Темплатный метод синтеза монодисперсных наночастиц MoS₂

© Е.Ю. Стовпяга, Д.А. Курдюков, Д.А. Кириленко, А.Н. Смирнов, А.В. Швидченко, М.А. Яговкина, В.Г. Голубев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: kattrof@gvg.ioffe.ru

Поступила в Редакцию 11 января 2021 г. В окончательной редакции 18 января 2021 г. Принята к публикации 18 января 2021 г.

Получены монодисперсные наночастицы дисульфида молибдена в мезопорах темплата — сферических частицах кремнезема ($mSiO_2$). Раствор прекурсора — тетратиомолибдата аммония вводился в поры частиц методом капиллярной пропитки. Затем из прекурсора в порах $mSiO_2$ синтезирован MoS₂ посредством отжига частиц в атмосфере H₂S/H₂ в термодинамически равновесных условиях. Для получения индивидуальных наночастиц MoS₂ материал темплата (a-SiO₂) удалялся из композитных частиц $mSiO_2/MoS_2$ путем травления в HF. Микроскопическими методами определено, что средний размер наночастиц MoS₂ составляет 3.5 нм. По данным динамического светорассеяния, наночастицы имеют низкое среднеквадратичное отклонение размеров (18%).

Ключевые слова: MoS₂, мезопористый кремнезем, наночастицы, темплатный синтез.

DOI: 10.21883/FTP.2021.05.50841.9587

1. Введение

Среди слоистых материалов дисульфид молибдена привлекает особое внимание [1,2], так как, во-первых, слои MoS₂ связаны между собой слабо (силами Вандер-Ваальса), и, во-вторых, расстояние между слоями — наибольшее среди подобных структур (например, $d_{002}(MoS_2) = 0.63$ нм, $d_{002}(графит) = 0.34$ нм). Монослои MoS₂ легко разделяются, что позволяет использовать его порошки в качестве твердых смазок [3]. Физические и химические свойства MoS2 обусловливают его применение в катализе и нефтехимии [2,4]. При изготовлении катализаторов разделение на слои повышает дисперсность материла и, вследствие этого, увеличивает его удельную поверхность [5]. Кроме того, двумерный дисульфид молибдена имеет прямую запрещенную зону $(E_g \sim 1.8 \, \text{эB})$, в отличие от массивного материала, который является непрямозонным полупроводником [6].

Наночастицы MoS₂, состоящие из нескольких монослоев и имеющие латеральные размеры, сопоставимые с толщиной, представляют отдельный интерес [7]. Варьируя размеры наночастиц, можно модифицировать их зонную структуру и управлять люминесцентными свойствами [8]. Наночастицы MoS₂ широко используются для создания фотокатализаторов [9] и люминесцентных маркеров для исследований in vitro [10] и in vivo [11]. Для получения наноразмерных форм MoS2 не применим подход "top-down", включающий различные способы эксфолиации (механические, электрохимические, ультразвуковые [12-14]), так как отделяемые слои имеют большие латеральные размеры (до нескольких микрон [12]). Поэтому для синтеза наночастиц MoS₂ разработаны методы "bottom-up", представляющие собой газофазные [15] или жидкостные [16,17] синтезы

с использованием различных прекурсоров (MoO_2 [15], MoO_3 [18], (NH_4)₆ Mo_7O_{24} [16], Na_2MoO_4 [17]). Получаемые такими методами наночастицы MoS_2 , как правило, являются полидисперсными.

Одним из способов получения наночастиц MoS₂ является темплатный синтез на основе канальных кремнеземов типа MCM-41 [19] и SBA-15 [20]. Так как в этих темплатах отношение длины канала к его диаметру достигает нескольких сотен [21], условия синтеза целевых веществ в зависимости от месторасположения прекурсоров в порах сильно отличаются, что в свою очередь приводит к различию размеров и свойств формирующихся частиц. Перспективным темплатом для получения монодисперсных наночастиц MoS₂ выступают синтезированные нами ранее субмикронные монодисперсные ($\sigma < 10\%$) сферические мезопористые частицы кремнезема (mSiO₂) [22-24]. Частицы mSiO₂ имеют внутреннюю систему цилиндрических наноканалов диаметром 3.1 ± 0.2 нм и длиной 10-15 нм, объемом до 60% от объема частицы. Наряду с одинаковыми формой и внешним диаметром частиц mSiO₂ наличие в них одинаковых пор позволяет при синтезе целевых веществ достичь идентичности условий протекания реакций внутри каждой частицы. Поэтому применение монодисперсных частиц с монодисперсными мезопорами в качестве темплата обусловливает одинаковый размер формирующихся в них материалов, что обеспечивает идентичный химический состав и физико-химические свойства. На основе темплатов $mSiO_2$ ранее разработаны методы синтеза углеродных наноточек [25,26], наночастиц металлов [27], полупроводниковых материалов [28], нитридов [29] и оксидов [30-32].

В настоящей работе темплатным методом синтезированы монодисперсные наночастицы MoS₂. Для полу-

чения в порах целевого вещества частицы $mSiO_2$ пропитывались в растворе прекурсора, а затем осуществлялся термодинамически равновесный синтез MoS_2 в атмосфере H_2S/H_2 . Индивидуальные частицы MoS_2 получены методом селективного жидкостного травления композитных частиц $mSiO_2/MoS_2$ в растворе плавиковой кислоты для удаления темплата — a-SiO₂. Состав и структура наночастиц исследованы методами рентгеновской дифракции, динамического светорассеяния (ДСР), просвечивающей электронной микроскопии высокого разрешения (ВРПЭМ) и рамановской спектроскопии.

2. Методика эксперимента

В качестве темплата для получения монодисперсных наночастиц MoS2 в настоящей работе использованы частицы mSiO₂ диаметром 490 нм, синтезированные посредством гидролиза тетраэтоксисилана (ТЭОС) в этаноло-водно-аммиачной среде в присутствии структурообразующего вещества цетилтриметиламмоний бромида (ЦТАБ). Мольное соотношение реагентов ТЭОС:С2H5OH:H2O:NH3:ЦТАБ составляло 1:250:45:400:0.25 соответственно. Для удаления органических веществ синтезированные частицы отжигались на воздухе при температуре 800 К. Среднеквадратичное отклонение диаметров частиц mSiO₂ составило < 6%, диаметр мезопор равен 3.1 ± 0.2 нм, объемная доля пор ~ 50 об%, удельная поверхность — 750 м²/г. Подробно методика синтеза частиц описана в работах [22,23].

Для получения MoS_2 в стеклянную чашку Петри, содержащую навеску мезопористых частиц $mSiO_2$ массой 0.5 г, вливался 12%-й раствор (NH₄)₂MoS₄ (Aldrich) в диметилформамиде (ДМФ) объемом 2 мл. Частицы $mSiO_2$ находились в контакте с раствором в течение 72 ч. Затем частицы высушивались при температуре 350 К и отжигались на воздухе при 430 К для удаления ДМФ. Последующий отжиг $mSiO_2$ частиц, заполненных (NH₄)₂MoS₄, проводили в термодинамически равновесных условиях. Образцы помещались в кварцевый реактор, через который пропускали смесь H₂S/H₂ под общим давлением 1 бар. Парциальное давление H₂S составляло 0.9 бар, H₂ — 0.1 бар. Синтез проводили при температуре 680 К в течение 20 ч.

Для травления темплата $(a-SiO_2)$ навеску композитных частиц $mSiO_2/MoS_2$ помещали в 20 г 1%-го HF. После растворения SiO₂ наночастицы MoS₂ отделяли центрифугированием. Затем осадок наночастиц MoS₂ трижды промывался деионизованной водой.

Измерение размера и электрофоретической подвижности синтезированных монодисперсных наночастиц MoS_2 определяли методом ДСР на анализаторе Malvern Zetasizer Nano ZS при температуре 25°C. Расчет распределения гидродинамических диаметров и электрокинетического потенциала осуществлялся с помощью встроенного программного обеспечения анализатора.

Исследования микроструктуры наночастиц MoS₂ проводились на просвечивающем электронном микроскопе Jeol JEM-2100F. Фазовый состав определялся рентгенодифракционным методом на установке D2 Phaser, Bruker, Германия (Си K_{α} -излучение). Рамановские спектры измерялись при комнатной температуре на спектрометре Horiba Jobin Yvon T64000 с использованием в качестве источника излучения второй гармоники Nd: YAG-лазера ($\lambda = 532$ нм), плотность возбуждения на поверхности образца не превышала $P = 2 \text{ kBt/cm}^2$.

3. Результаты и обсуждение

Рассмотрим подробно процессы, протекающие в порах частиц $mSiO_2$ при синтезе MoS_2 . На первом этапе осуществлялась пропитка $mSiO_2$ прекурсором — раствором (NH_4)₂ MoS_4 в ДМФ. В ходе длительного контакта мезопористых частиц кремнезема с раствором прекурсора последний практически полностью переходил в поры частиц благодаря их высокой адсорбционной способности [22,25,33,34]. Далее при высушивании происходила кристаллизация прекурсора в порах частиц. На втором этапе стояла задача синтеза MoS_2 из прекурсора непосредственно в порах темплата.

Существует разнообразие соединений молибдена с различными степенями окисления атомов Мо, что сильно усложняет задачу получения целевого однофазного вещества — MoS₂. В настоящей работе MoS₂ был синтезирован из прекурсора (NH₄)₂MoS₄ в термодинамически равновесных условиях, обеспечивающих образование только сульфида Мо (IV). Для определения параметров процесса восстановления (температуры и парциальных давлений H₂ и H₂S) был выполнен расчет равновесного состава смеси в системе MoS₃, Mo₂S₅, MoS₂, Mo₂S₃, Mo₆S₈, Mo₇S₈, MoS, MoO₃, MoO₂, Мо, $H_2(g)$, $H_2O(g)$, $NH_3(g)$, $S_8(g)$, $S_4(g)$, $S_2(g)$ и $H_2S(g)$. Расчет проводился с использованием алгоритма Villars-Cruise-Smith [35]. Значения стандартных химических потенциалов были взяты из базы данных IVTANTERMO [36], химические потенциалы газофазных компонентов рассчитаны в приближении идеально ассоциированного газа. Расчет показал, что при парциальном давлении водорода $P_{\rm H2} = 0.1$ бар, сероводорода $P_{\rm H2S} = 0.9$ бар, общем давлении P = 1 бар в диапазоне температур 650-700 К прекурсор (NH₄)₂MoS₄ полностью переходит в MoS₂, количество примесей составляет < 0.1 мол%. При температурах до 650 К возможно одновременное образование MoS_3 , Mo_2S_5 и MoS_2 . В температурном интервале 700-1200 К возможно образование MoS₂, Mo₂S₃, Mo₆S₈, Mo₇S₈, MoS в различных соотношениях, в зависимости от температуры. При температурах > 1200 К реакция идет до элементарного молибдена. В результате в настоящей работе процесс получения MoS₂ проводили при 680 К. Синтез MoS₂ из прекурсора (NH₄)₂MoS₄ идет посредством реакции: $(NH_4)_2MoS_4 + H_2 \rightarrow 2NH_3 \uparrow + 2H_2S \uparrow + MoS_2.$

Рис. 1. Дифракционные кривые: *1* — композитные частицы *m*SiO₂/MoS₂, *2* — 2*H*-MoS₂ (JCPDS 03-065-0160). Звездочкой отмечено диффузное "гало" аморфного SiO₂.

Наличие продукта реакций восстановления — сероводорода в исходной газовой смеси препятствует образованию сульфидов молибдена со степенью окисления атомов Мо, меньшей +4, согласно принципу Ле Шателье.

Результаты расчета подтверждаются экспериментально. По данным рентгенофазового анализа (рис. 1), на дифракционной кривой полученных композитных частиц $mSiO_2/MoS_2$ наблюдается набор рефлексов, соответствующий 2*H*-MoS₂ (JCPDS 03-065-0160). На кривой присутствует также широкое "гало" с максимумом в области $2\theta \sim 22^\circ$, которое обусловлено диффузным отражением от аморфного SiO₂ (материала темплата). Дифракционные пики молибденита уширены, что свидетельствует о том, что MoS₂ является нанокристаллическим [37]. Рассчитанный по интегральному уширению дифракционных максимумов средний размер области когерентного рассеяния MoS₂ составляет 3.5 нм, данное значение коррелирует с диаметром цилиндрических мезопор (3.1 нм) частиц mSiO₂. Соотношение интенсивностей рефлексов MoS₂ в исследуемом образце существенно отличается от стандартного, наблюдается преимущественная ориентация кристаллитов дисульфида молибдена в направлении [001] (по оси с MoS₂). Вероятно, синтезированный MoS₂ имеет турбостратную структуру, наблюдаемая дифракционная картина является двумерной, дифракционные рефлексы от плоскостей с тремя ненулевыми индексами (112) или нулевым третьим индексом (110) имеют заниженную интенсивность или вовсе отсутствуют. Подобная двумерная дифракция проявляется, например, в углеродных наноточках с турбостратной структурой [26].

ВРПЭМ-изображение индивидуальных наночастиц MoS₂, полученных посредством селективного травления материала темплата — аморфного SiO₂ плавиковой кислотой, представлено на рис. 2. На рисунке видны наночастицы (темные области), имеющие латеральные размеры 3-7 нм и толщину 1.5-4 нм. На рисунке обозначены характерные межплоскостные расстояния в синтезированных наночастицах MoS₂ ($d_{002} = 0.63$ нм и $d_{100} = 0.27$ нм). Наблюдаемые в пределах одной наночастицы две системы кристаллографических плоскостей подтверждают, что частицы состоят из нескольких монослоев MoS₂.

На рис. 3 представлен типичный рамановский спектр синтезированных наночастиц MoS₂ в области частот 100-500 см⁻¹. В спектре наблюдаются интенсивные фононные моды E_{1g} , E_{2g}^1 и A_{1g} , характерные для MoS₂ [38–41]. Мода E_{2g}^1 (\sim 382 см⁻¹) обусловлена колебаниями атомов S-Mo-S в плоскости одного монослоя, а мода $A_{1g}~(\sim 407\,{
m cm^{-1}})$ возникает благодаря колебаниям атомов серы S, перпендикулярным к этим слоям (связи Ван-дер-Ваальса). Положение данных мод зависит от толщины (количества слоев) исследуемых образцов [39]. Смещение положения максимума полос E_{2g}^1 в высокочастотную область спектра, а максимума полосы A_{1g} — в низкочастотную, относительно табличных значений для массивного материала, свидетельствует о том, что синтезированные наночастицы состоят из конечного числа слоев MoS₂ [40]. Кроме оптических рамановских мод, в спектре имеются полосы, обусловленные продольной

Рис. 2. ВРПЭМ-изображение синтезированных наночастиц. Стрелками показаны направления [001] и $[1\overline{1}0]$ в нанокристалле MoS₂. На рисунке обозначены характерные межплоскостные расстояния.

Рис. 3. Рамановский спектр синтезированных наночастиц MoS₂. Стрелками обозначены положения раман-активных фононных мод первого порядка объемного MoS₂ и индуцированных дефектами полос LA и 2LA.

Рис. 4. Распределение гидродинамических диаметров наночастиц MoS_2 в воде, измеренное методом ДСР. На вставке — электрокинетический потенциал наночастиц MoS_2 , измеренный при pH = 8.

акустической модой LA(M) [38,41], что свидетельствует о наличии дефектов в структуре наночастиц. Детальному исследованию оптических свойств (поглощения, люминесценции) синтезированных наночастиц MoS₂ будет посвящена отдельная публикация.

Средний гидродинамический диаметр синтезированных наночастиц MoS₂, по данным ДСР, составил 7.5 ± 1.5 нм (рис. 4). Отличие значения размера частиц, измеренного методом ДСР, от размера, полученного по результатам ВРПЭМ исследований, по-видимому, связано с двумя причинами. Во-первых, с наличием ионной оболочки у частиц в коллоидном растворе, увеличивающей их эффективный размер, во-вторых, с тем, что для расчета гидродинамических диаметров использовались значения оптических констант массивного MoS₂. Для наночастиц коэффициент поглощения и показатель преломления могут быть иными. На рис. 4 (см. вставку) приведено распределение электрокинетического потенциала наночастиц MoS₂ в дисперсионной среде с pH = 8. Наблюдаемый максимум соответствует значению – 34 мВ, следовательно, коллоидный раствор MoS₂ является агрегативно устойчивым. По-видимому, в слабощелочной среде происходит диссоциация тиоловых (-SH) групп по кислотному механизму, в результате поверхность наночастиц MoS₂ приобретает отрицательный заряд (-S⁻).

4. Заключение

Разработан метод синтеза монодисперсных наночастиц MoS2 из прекурсора — тетратиомолибдата аммония с использованием в качестве темплата монодисперсных сферических мезопористых частиц кремнезема. Выполнено термодинамическое моделирование процесса и определены условия (температура и состав исходной газовой смеси), обеспечивающие равновесный синтез однофазного MoS₂. Методика включает в себя стадии введения в мезопоры темплата прекурсора, синтеза из него дисульфида молибдена и селективного удаления материала темплата раствором плавиковой кислоты. Методами рентгеновской дифракции и рамановской спектроскопии показано, что синтезированный материал содержит только одну кристаллическую фазу — 2*H*-MoS₂. Рассчитанный методом Ритвельда средний размер области когерентного рассеяния MoS₂ составил 3.5 нм. Методом ВРПЭМ установлено, что синтезированные частицы MoS₂ являются нанокристаллическими и состоят из 2-5 монослоев. По результатам ДСР, полученные наночастицы являются монодисперсными, их средний гидродинамический диаметр составляет 7.5 ± 1.5 нм.

Финансирование работы

Работа выполнена при финансовой поддержке РФФИ (грант № 20-03-00656).

Благодарности

Исследования методом просвечивающей электронной микроскопии и рентгеновской дифракции выполнены с использованием оборудования федерального ЦКП "Материаловедение и диагностика в передовых технологиях".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- L. Li, Z. Guo, S. Wang, D. Li, X. Hou, F. Wang, Y. Yang, X. Yang. Anal. Methods, 11, 3307 (2019).
- [2] W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee. Materials Today, 20, 116 (2017).
- [3] M.R. Vazirisereshk, A. Martini, D.A. Strubbe, M.Z. Baykara. Lubricants, 7, 57 (2019).
- [4] A. Molina-Sánchez, K. Hummer, L. Wirtz. Surf. Sci. Reports, 70, 554 (2015).
- [5] M. Ahmadi, O. Zabihi, Q. Li, S.M. Fakhrhoseini, M. Naebe. Nanomaterials, 9, 1400 (2019).
- [6] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Yu. Chim, G. Galli, F. Wang. Nano Lett., 10, 1271 (2010).
- [7] N. Wang, F. Wei, Y.H. Qi, H.X. Li, X. Lu, G.Q. Zhao, Q. Xu. ACS Appl. Mater. Interfaces, 6, 19888 (2014).
- [8] D. Bhattacharya, S. Mukherjee, R.K. Mitra, S.K. Ray. Nanotechnology, **31**, 145701 (2020).
- [9] S. Bertolazzi, J. Brivio, A. Kis. ACS Nano, 5, 9703 (2011).
- [10] W. Dai, H. Dong, B. Fugetsu, Y. Cao, H.T. Lu, X.L. Ma, X.J. Zhang. Small, 11, 4158 (2015).
- [11] J. Wang, X. Tan, X. Pang, L. Liu, F. Tan, N. Li. ACS Appl. Mater. Interfaces, 8, 24331 (2016).
- [12] X. Huang, Z. Zeng, H. Zhang. Chem. Soc. Rev., 42, 1934 (2013).
- [13] Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H.H. Hng, H. Zhang. Angew. Chem. Int. Ed., 51, 9052 (2012).
- [14] X. Tan, W. Kang, J. Liu, C. Zhang. Nanoscale Res. Lett., 14, 317 (2019).
- [15] Q. Li, E.C. Walter, W.E. Van Der Veer, B.J. Murray, J.T. Newberg, E.W. Bohannan, J.A. Switzer, J.C. Hemminger, R.M. Penner. J. Phys. Chem. B, 109, 3169 (2005).
- [16] X. Feng, Q. Tang, J. Zhou, J. Fang, P. Ding, L. Sun, L. Shi. Cryst. Res. Technol., 6 (2013) 1–6.
- [17] X. Ren, L. Pang, Y. Zhang, X. Ren, H. Fan, S. Liu. J. Mater. Chem. A, 3, 10693 (2015).
- [18] S. Balendhran, J.Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, K. Kalantar-zadeh. Nanoscale, 4, 461 (2012).
- [19] Y. Wang, S. Wang, C. Li, M. Qian, J. Bu, J. Wang, R. Huang. Chem. Commun., 52, 10217 (2016).
- [20] Z.-D. Huang, W. Bensch, L. Kienle, S. Fuentes, G. Alonso, C. Ornelas. Catal. Lett., **122**, 67 (2008).
- [21] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppar. J. Amer. Chem. Soc., 114, 10834 (1992).
- [22] Е.Ю. Трофимова, Д.А. Курдюков, Ю.А. Кукушкина, М.А. Яговкина, В.Г. Голубев. Физика и химия стекла, 37, 38 (2011).
- [23] E.Yu. Trofimova, D.A. Kurdyukov, S.A. Yakovlev, D.A. Kirilenko, Yu.A. Kukushkina, A.V. Nashchekin, A.A. Sitnikova, M.A. Yagovkina, V.G. Golubev. Nanotechnology, 24, 155601 (2013).
- [24] D.A. Kurdyukov, D.A. Eurov, D.A. Kirilenko, J.A. Kukushkina, V.V. Sokolov, M.A. Yagovkina, V.G. Golubev. Microp. Mesopor. Mater., 223, 225 (2016).

- [25] Д.А. Курдюков, Д.А. Еуров, Е.Ю. Стовпяга, Д.А. Кириленко, С.В. Коняхин, А.В. Швидченко, В.Г. Голубев. ФТТ, 58, 2454 (2016).
- [26] D.A. Kurdyukov, D.A. Eurov, M.K. Rabchinskii, A.V. Shvidchenko, M.V. Baidakova, D.A. Kirilenko, S.V. Koniakhin, V.V. Shnitov, V.V. Sokolov, P.N. Brunkov, A.T. Dideikin, Ye.M. Sgibnev, L.Yu. Mironov, D.A. Smirnov, A.Ya. Vul', V.G. Golubev. Nanoscale, 10, 13223 (2018).
- [27] Д.А. Курдюков, Д.А. Еуров, Е.Ю. Стовпяга, С.А. Яковлев, Д.А. Кириленко, В.Г. Голубев. ФТТ, 56, 995 (2014).
- [28] Д.А. Курдюков, Н.А. Феоктистов, Д.А. Кириленко, А.Н. Смирнов, В.Ю. Давыдов, В.Г. Голубев. ФТП, 53, 1068 (2019).
- [29] Е.Ю. Стовпяга, Д.А. Еуров, Д.А. Курдюков, А.Н. Смирнов, М.А. Яговкина, D.R. Yakovlev, В.Г. Голубев. ФТП, **52**, 1000 (2018).
- [30] Е.Ю. Стовпяга, Д.А. Еуров, Д.А. Курдюков, А.Н. Смирнов, М.А. Яговкина, В.Ю. Григорьев, В.В. Романов, D.R. Yakovlev, В.Г. Голубев. ФТТ, 59, 1598 (2017).
- [31] D.A. Eurov, D.A. Kurdyukov, D.A. Kirilenko, J.A. Kukushkina, A.V. Nashchekin, A.N. Smirnov, V.G. Golubev. J. Nanopart. Res., 17, 82 (2015).
- [32] K.N. Orekhova, D.A. Eurov, D.A. Kurdyukov, V.G. Golubev, D.A. Kirilenko, V.A. Kravets, M.V. Zamoryanskaya. J. Alloys Compd., 678, 434 (2016).
- [33] Е.Ю. Трофимова, С.А. Грудинкин, Ю.А. Кукушкина, Д.А. Курдюков, А.В. Медведев, М.А. Яговкина, В.Г. Голубев. ФТТ, 54, 1220 (2012).
- [34] Д.А. Еуров, С.А. Грудинкин, Д.А. Курдюков, А.В. Медведев, Е.Ю. Стовпяга, В.Г. Голубев. Письма ЖТФ, 41, 19, 1 (2015).
- [35] W.R. Smith, R.L. Missen. Chemical Reaction Equilibrium Analisys: Theory and Algorithms (Wiley-VCH, Germany, 1982).
- [36] L.V. Gurvich, V.S. Iorish, D.V. Chekhovskoi, V.S. Yungman. *IVTANTHERMO — A Thermodynamic Database and Software System for the Personal Computer. User's Guide* (CRC Press, Inc. Boca Raton, 1993).
- [37] B. Lei, G.R. Li, X.P. Gao. J. Mater. Chem. A, 2, 3919 (2014).
- [38] S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, D. Roy. Phys. Rev. B, 91, 195411 (2015).
- [39] A. Abraham, Lei Wang, C.D. Quilty, D.M. Lutz, A.H. McCarthy, C.R. Tang, M.R. Dunkin, L.M. Housel, E.S. Takeuchi, A.C. Marschilok, K.J. Takeuchi. ChemSusChem, 13, 1517 (2020).
- [40] H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat. Adv. Funct. Mater., 22, 1385 (2012).
- [41] A. Molina-Sánchez, L. Wirtz. Phys. Rev. B, 84, 155413 (2011).

Редактор А.Н. Смирнов

Synthesis of monodisperse MoS₂ nanoparticles by the template method

E.Yu. Stovpiaga, D.A. Kurdyukov, D.A. Kirilenko, A.N. Smirnov, A.V. Shvidchenko, M.A. Yagovkina, V.G. Golubev

loffe Institute, 194021 St. Petersburg, Russia

Abstract Monodisperse molybdenum disulfide nanoparticles were synthesized in mesopores of spherical silica particles ($mSiO_2$) served as a template. First, the pores of $mSiO_2$ particles were impregnated with the precursor (ammonium tetrathiomolybdate solution). Then, the reduction of the filler in thermodynamically equilibrium conditions in H₂S/H₂ atmosphere was carried out. The template material (a-SiO₂) was selectively etched from the composite $mSiO_2/MOS_2$ particles with HF to obtain individual MoS₂ nanoparticles. The mean size of MoS₂ nanoparticles determined by microscopic methods was found to be 3.5 nm. According to dynamic light scattering data, the nanoparticles had low size scatter (18%).