса составов в бинарных системах (по одному составу и соответствующей ему температуре из каждой бинарной системы). Определение конкретного состава в бинарной системе, необходимого для получения температуры ликвидуса образца в многокомпонентной системе, выполнено по аналогии с методом Колера [28]. Следуя терминологии профессора А.Г. Морачевского [24], назовем этот подход геометрическим методом. Суммирование вкладов бинарных систем при расчете температуры ликвидуса заданного состава трехкомпонентной системы также проводилось по методике, аналогичной суммированию значений избыточной энергии Гиббса в методе Колера [28] согласно уравнению (1). Однако аналитический вид зависимости уравнения (1) выбран эмпирически при тестировании предложенной модели, описанном далее в разд. 2:

$$T_{ijk} = 0.5[T_{ij}]_{\frac{x_i}{x_j}}(x_i + x_j) + 0.5[T_{ik}]_{\frac{x_i}{x_k}}(x_i + x_k) + 0.5[T_{jk}]_{\frac{x_j}{x_k}}(x_j + x_k),$$
(1)

где T_{ijk} — температура ликвидуса в образце трехкомпонентной системы, $[T_{ij}]_{\frac{x_i}{x_j}}$, $[T_{ik}]_{\frac{x_i}{x_k}}$, $[T_{jk}]_{\frac{x_j}{x_k}}$ — значения температур ликвидуса в соответствующих бинарных системах при том же соотношении мольных долей (x_i) указанных компонентов, что и в трехкомпонентной системе.

Введение коэффициента 0.5, который отсутствует в методе Колера [28], в уравнение (1) было вызвано спецификой понятия температуры по сравнению со спецификой понятия энергии Гиббса. Наиболее наглядно необходимость введения указанного коэффициента и обоснование его величины следуют из рассмотрения концентрационных диапазонов, близких к индивидуальным компонентам.

Известно, что в методе Колера [28] избыточные энергии Гиббса (ΔG^{E}_{ijk}) в трехкомпонентной системе рассчитываются по следующей формуле:

$$\Delta G_{ijk}^{E} = [\Delta G_{ij}^{E}]_{\frac{x_{i}}{x_{j}}} (x_{i} + x_{j})^{2} + [\Delta G_{ik}^{E}]_{\frac{x_{i}}{x_{k}}} (x_{i} + x_{k})^{2} + [\Delta G_{jk}^{E}]_{\frac{x_{j}}{x_{k}}} (x_{j} + x_{k})^{2}, \qquad (2)$$

где $[\Delta G_{ij}^{E}]_{\frac{x_i}{x_j}}, [\Delta G_{ik}^{E}]_{\frac{x_i}{x_k}}, [\Delta G_{jk}^{E}]_{\frac{x_j}{x_k}}$ — значения избыточных энергий Гиббса в соответствующих бинарных системах при том же соотношении содержаний указанных компонентов, что и в трехкомпонентной системе.

В дальнейшем рассмотрим, например, образец, находящийся в концентрационном диапазоне вблизи индивидуального компонента *j*. Специфика избыточной энергии Гиббса заключается в том, что ΔG^E для индивидуальных компонентов равна 0 kJ/mol. По этой причине $[\Delta G^E_{ij}]_{\frac{x_i}{x_j}}$ и $[\Delta G^E_{jk}]_{\frac{x_j}{x_k}}$ для рассматриваемого образца близки к нулю. $[\Delta G^E_{ik}]_{\frac{x_i}{x_k}}$ значимо отлична от нуля, однако квадрат суммы мольных долей $(x_i + x_k)^2$ близок к нулю. Следовательно, по вышеуказанной формуле (2) ΔG^E_{ijk} стремится к нулю в пределе при приближении к компоненту *j*.

Уравнение, аналогичное формуле (2), может быть записано и для случая расчета температуры ликвидуса в трехкомпонентной системе:

$$T_{ijk} = [T_{ij}]_{\frac{x_i}{x_j}}(x_i + x_j) + [T_{ik}]_{\frac{x_i}{x_k}}(x_i + x_k) + [T_{jk}]_{\frac{x_j}{x_k}}(x_j + x_k).$$
(3)

При расчете температуры ликвидуса по уравнению (3) ситуация сложнее, чем при расчете избыточной энергии Гиббса, поскольку температура плавления индивидуального компонента не равна нулю. $[T_{ij}]_{\frac{x_i}{x_j}}$ и $[T_{jk}]_{\frac{x_j}{x_k}}$ для образца, находящегося в концентрационном диапазоне вблизи индивидуального компонента j, близки не к 0 К, а к температуре плавления компонента $j(T_j)$. При этом вклад системы ik стремится к нулю, если x_i и x_k стремятся к нулю (а x_j соответственно к единице). Тогда с учетом отмеченных обстоятельств $(T_{ij} \to T_j, T_{jk} \to T_j, x_i + x_j \to 1, x_i + x_k \to 0, x_j + x_k \to 1)$ по уравнению (3) получим

$$T_{ijk} \to T_j \cdot 1 + [T_{ik}]_{\frac{x_1}{y}} \cdot 0 + T_j \cdot 1 = 2T_j.$$

Однако вблизи компонента j температура T_{ijk} должна быть близка к T_j . Это и обусловливает необходимость введения коэффициента 0.5 в уравнение (3), что в итоге приведет к уравнению (1).

Во втором из предложенных в настоящей работе подходов вклады бинарных систем в величину температуры ликвидуса трехкомпонентной системы приняты по аналогии с расчетом избыточных энергий Гиббса в трехкомпонентной системе по соответствующим данным в бинарных системах согласно полиномиальным методам Вильсона [35] и Редлиха-Кистера [29]. Принимая во внимание терминологию, предложенную А.Г. Морачевским [24], назовем этот метод полиномиальным подходом.

Для оценки температур ликвидуса в многокомпонентных системах в рамках полиномиального подхода на первом этапе необходимо аппроксимировать температуры ликвидуса в бинарных системах уравнением, удовлетворяющим ряду требований. Одним из требований является симметричный вид уравнения по мольным долям компонентов и отсутствие постоянных, не умноженных хотя бы на одну мольную долю компонента. Отметим, что уравнения Вильсона [35] и Редлиха-Кистера [29] не удовлетворяют этим требованиям. Оба уравнения были предложены, как известно, для аппроксимации значений избыточной энергии Гиббса указанными уравнениями и соответственно приводят к нулевым значениям избыточной энергии Гиббса для индивидуальных компонентов. Однако в отличие от энергии Гиббса температура плавления индивидуальных компонентов не может быть равна нулю.

На следующем этапе после аппроксимации температур ликвидуса в бинарных системах уравнениями, удовлетворяющими указанным выше условиям, следует распространить полученный результат на соответствующую многокомпонентную систему посредством взвешенного суммирования:

$$T_{ijk} = 0.5T_{ij} + 0.5T_{ik} + 0.5T_{jk}, \tag{4}$$

где T_{ij} , T_{ik} , T_{jk} — значения температур ликвидуса, полученные по аппроксимационным уравнениям для соответствующих бинарных систем при мольных долях компонентов в образце трехкомпонентной системы. Коэффициент 0.5 вводится по тем же соображениям, что и в изложенном ранее геометрическом подходе.

Однако при использовании как геометрического, так и полиномиального подходов не всегда возможно аппроксимировать величины температуры ликвидуса в бинарных системах одним и тем же уравнением. Если концентрационные зависимости температур ликвидуса в бинарных системах описаны несколькими уравнениями при различном содержании компонентов, то это следует учесть при расчете температур ликвидуса в трехкомпонентной системе. В этом случае в геометрическом подходе при вычислении значения температуры ликвидуса бинарной системы для использования в соотношении (4) требуется применить то уравнение, в концентрационном диапазоне которого находится заданный состав бинарной системы. При расчете полиномиальным методом ситуация усложняется. Несмотря на то что используемые уравнения концентрационных зависимостей температур ликвидуса соответствуют бинарным системам, вводить в эти уравнения следует мольные доли компонентов в многокомпонентной системе, как показано выше в уравнении (4). Это приводит к неопределенности выбора содержаний компонентов в многокомпонентной системе, при которых следует осуществлять переход между различными уравнениями концентрационных зависимостей температур ликвидуса. В настоящей работе предлагается осуществлять указанную смену уравнений концентрационных зависимостей температур ликвидуса при таких соотношениях содержаний компонентов в многокомпонентной системе, при которых происходит переход между обсуждаемыми уравнениями в бинарной системе. Именно с использованием этого допущения и выполнены расчеты полиномиальным методом, представленные в разд. 2 и 3.

В общем случае предложенные полуэмпирические методы могут быть распространены на системы, содержащие *п* компонентов. Количество слагаемых при расчете температур ликвидуса системы, содержащей п компонентов, будет равно числу бинарных систем в данной *п*-компонентной системе (которое соответствует числу сочетаний из n по 2, C_n^2). Весовой коэффициент при суммировании температур ликвидуса бинарных систем представляет собой величину, обратную количеству компонентов системы минус один. Из этого однозначно следует, что весовые коэффициенты зависят только от числа компонентов в системе и являются универсальными, т.е. могут применяться для любых многокомпонентных систем независимо от их химической природы (металлических, оксидных, карбидных и других систем). Таким образом, можно предложить следующее общее уравнение геометрического метода для системы, содержащей *n* компонентов:

$$T_n = \frac{1}{n-1} \sum_{i,j=1,i< j}^{C_n^2} [T_{ij}]_{\frac{x_i}{x_j}}(x_i + x_j),$$

где i, j — компоненты системы, T_n — температура ликвидуса в системе, содержащей n компонентов, $[T_{ij}]_{\frac{x_i}{x_j}}$ температура ликвидуса в бинарной системе, содержащей компоненты i и j, при том же соотношении мольных долей компонентов, что и в многокомпонентной системе.

Общее уравнение для полиномиального метода имеет следующий вид:

$$T_n = \frac{1}{n-1} \sum_{i, j=1, i < j}^{C_n^2} T_{ij}$$

где T_{ij} определяются по концентрационным зависимостям температур ликвидуса бинарных систем.

Тестирование методов оценки температур ликвидуса на примере системы Gd₂O₃-Y₂O₃-ZrO₂

Фазовые равновесия в системе $Gd_2O_3 - Y_2O_3 - ZrO_2$ были оптимизированы ранее с привлечением термодинамических, модельных и экспериментальных данных в рамках подхода Calphad в работах [36,37]. Именно по этой причине в качестве критерия корректности расчетов, выполненных согласно геометрическому и полиномиальному подходу, в настоящей работе принято соответствие рассчитанных и оптимизированных в работах [36,37] температур ликвидуса. Для тестирования предложенных подходов были выбраны два сечения в системе $Gd_2O_3 - Y_2O_3 - ZrO_2$ с соотношением мольных долей компонентов Gd_2O_3 и Y_2O_3 , равным 1:3 и 3.

2.1. Геометрический подход

Для расчета температур ликвидуса в системе $Gd_2O_3-Y_2O_3-ZrO_2$ с использованием геометрического подхода, уравнение (1), соответствующие значения в бинарных системах $Gd_2O_3-Y_2O_3$, $Y_2O_3-ZrO_2$ и $Gd_2O_3-ZrO_2$ по данным [36] были аппроксимированы следующими степенными уравнениями.

В системе $Gd_2O_3 - Y_2O_3$ температуры ликвидуса были аппроксимированы единственным уравнением во всем диапазоне концентраций:

$$T_{\rm GY} = 2697.05 - 47.33x_{\rm Gd_2O_3} + 5.23x_{\rm Gd_2O_3}^2 + 121.64x_{\rm Gd_2O_3}^3 - 67.38x_{\rm Gd_2O_3}^4.$$

В системе Y₂O₃-ZrO₂ температуры ликвидуса также были аппроксимированы единственным уравнением во всем диапазоне концентраций:

$$T_{YZ} = 3000.36 + 913.34x_{YO_{1.5}} - 4674.73x_{YO_{1.5}}^2 + 10067.40x_{YO_{1.5}}^3 - 10903.57x_{YO_{1.5}}^4 + 4301.62x_{YO_{1.5}}^5.$$

В отличие от двух предыдущих систем с учетом существования эвтектики в системе $Gd_2O_3 - ZrO_2$ [36] для описания температур ликвидуса использованы два уравнения при содержании Gd_2O_3 , меньшем 0.74 mol.fract.:

$$\begin{split} T_{\rm GZ}^{<0.741} &= 2994.19 + 302.12 x_{\rm Gd_2O_3} - 3320.15 x_{\rm Gd_2O_3}^2 \\ &+ 7741.13 x_{\rm Gd_2O_3}^3 - 10290.59 x_{\rm Gd_2O_3}^4 + 4961.42 x_{\rm Gd_2O_3}^5, \end{split}$$

и при содержании Gd₂O₃, большем 0.74 mol.fract.:

$$\begin{split} T_{\rm GZ}^{>0.741} &= -309730.18 + 1808030 x_{\rm Gd_2O_3} - 4174440 x_{\rm Gd_2O_3}^2 \\ &+ 4800840 x_{\rm Gd_2O_3}^3 - 2748420 x_{\rm Gd_2O_3}^4 + 626410.34 x_{\rm Gd_2O_3}^5. \end{split}$$

Таким образом, по уравнению (1) с использованием приведенных выше концентрационных зависимостей определены температуры ликвидуса в системе

Рис. 1. Значения температур ликвидуса в системе $Gd_2O_3 - Y_2O_3 - ZrO_2$ на секущей с соотношением мольных долей Gd_2O_3 и Y_2O_3 , равным 3: сплошная линия — температуры ликвидуса согласно результатам работы [36]; штриховая линия (*a*) — температуры ликвидуса, рассчитанные согласно геометрическому подходу по уравнению (1); штриховая линия (*b*) — температуры ликвидуса, рассчитанные согласно полиномиальному подходу по уравнениям (7) и (8), где $x(ZrO_2)$ — мольная доля ZrO₂.

Рис. 2. Значения температур ликвидуса в системе $Gd_2O_3 - Y_2O_3 - ZrO_2$ на секущей с соотношением мольных долей Gd_2O_3 и Y_2O_3 , равным 1:3: сплошная линия — температуры ликвидуса согласно результатам работы [36]; штриховая линия (*a*) — температуры ликвидуса, рассчитанные согласно геометрическому подходу по уравнению (1); штриховая линия (*b*) — температуры ликвидуса, рассчитанные согласно полиномиальному подходу по уравнениям (7) и (8), где $x(ZrO_2)$ — мольная доля ZrO_2 .

 $Gd_2O_3-Y_2O_3-ZrO_2$ на секущих с соотношением мольных долей компонентов Gd_2O_3 и Y_2O_3 , равным 1:3 и 3. На рис. 1, *а* и 2, *а* проведено сопоставление температур ликвидуса, рассчитанных согласно геометрическому подходу, и результатов оптимизации, полученных ранее в системе $Gd_2O_3-Y_2O_3-ZrO_2$ в работе [36].

Как показано на рис. 1, a и 2, a, более значительные отклонения рассчитанных от принятых в [36] данных наблюдаются в концентрационном диапазоне рассматриваемой системы вблизи эвтектик, либо перитектик. Следует отметить, что рассчитанные кривые ликвидуса в системе $Gd_2O_3 - Y_2O_3 - ZrO_2$, представленные на рис. 1, а и 2, а, также характеризуются минимумами, которые подобны эвтектическим. Резюмируя выполненные расчеты, заключим, что чем глубже минимум на экспериментальной кривой ликвидуса, тем значительнее отклонение между значениями, рассчитанными геометрическим методом, и экспериментальными данными. Средние относительные отклонения рассчитанных в настоящей работе величин от принятых в [36] температур ликвидуса составили 0.9 и 0.5% для секущих с соотношением мольных долей компонентов Gd₂O₃ и Y₂O₃, равным 3 и 1:3 соответственно, либо в среднем для обеих секущих 0.7%.

2.2. Полиномиальный подход

Для применения полиномиального подхода температуры ликвидуса в бинарных системах $Gd_2O_3 - Y_2O_3$, $Y_2O_3 - ZrO_2$ и $Gd_2O_3 - ZrO_2$ аппроксимированы следующими симметричными уравнениями.

В системе Gd₂O₃-Y₂O₃ температуры ликвидуса описаны одним уравнением:

$$T_{\rm GY} = 2709.71 x_{\rm Gd_2O_3} + 2697.09 x_{\rm Y_2O_3} - 68.55 x_{\rm Gd_2O_3} x_{\rm Y_2O_3},$$

как и в системе Y₂O₃-ZrO₂:

$$T_{YZ} = 2706.81x_{Y_2O_3} + 3019.75x_{ZrO_2} + 726.87x_{Y_2O_3}x_{ZrO_2}^2 - 210.98x_{Y_2O_2}^2x_{ZrO_2}$$

Описание температур ликвидуса в системе $Gd_2O_3-ZrO_2$ выполнено двумя аппроксимационными уравнениями при содержании Gd_2O_3 , меньшем 0.74 mol.fract.:

$$T_{GZ}^{<0.741} = 2180.52x_{Gd_2O_3} + 3001.58x_{ZrO_2} + 813.10x_{Gd_2O_3}x_{ZrO_3},$$
(5)

а также при содержании Gd₂O₃, большем 0.74 mol.fract.:

$$T_{GZ}^{>0.741} = 2690.62x_{Gd_2O_3} + 1061.59x_{ZrO_2} + 1446.33x_{Gd_2O_3}x_{ZrO_2}.$$
 (6)

Следует отметить, что переход от одной концентрационной зависимости температур ликвидуса к другой в системе Gd_2O_3 —ZrO₂ происходит в точке эвтектики согласно фазовой диаграмме [36] при соотношении мольных долей Gd_2O_3 к ZrO₂, равном 2.85. При таком же соотношении содержаний указанных компонентов в трехкомпонентной системе Gd_2O_3 —Y₂O₃—ZrO₂ необходимо выполнить переход от уравнения (5) к уравнению (6) для оценки температур ликвидуса полиномиальным методом. Следовательно, общее уравнение для оценки температур ликвидуса в системе Gd_2O_3 —Y₂O₃—ZrO₂ имеет вид уравнения (4), модифицированного путем внесения конкретных температурных зависимосте температур

ликвидуса в соответствующих бинарных системах:

 $T_{\rm GYZ} = 0.5(2709.71x_{\rm Gd_2O_3} + 2697.09x_{\rm Y_2O_3})$

$$-68.55x_{\rm Gd_2O_3}x_{\rm Y_2O_3})+0.5(2706.81x_{\rm Y_2O_3}+3019.75x_{\rm ZrO_2})$$

 $+726.87x_{Y_2O_3}x_{ZrO_2}^2 - 210.98x_{Y_2O_3}^2x_{ZrO_2})$

$$+ 0.5(2180.52x_{\text{Gd}_2\text{O}_3} + 3001.58x_{\text{ZrO}_2} + 813.10x_{\text{Gd}_2\text{O}_3}x_{\text{ZrO}_2})$$
(7)

при соотношении мольных долей Gd_2O_3 к ZrO_2 , меньшем 2.85, и

$$\begin{split} T_{\rm GYZ} &= 0.5(2709.71 x_{\rm Gd_2O_3} + 2697.09 x_{\rm Y_2O_3} \\ &- 68.55 x_{\rm Gd_2O_3} x_{\rm Y_2O_3}) + 0.5(2706.81 x_{\rm Y_2O_3} + 3019.75 x_{\rm ZrO_2} \\ &+ 726.87 x_{\rm Y_2O_3} x_{\rm ZrO_2}^2 - 210.98 x_{\rm Y_2O_3}^2 x_{\rm ZrO_2}) \\ &+ 0.5(2690.62 x_{\rm Gd_2O_3} + 1061.59 x_{\rm ZrO_2} + 1446.33 x_{\rm Gd_2O_3} x_{\rm ZrO_2}) \end{split}$$

(8) при соотношении мольных долей Gd₂O₃ к ZrO₂, боль-

при соотношении мольных долей Gd_2O_3 к ZrO_2 , сольшем 2.85.

Как и ранее в геометрическом подходе, определены значения температур ликвидуса в системе $Gd_2O_3 - Y_2O_3 - ZrO_2$ на секущих с соотношением мольных долей компонентов Gd_2O_3 и Y_2O_3 , равным 1:3 и 3, по уравнениям (7) и (8) и сопоставлены с данными [36] на рис. 1, *b* и 2, *b*.

Средние относительные отклонения рассчитанных от оптимизированных в [36] температур ликвидуса составили 0.4 и 0.9% для секущих с соотношением мольных долей компонентов Gd₂O₃ и Y₂O₃, равным 3 и 1:3 соответственно, либо если усреднить данные по обеим секущим, то 0.6%. Как следует из проведенного сопоставления, в среднем полиномиальный подход более корректно позволил рассчитать температуры ликвидуса на секущей с соотношением мольных долей компонентов Gd₂O₃ и Y₂O₃, равным 3, по сравнению с геометрическим методом (0.9%). Отметим, что именно в этом случае наблюдается более глубокий эвтектический минимум. Большее различие рассчитанных и принятых в литературе значений наблюдалось для секущей $(x_{\text{Gd}_2\text{O}_3}: x_{\text{Y}_2\text{O}_3} = 1:3)$ по сравнению с геометрическим методом (0.5%). Максимальное отклонение значений температур ликвидуса на обеих секущих наблюдалось в концентрационных интервалах, близких к составу эвтектики.

Из проведенного сопоставления можно заключить, что средние отклонения рассчитанных температур ликвидуса от принятых в литературе значений с использованием двух рассмотренных методов расчета (геометрического и полиномиального) близки друг другу. На рассчитанных кривых ликвидуса, представленных на рис. 1, bи 2, b, можно отметить наличие минимумов, подобных эвтектическим минимумам. По-видимому, указанные минимумы могут быть связаны со сменой уравнений, описывающих концентрационные зависимости температур ликвидуса в системе $Gd_2O_3 - ZrO_2$ в точке эвтектики при $x_{Gd_2O_3}: x_{ZrO_2} = 2.85.$

3. Оценка температур ликвидуса в системе Sm₂O₃-Gd₂O₃-Y₂O₃-ZrO₂ с использованием геометрического и полиномиального методов

С учетом концентрационных интервалов системы $Sm_2O_3-Gd_2O_3-Y_2O_3-ZrO_2$, наиболее значимых для практических приложений, в частности для разработки термобарьерных покрытий [32–34], в настоящей работе проведен расчет линий ликвидуса в этой системе при суммарном содержании оксидов лантаноидов, не превышающем 0.5 mol.fract. Расчет выполнен в следующей концентрационной области исследуемой системы: $0 \le x(Sm_2O_3) + x(Gd_2O_3) \le 0.50$, $0.25 \le x(ZrO_2) \le 0.75$, $x(Y_2O_3) = 0.25$. Температуры ликвидуса рассчитаны по двум секущим при постоянной мольной доле Y_2O_3 , равной 0.25 mol.fract., и постоянном соотношении содержаний $x_{Sm_2O_3} : x_{Gd_2O_3} = 3$ и 1:3.

Для оценки температур ликвидуса в четырехкомпонентной системе $Sm_2O_3-Gd_2O_3-Y_2O_3-ZrO_2$ уравнения (1) и (4) были модифицированы следующим образом.

Определение температуры ликвидуса геометрическим методом проведено, согласно уравнению (9), по методике, аналогичной суммированию значений избыточной энергии Гиббса в методе Колера [28,38] для четырехкомпонентных систем:

$$T_{\text{SGYZ}} = \frac{1}{3} [T_{\text{SG}}]_{\frac{x_{\text{Sm}_2O_3}}{x_{\text{Gd}_2O_3}}} (x_{\text{Sm}_2O_3} + x_{\text{Gd}_2O_3}) + \frac{1}{3} [T_{\text{SY}}]_{\frac{x_{\text{Sm}_2O_3}}{x_{\text{Y}_2O_3}}} (x_{\text{Sm}_2O_3} + x_{\text{Y}_2O_3}) + \frac{1}{3} [T_{\text{SZ}}]_{\frac{x_{\text{Sm}_2O_3}}{x_{\text{Z}TO_2}}} (x_{\text{Sm}_2O_3} + x_{\text{Z}rO_2}) + \frac{1}{3} [T_{\text{GY}}]_{\frac{x_{\text{Gd}_2O_3}}{x_{\text{Y}_2O_3}}} (x_{\text{Gd}_2O_3} + x_{\text{Y}_2O_3}) + \frac{1}{3} [T_{\text{GZ}}]_{\frac{x_{\text{Gd}_2O_3}}{x_{\text{Z}rO_2}}} (x_{\text{Gd}_2O_3} + x_{\text{Z}rO_2}) + \frac{1}{3} [T_{\text{YZ}}]_{\frac{x_{\text{Y}_2O_3}}{x_{\text{Z}rO_2}}} (x_{\text{Y}_2O_3} + x_{\text{Z}rO_2}), \qquad (9)$$

где T_{SGTY} — температура ликвидуса заданного состава в системе $Sm_2O_3-Gd_2O_3-Y_2O_3-ZrO_2$. Коэффициент 1:3 введен по тем же причинам, что и ранее коэффициент 0.5 для трехкомпонентных систем. Было принято во внимание, что в четырехкомпонентной системе каждый компонент входит в состав трех бинарных систем, тогда как ранее для трехкомпонентных систем каждый компонент входил в состав двух бинарных систем.

Уравнение, аналогичное уравнению (4) в полиномиальном методе расчета температур ликвидуса трехкомпонентной системы, может быть представлено в следующем виде для описания температур ликвидуса в системе $Sm_2O_3-Gd_2O_3-Y_2O_3-ZrO_2$:

$$T_{\rm SGYZ} = \frac{1}{3} T_{\rm SG} + \frac{1}{3} T_{\rm SY} + \frac{1}{3} T_{\rm SZ} + \frac{1}{3} T_{\rm GY} + \frac{1}{3} T_{\rm GZ} + \frac{1}{3} T_{\rm YZ}.$$
(10)

Температуры ликвидуса в бинарных системах $Sm_2O_3-Gd_2O_3$, $Sm_2O_3-Y_2O_3$ [39] и $Sm_2O_3-ZrO_2$ [40] были аппроксимированы следующими уравнениями.

В системе $Sm_2O_3-Gd_2O_3$ температуры ликвидуса были аппроксимированы единственным уравнением во всем диапазоне концентраций:

$$T_{\rm SG} = 2600x_{\rm Sm_2O_3} + 2693x_{\rm Gd_2O_3}.$$

Фазовая системы $Sm_2O_3-Gd_2O_3$ диаграмма в литературе не найдена, поэтому кривая ликвидуса была представлена линейной зависимостью температур от состава по аналогии с известными данными о форме кривой ликвидуса в системах La2O3-Gd2O3, $La_2O_3-Sm_2O_3$, Sm₂O₃-Y₂O₃, $Eu_2O_3 - Y_2O_3$, $Gd_2O_3 - Y_2O_3$, $Er_2O_3 - Y_2O_3$, $Dy_2O_3 - Y_2O_3$, $La_2O_3 - Nd_2O_3$ [8,41].

Температуры ликвидуса в системе $Sm_2O_3 - Y_2O_3$ были также аппроксимированы во всем диапазоне концентраций:

$$\begin{split} T_{\rm SY} &= 2599.84 x_{\rm Sm_2O_3} + 2700.84 x_{\rm Y_2O_3} \\ &\quad -90.756 (x_{\rm Sm_2O_3} x_{\rm Y_2O_3})^{0.5} - 269.72 x_{\rm Sm_2O_3}^2 x_{\rm Y_2O_3} \\ &\quad +406.67 x_{\rm Sm_2O_3} x_{\rm Y_2O_3}^2. \end{split}$$

Наличие эвтектики в системе $Sm_2O_3 - ZrO_2$ при содержании Sm_2O_3 , равном 0.74 mol.fract., привело к необходимости введения двух уравнений согласно аргументам, изложенным выше в разд. 1. Так, при $x_{Sm_2O_3} < 0.74$ mol.fract.:

$$T_{\rm SZ}^{<0.743} = 2190.31 x_{\rm Sm_2O_3} + 2999.19 x_{\rm ZrO_2} + 421.38 x_{\rm Sm_2O_3} x_{\rm ZrO_2},$$

а при $x_{\text{Sm}_2\text{O}_3} > 0.74 \text{ mol.fract.:}$

$$T_{SZ}^{>0.743} = 2611.80x_{Sm_2O_3} + 1247.45x_{ZrO_2} + 1112.34x_{Sm_2O_3}x_{ZrO_2}.$$

Полученные результаты приведены в таблице и на рис. 3 и 4. В таблице данные расчета температуры ликвидуса в исследуемой системе также сопоставлены с результатами применения более простой методики оценки температуры ликвидуса на основе средневзвешенного суммирования температур плавления индивидуальных компонентов с учетом мольных долей оксидов

Рис. 3. Значения температур ликвидуса в системе $Sm_2O_3-Gd_2O_3-Y_2O_3-ZrO_2$ на секущей с соотношением мольных долей $x_{Sm_2O_3}: x_{Gd_2O_3} = 3$, и содержании Y_2O_3 , равном 0.25 mol.fract.: штриховая линия — геометрический подход; сплошная линия — полиномиальный подход, где $x(ZrO_2)$ — мольная доля ZrO_2 .

Рис. 4. Значения температур ликвидуса в системе $Sm_2O_3-Gd_2O_3-Y_2O_3-ZrO_2$ на секущей с соотношением мольных долей $x_{Sm_2O_3}: x_{Gd_2O_3} = 1:3$, и содержании Y_2O_3 , равном 0.25 mol.fract.: штриховая линия — геометрический подход; сплошная линия — полиномиальный подход, где $x(ZrO_2)$ — мольная доля ZrO_2 .

в рассматриваемом составе системы. Указанная методика является еще менее трудоемкой и времязатратной по сравнению с предложенными полуэмпирическими методами, однако она не учитывает никаких особенностей фазовых диаграмм бинарных систем, представляя кривую ликвидуса в виде прямой линии между температурами плавления индивидуальных компонентов. Таким образом, чем больше особенностей имеют фазовые диаграммы бинарных и многокомпонентных систем, тем бо́льшая погрешность будет характеризовать результаты применения методики средневзвешенного суммирования

			Соотноше	ние $x_{\text{Sm}_2\text{O}_3}/x_{\text{Go}}$	1 ₂₀₃ , равное 3		
x, mol.fract.				Т, К			I-II /min{I,II} · 100, %
$x_{Sm_2O_3}$	$x_{Gd_2O_3}$	$x_{Y_2O_3}$	$x_{\rm ZrO_2}$	Ι	II	III	
0.375	0.125	0.250	0.250	2710	2681	2740	1.1
0.338	0.113	0.250	0.300	2741	2712	2758	1.1
0.300	0.100	0.250	0.350	2771	2741	2776	1.1
0.263	0.088	0.250	0.400	2799	2771	2793	1.0
0.225	0.075	0.250	0.450	2826	2799	2811	1.0
0.188	0.062	0.250	0.500	2851	2827	2829	0.9
0.150	0.050	0.250	0.550	2876	2855	2847	0.7
0.113	0.037	0.250	0.600	2899	2882	2865	0.6
0.075	0.025	0.250	0.650	2920	2908	2883	0.4
0.037	0.012	0.250	0.700	2939	2934	2901	0.2
0.000	0.000	0.250*	0.750*	2957*	2961*	2919*	0.1
Среднее							0.7
			Соотношен	ие $x_{\mathrm{Sm}_2\mathrm{O}_3}/x_{\mathrm{Gd}_2}$	_{О3} , равное 1:3		
x, mol.fract.				Т, К			I-II /min{I,II} · 100, %
$x_{Sm_2O_3}$	$x_{\mathrm{Gd}_2\mathrm{O}_3}$	$x_{Y_2O_3}$	x _{ZrO2}	Ι	II	III	
0.125	0.375	0.250	0.250	2742	2709	2761	1.2
0.113	0.338	0.250	0.300	2772	2738	2777	1.3
0.100	0.300	0.250	0.350	2800	2766	2793	1.2
0.088	0.263	0.250	0.400	2825	2793	2808	1.1
0.075	0.225	0.250	0.450	2848	2820	2824	1.0
0.062	0.188	0.250	0.500	2870	2845	2840	0.9
0.050	0.150	0.250	0.550	2891	2870	2856	0.7
0.037	0.113	0.250	0.600	2911	2894	2872	0.6
0.025	0.075	0.250	0.650	2928	2917	2887	0.4
0.012	0.037	0.250	0.700	2944	2939	2903	0.2
0.000	0.000	0.250*	0.750*	2957*	2961*	2919*	0.1
Среднее							0.8

Температуры ликвидуса (T) в системе Sm₂O₃-Gd₂O₃-Y₂O₃-ZrO₂ на секущих с соотношением мольных долей Sm₂O₃ к Gd₂O₃, равным 1:3 и 3, рассчитанные согласно геометрическому подходу по уравнению (9) — I, полиномиальному подходу по уравнению (10) — II и как средневзвешенные значения температур плавления индивидуальных оксидов — III

Примечание. * Экспериментальное значение температуры ликвидуса при $x_{Y_2O_3} = 0.25$ и $x_{ZrO_2} = 0.75$ составляет 3027 К [36].

температур плавления индивидуальных компонентов. Кроме того, обсуждаемая методика не дает возможности прогнозирования эвтектических линий и эвтектических точек в многокомпонентной системе на основе фазовых равновесий в соответствующих бинарных системах, что является важным достоинством предложенных полуэмпирических методов. Следует отметить, что выбранный диапазон содержаний компонентов, в котором были рассчитаны температуры ликвидуса на рис. 3 и 4, соответствовал соотношениям $x_{Sm_2O_3}: x_{ZrO_2}$ и $x_{Gd_2O_3}: x_{ZrO_2} < 2.85$, и поэтому не требовалось изменение уравнений концентрационных зависимостей температур ликвидуса в системах Sm_2O_3 – ZrO_2 и Gd_2O_3 – ZrO_2 . По этой причине

на рассчитанных кривых не наблюдаются минимумы, подобные минимумам эвтектик. Однако, если рассмотреть области с большими содержаниями Sm_2O_3 и Gd_2O_3 или меньшим содержанием ZrO_2 , то разрывы, по-видимому, должны наблюдаться при тех же содержаниях компонентов, при которых будет выполнен переход между указанными уравнениями.

Несмотря на то что данные о фазовых равновесиях в системе $Sm_2O_3-Gd_2O_3-Y_2O_3-ZrO_2$ в литературе не найдены, предложенные в настоящей работе полуэмпирические методы (геометрический и полиномиальный) позволяют оценить температуры ликвидуса только на основе данных о равновесиях в соответствующих бинарных системах без привлечения экспериментальных значений в рассматриваемой четырехкомпонентной системе. В качестве критерия достоверности выполненных расчетов при отсутствии экспериментальных данных может быть принята степень соответствия результатов, полученных различными методами, как рекомендовано в [22]. Таким образом, при дальнейшем экспериментальном изучении фазовых равновесий в системе $Sm_2O_3-Gd_2O_3-Y_2O_3-ZrO_2$, необходимом для подтверждения корректности приведенных в данной работе расчетных значений температур ликвидуса, можно ожидать, что найденные экспериментальные значения будут соответствовать интервалу между рассчитанными линиями ликвидуса, представленными на рис. 3 и 4.

Заключение

В работе предложены два новых независимых полуэмпирических метода расчета температур ликвидуса в многокомпонентных системах по имеющимся данным о равновесиях в соответствующих бинарных системах: геометрический и полиномиальный методы. В первом из них расчет положения линий ликвидуса проводился по методике, аналогичной расчету избыточной энергии Гиббса в методе Колера [28] согласно уравнению (1). В основе второго метода был использован подход, принятый независимо Редлихом-Кистером [29] и Вильсоном [35]. Рассмотрены достоинства, недостатки и особенности применения указанных полуэмпирических методов на примере оценки температур ликвидуса в системах Gd₂O₃-Y₂O₃-ZrO₂ и Sm₂O₃-Gd₂O₃-Y₂O₃-ZrO₂. Отмечено, что результаты выполненной в настоящей работе оценки положения линий ликвидуса в системе Gd₂O₃-Y₂O₃-ZrO₂ находились в соответствии с известными данными о фазовых равновесиях в указанной системе в пределах относительной погрешности, не превышающей 3.9%. Показана возможность использования данных методов для расчета положения эвтектических линий в координатах состав-температура в многокомпонентных системах.

Необходимо подчеркнуть, что предлагаемые полуэмпирические методы ни в коей мере не могут заменить результаты экспериментальных исследований фазовых диаграмм из-за отсутствия потенциальной возможности прогнозирования наличия ликвационных областей, протекания перитектических реакций и образования соединений. Однако предложенные подходы могут быть полезны для оценки положения линий ликвидуса в многокомпонентных ранее не изученных системах, сокращая при этом весьма трудоемкие экспериментальные исследования фазовых равновесий при высоких температурах. Другим достоинством рассматриваемых полуэмпирических методов является простота и высокая скорость получения данных о температурах ликвидуса в изучаемой системе, что крайне востребовано в условиях недостатка времени на проведение строгого термодинамического моделирования, например при прогнозировании возможности протекания аварии на атомных энергетических станциях.

Следует отметить, что каждый из предложенных в настоящей работе методов позволяет оценить положение линий ликвидуса не только в оксидных системах, но и в системах другой химической природы. Следовательно, целесообразно дополнительно протестировать потенциальные возможности предлагаемых методов на примере металлических, фторидных, карбидных и оксикарбидных систем.

Финансирование работы

Работа выполнена в рамках государственного задания ИХС РАН, № государственной регистрации (ЦИТиС): АААА-А19-119022290088-8, уникальный номер (ИСГЗ): № 0097-2019-0014.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Н.Н. Семенов. УФН, **10** (2), 191 (1930). DOI: 10.3367/UFNr.0010.193002b.0191
- [2] Н.Н. Семенов. УФН, **11** (2), 250 (1931). DOI: 10.3367/UFNr.0011.193102c.0250
- [3] Н.Н. Семенов. Цепные реакции (Госхимтехиздат, Ленингр. отд., Л., 1934)
- [4] Н.Н. Семенов. Усп. хим., 36 (1), 3 (1967).
 DOI: 10.1070/RC1967v036n01ABEH001579 [N.N. Semenov.
 Russ. Chem. Rev. 36 (1), 1 (1967).
 DOI: 10.1070/RC1967 v036n01ABEH001579]
- [5] В.И. Гольданский, А.Е. Шилов. Вестн. РАН, **66** (4), 333 (1996).
- [6] А.Е. Шилов. Наука и человечество. Международный ежегодник (Знание, М., 1997)
- [7] V.L. Stolyarova, V.A. Vorozhtcov, A.L. Shilov, T.V. Sokolova.
 Pure Appl. Chem., 92 (8), 1259 (2020).
 DOI: 10.1515/pac-2019-1217
- [8] E.R. Andrievskaya. J. Eur. Ceram. Soc., 28 (12), 2363 (2008).
 DOI: 10.1016/j.jeurceramsoc.2008.01.009

- [9] Н.А. Торопов. В сб.: Физико-химические основы керамики, под ред. П.П. Будникова. (Гос. изд-во лит-ры по строительным материалам, М., 1956), с. 133.
- [10] И.А. Бондарь. Изв. АН СССР. Сер. хим., (11), 1921 (1964).
- [11] И.А. Бондарь, Н.А. Торопов, Л.Н. Королева. Химия высокотемпературных материалов. Труды II Всесоюзного совещания по химии окислов при высоких температурах. (Наука, Ленингр. отд., Л., 1967), с. 25.
- [12] Н.С. Курнаков. Введение в физикохимический анализ (ОНТИ-Химтеорет, Л., 1936)
- [13] В.П. Данилов, Н.Т. Кузнецов, В.М. Новоторцев. ЖНХ, 59 (7), 836 (2014). DOI: 10.7868/s0044457x14070058
- [14] В.Я. Аносов, С.А. Погодин. Основные начала физикохимического анализа (Изд-во АН СССР, М.–Л., 1947)
- [15] В.П. Радищев. В сб.: Известия сектора физикохимического анализа, под ред. Н.С. Курнакова, С.А. Погодина, М.А. Клочко. (Изд-во АН СССР, М.–Л., 1941), т. 14, с. 153.
- [16] L.F. Epstein, W.H. Howland, J. Am. Ceram. Soc., 36 (10), 334 (1953). DOI: 10.1111/j.1151-2916.1953.tb12812.x
- [17] С.А. Суворов, В.К. Новиков. Изв. АН СССР. Неорган. матер., 7 (2), 279 (1971).
- [18] H.L. Lukas, S.G. Fries, B. Sundman. Computational thermodynamics: The Calphad method (Cambridge University Press, Cambridge, 2007), v. 131. DOI: 10.1017/CBO9780511804137
- [19] J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman. Calphad Comput. Coupling Phase Diagrams Thermochem., 26 (2), 273 (2002). DOI: 10.1016/S0364-5916(02)00037-8
- [20] R.H. Davies, A.T. Dinsdale, J.A. Gisby, J.A.J. Robinson, S.M. Martin. Calphad Comput. Coupling Phase Diagrams Thermochem., 26 (2), 229 (2002). DOI: 10.1016/S0364-5916(02)00036-6
- [21] C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, S. Petersen. Calphad Comput. Coupling Phase Diagrams Thermochem., 26 (2), 189 (2002). DOI: 10.1016/S0364-5916(02)00035-4
- [22] А.Г. Морачевский, Л.Б. Цымбулов, Е.Ю. Колосова, Л.Ш. Цемехман. ЖПХ, **78** (1), 59 (2005). DOI: 10.1007/s11167-005-0231-1 [A.G. Morachevskii, L.B. Tsymbulov, E.Y. Kolosova, L.S. Tsemekhman. Russ. J. Appl. Chem., **78** (1), 57 (2005). DOI: 10.1007/s11167-005-0231-1]
- [23] А.Г. Морачевский, Е.Ю. Колосова, Л.Б. Цымбулов, Л.Ш. Цемехман. ЖФХ, 80 (11), 2006 (2006).
 DOI: 10.1134/S0036024406110185 [A.G. Morachevskii, E.Y. Kolosova, L.B. Tsymbulov, L.S. Tsemekhman. Russ. J. Phys. Chem. A, 80 (11), 1786 (2006).
 DOI: 10.1134/S0036024406110185]
- [24] А.Г. Морачевский, Е.Ю. Колосова, Л.Ш. Цемехман, Л.Б. Цымбулов. ЖПХ, 80 (7), 1071 (2007).
 DOI: 10.1134/S107042720707004X [A.G. Morachevskii, E.Y. Kolosova, L.S. Tsemekhman, L.B. Tsymbulov. Russ. J. Appl. Chem., 80 (7), 1040 (2007).
 DOI: 10.1134/S107042720707004X]
- [25] V.A. Vorozhtcov, V.L. Stolyarova, S.I. Lopatin, S.M. Shugurov, A.L. Shilov, V.F. Sapega. Rapid Commun. Mass Spectrom., 31 (1), 111 (2017). DOI: 10.1002/rcm.7764
- [26] E.N. Kablov, V.L. Stolyarova, V.A. Vorozhtcov, S.I. Lopatin, F.N. Karachevtsev. Rapid Commun. Mass Spectrom., 33 (19), 1537 (2019). DOI: 10.1002/rcm.8501

- [27] E.N. Kablov, V.L. Stolyarova, V.A. Vorozhtcov, S.I. Lopatin, S.M. Shugurov, A.L. Shilov, F.N. Karachevtsev, P.N. Medvedev. Rapid Commun. Mass Spectrom., 34 (8), e8693 (2019). DOI: 10.1002/rcm.8693
- [28] F. Kohler. Monatshefte Für Chemie, 91 (4), 738 (1960).DOI: 10.1007/BF00899814
- [29] O. Redlich, A.T. Kister. Ind. Eng. Chem., 40 (2), 345 (1948).
 DOI: 10.1021/ie50458a036
- [30] S. Nandan, F. Fichot, B. Piar. Nucl. Eng. Des., 364, 110608 (2020). DOI: 10.1016/j.nucengdes.2020.110608
- [31] N. Saunders, A.P. Miodownik. Calphad (Calculation of Phase Diagrams): A Comprehensive Guide (Pergamon Materials Series, Oxford, 1998), v. 1.
- [32] J.R. Nicholls. MRS Bull., **28** (9), 659 (2003).
- DOI: 10.1557/mrs2003.194
- [33] D.R. Clarke, S.R. Phillpot. Mater. Today, 8 (6), 22 (2005).
 DOI: 10.1016/S1369-7021(05)70934-2
- [34] Д.А. Чубаров, С.А. Будиновский. Труды ВИАМ, (4), 48 (2015). DOI: 10.18577/2307-6046-2015-0-4-7-7
- [35] G.M. Wilson. J. Am. Chem. Soc., 86 (2), 127 (1964).
 DOI: 10.1021/ja01056a002
- [36] O. Fabrichnaya, C. Wang, M. Zinkevich, F. Aldinger, C.G. Levi. J. Phase Equilib. Diff., 26 (6), 591 (2005). DOI: 10.1007/s11669-005-0004-9
- [37] O. Fabrichnaya, H.J. Seifert. J. Phase Equilib. Diff., 32 (1), 2 (2011). DOI: 10.1007/s11669-010-9815-4
- [38] И.Г. Виниченко, М.П. Сусарев. ЖПХ, 38 (12), 2701 (1965).
- [39] O. Fabrichnaya, G. Savinykh, T. Zienert, G. Schreiber,
 H.J. Seifert. Int. J. Mater. Res., 103 (12), 1469 (2012).
 DOI: 10.3139/146.110794
- [40] O. Fabrichnaya, H.J. Seifert. J. Alloys Compd., 475 (1-2), 86 (2009). DOI: 10.1016/j.jallcom.2008.07.037
- [41] M. Zinkevich. Prog. Mater. Sci., 52 (4), 597 (2007).
 DOI: 10.1016/J.PMATSCI.2006.09.002