# Оптимизация диэлектрического волновода для лазерных структур дальнего инфракрасного диапазона на основе HgTe/CdHgTe

© А.А. Дубинов<sup>1,2</sup>, В.В. Румянцев<sup>1,2</sup>, М.А. Фадеев<sup>1</sup>, В.В. Уточкин<sup>1</sup>, С.В. Морозов<sup>1,2,¶</sup>

 <sup>1</sup> Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия
 <sup>2</sup> Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия

<sup>¶</sup> E-mail: more@ipmras.ru

Поступила в Редакцию 22 декабря 2020 г. В окончательной редакции 30 декабря 2020 г. Принята к публикации 30 декабря 2020 г.

> Проведена оптимизация параметров диэлектрического волновода для лазерных гетероструктур с квантовыми ямами на основе HgCdTe, рассчитанных на диапазон длин волн 25–41 мкм, с точки зрения минимизации внутренних потерь. Показано, что для излучения в диапазоне длин волн 25–33.5 мкм оптимальный вариант волновода реализуется при росте лазерной HgCdTe-структуры на подложке CdTe или на подложке GaAs с толстым (15 мкм и более) буферным слоем CdTe. Для более длинноволнового излучения (диапазон длин волн 33.5–41 мкм) оптимальным решением является стравливание подложки и буферного слоя CdTe с последующей металлизацией поверхности структуры.

> Ключевые слова: лазерная структура, волновод, дальний инфракрасный диапазон длин волн, HgCdTe, квантовая яма.

DOI: 10.21883/FTP.2021.05.50837.9581

### 1. Введение

В настоящее время наиболее распространенными из компактных источников когерентного излучения в дальнем инфракрасном (ИК) диапазоне являются квантовокаскадные лазеры (ККЛ) на основе полупроводников А<sup>III</sup>В<sup>V</sup> [1]. Практическая потребность в подобных когерентных источниках во многом связана с актуальными задачами спектроскопии и анализа сложных соединений, в том числе органических [2], представляющих большой интерес в области биоинженерии. В то же время существует широкий диапазон длин волн (25-50 мкм), в котором ККЛ на основе А<sup>ШВV</sup> не могут работать вследствие сильного фононного поглощения этих полупроводников [3]. Альтернативу материалам А<sup>III</sup>В<sup>V</sup> могут составить полупроводниковые системы, в которых энергии полярных оптических фононов находятся за пределами целевого спектрального диапазона; в частности, тройные соединения в системе кадмий-ртуть-теллур (КРТ, HgCdTe) имеют характерные энергии оптических фононов ~ 17 мэВ (длина волны ~ 70 мкм). Широко применяемый для создания фотоприемников и приемных матриц среднего ИК диапазона (см., например, работу [4] и ссылки в ней), этот материал в последнее время активно рассматривается и как усиливающая среда для построения длинноволновых источников излучения. Так, недавно было предложено использовать структуры с квантовыми ямами (КЯ) на основе HgCdTe для создания ККЛ, излучающего на длине волны 36 мкм [5]. Недостатком данного подхода, ограничивающим гибкость решений на основе ККЛ в задачах спектроскопии, можно назвать скромные возможности перестройки длины

волны излучения таких источников (в частности, за счет изменения температуры излучателя), что обусловлено межподзонным характером оптических переходов в ККЛ. С этой точки зрения возможность реализации в структурах на основе HgCdTe усиления в дальнем ИК диапазоне на межзонных оптических переходах является несомненно интересной, и здесь необходимо отметить широчайший диапазон длин волн, потенциально доступный для структур на основе HgCdTe при варьировании состава тройного раствора, — от 0 до 1.6 эВ [4].

Концепция межзонных лазеров на основе пленок HgCdTe, излучающих в среднем ИК диапазоне при оптической накачке, далеко не нова (см., например, [6]). В то же время лишь сравнительно недавно прогресс в области эпитаксиального роста КРТ-структур позволил уверенно формировать гетероструктуры с квантовыми ямами (КЯ) HgTe/HgCdTe. Такие структуры, обеспечивающие уникальные возможности управления зонным спектром носителей заряда, определили новые возможности развития лазерных структур. На настоящий момент структуры с КЯ HgTe/HgCdTe позволили получить стимулированное излучение (СИ) при оптической накачке на длинах волн до 20 мкм [7]. Теоретические же оценки показывают, что генерация СИ возможна на длинах волн до 60 мкм при криогенных температурах [8]. Следует, однако, уточнить, что в [8] оценены фактически пороги прозрачности КЯ, но не обсуждаются какиелибо потери в пассивных (волноводных) слоях, имеющие место в реальных лазерных структурах. При этом, если поглощением в нелегированных волноводных слоях по механизму Друде можно зачастую пренебречь, то фононное поглощение в растворах HgCdTe в рассматри-

| Слои               | Волновод       | Волновод        | Волновод        | Волновод       | Волновод     | Волновод      |
|--------------------|----------------|-----------------|-----------------|----------------|--------------|---------------|
|                    | #1             | #2              | #3              | #4             | #5           | #6            |
| Подложка           | GaAs           | GaAs            | GaAs            | $n^+$ -GaAs    | CdTe         | Стравливается |
| Буфер,<br>толщина  | CdTe,<br>5 мкм | CdTe,<br>10 мкм | CdTe,<br>15 мкм | CdTe,<br>5 мкм | CdTe,        | Стравливается |
| Волноводный слой,  | HgCdTe,        | HgCdTe,         | HgCdTe,         | HgCdTe,        | HgCdTe,      | HgCdTe,       |
| толщина            | 8.5 мкм        | 4.5 мкм         | 3 мкм           | 2.5 мкм        | 2.5 мкм      | 2 мкм         |
| 20 КЯ с барьерами, | HgTe/HgCdTe,   | HgTe/HgCdTe,    | HgTe/HgCdTe,    | HgTe/HgCdTe,   | HgTe/HgCdTe, | HgTe/HgCdTe,  |
| толщина            | 0.42 мкм       | 0.42 мкм        | 0.42 мкм        | 0.42 мкм       | 0.42 мкм     | 0.42 мкм      |
| Волноводный слой,  | HgCdTe,        | HgCdTe,         | HgCdTe,         | HgCdTe,        | HgCdTe,      | HgCdTe,       |
| толщина            | 9.5 мкм        | 6 мкм           | 5 мкм           | 3.75 мкм       | 4.5 мкм      | 5 мкм         |
| Покровный слой     | CdTe,          | CdTe,           | CdTe,           | CdTe,          | CdTe,        | CdTe,         |
|                    | 0.05 мкм       | 0.05 мкм        | 0.05 мкм        | 0.05 мкм       | 0.05 мкм     | 0.05 мкм      |
| Пограничный слой   | Вакуум         | Вакуум          | Вакуум          | Вакуум         | Вакуум       | Au            |

Параметры слоев лазерных структур для рассматриваемых диэлектрических волноводов

ваемом диапазоне частот является существенным. Кроме того, в зависимости от конкретных параметров волновода важным может оказаться и учет фононного поглощения в подложках GaAs, часто использующихся для выращивания лазерных структур на основе HgCdTe [7].

В данной работе сопоставлен ряд возможных вариантов волноводов лазерных структур на основе HgCdTe, для чего вычислены коэффициенты поглощения излучения в пассивных слоях структуры и коэффициент усиления для волноводной моды с учетом достижимого фактора оптического ограничения.

# 2. Результаты расчетов и обсуждение

Базовым условием развития лазерной генерации является превышение величины усиления над общими потерями в структуре, что может быть выражено в виде

$$(G - \alpha_a)\Gamma = \alpha_p + \alpha_m,\tag{1}$$

где G — коэффициент усиления активной среды,  $\alpha_a$  — коэффициент потерь в активной среде,  $\Gamma$  — фактор оптического ограничения,  $\alpha_p$  и  $\alpha_m$  — коэффициенты поглощения в пассивных слоях и потерь на зеркалах соответственно. Расчеты, приведенные в [8], касаются случая  $G = \alpha_a$  (без учета  $\alpha_p$  и  $\alpha_m$ ). Целью данной работы является учет внутренних потерь в волноводе ( $\alpha_p$ ), в то же время мы ограничимся рассмотрением режима суперлюминесценции (однопроходного усиления излучения), пренебрегая потерями на зеркалах  $\alpha_m$ .

Для анализа были выбраны шесть различных волноводов для лазерных структур на основе HgCdTe; конкретные параметры слоев для каждого из волноводов приведены в таблице. Первые три варианта волновода предполагают рост на полуизолирующей подложке GaAs с буферным слоем из нелегированного CdTe и различаются соотношением толщин буферного (CdTe) и ограничивающих (CdHgTe) слоев, четвертый рассчитан для роста на сильно легированной подложке GaAs, пятый — на нелегированной подложке CdTe. Наконец, последний вариант предполагает стравливание подложки и буферного слоя с последующим напылением слоя золота, подобный метод используется при создании ККЛ с двойным металлическим волноводом [9]. Для всех структур состав ограничивающих/барьерных слоев  $Hg_{1-x}Cd_x$ Te был фиксированным (x = 0.75). Активная область во всех рассматриваемых случаях содержала 20 КЯ HgTe/CdHgTe.

Оптимизация лазерных структур проводилась для генерации основной моды ТЕ<sub>0</sub>. Действительно, в КЯ HgTe/HgCdTe основной дырочный уровень представлен состояниями тяжелых дырок, и в этом случае, согласно правилам отбора для переходов электронов между валентной зоной и зоной проводимости [10], усиление возможно только для таких электромагнитных мод волновода, в которых компонента электрического поля лежит в плоскости КЯ. В нашем случае такой компонентой электрического поля обладают только ТЕ-моды. Для нахождения распределения электрического поля ТЕ-моды, определения эффективного показателя преломления и коэффициента поглощения  $\alpha_p$  для волноводных мод проводилось численное решение уравнений Максвелла [11,12]. Диэлектрические проницаемости нелегированных GaAs и CdTe, а также Au аппроксимировались на основании экспериментальных данных, представленных в [13]. В отсутствие экспериментальных данных по частотной зависимости диэлектрической проницаемости слоев Hg0.25Cd0.75Te в интересующей нас области спектра (на длинах волн 25-41 мкм) было использовано приближение, в котором действительная часть диэлектрической проницаемости принималась равной 8.1 [4], а мнимая часть считалась такой же, как в CdTe. Чтобы учесть влияние легирования в подложке GaAs, к значению диэлектрической проницаемости



**Рис. 1.** Зависимости  $\alpha_p/\Gamma$  и необходимой для достижения этой величины концентрации фотовозбужденных носителей *N* от энергии кванта и длины волны излучения для всех 6 конструкций волноводов. Указаны номера волноводов.

нелегированного GaAs добавлялась соответствующая "проводящая" часть [14]

$$\Delta \varepsilon(\omega) = -\frac{\omega_p^2 \varepsilon_\infty}{\omega^2 + i\gamma\omega},\tag{2}$$

где  $\omega_p^2 = 4\pi N_e q^2 / (m^* \varepsilon_\infty)$  — квадрат плазменной частоты,  $\gamma = q/m^* \mu$  — фактор потерь, q — заряд электрона,  $\mu$  и  $m^*$  — подвижность и эффективная масса электронов соответственно,  $N_e$  — концентрация свободных электронов (считалась равной  $2 \cdot 10^{18}$  см<sup>-3</sup>). Использовались данные справочника [15] относительно подвижности  $\mu$ электронов при таком уровне легирования GaAs, а также величин  $\varepsilon_\infty$  и  $m^*$ .

На рис. 1 представлены величины потерь  $\alpha_p/\Gamma$ , вычисленные для всех рассматриваемых волноводов в зависимости от энергии кванта  $\hbar \omega$  (длины волны излучения  $\lambda$ ). Согласно (1), минимум величины  $\alpha_p/\Gamma$  соответствует минимальному коэффициенту усиления G в КЯ, необходимому для возникновения стимулированного излучения. Для рассматриваемых структур толщины волноводных слоев подбирали исходя из условия минимальной величины  $\alpha_p/\Gamma$  при энергии кванта 35 мэВ, соответствующей длине волны излучения  $\lambda = 35.4$  мкм. Необходимо отметить две характерные особенности в полученных зависимостях величины  $\alpha_p/\Gamma$  от длины волны излучения, наблюдаемые для всех вариантов волноводов. Первая — резкое увеличение потерь  $\alpha_p/\Gamma$  на длинах волн  $\lambda > 33.5$  мкм, что обусловлено резким ростом с длиной волны  $\alpha_p$  в CdTe и Hg<sub>0.25</sub>Cd<sub>0.75</sub>Te, связанное с возрастанием вклада однофононного поглощения в этих материалах по мере продвижения в область длинных волн. Вторая особенность — выраженный пик потерь в диапазоне длин волн 27.5-29.5 мкм, определяемый уже двухфононным поглощением в этих материалах.

Из рис. 1 видно, что существует диапазон длин волн 29.5-33.5 мкм, в котором все рассматриваемые волноводы имеют минимальные (и относительно близкие по величине) значения величины потерь. Заметим, что на длинах волн в диапазоне 25-33.5 мкм оптимальным был бы вариант #5 (лазерная структура, выращенная на подложке CdTe). В то же время подложки CdTe достаточно редки и более практичным выбором здесь представляются варианты волновода, сформированного на полуизолирующей подложке GaAs с толстым (> 15 мкм) буферным слоем CdTe (#3 в таблице) либо на сильно легированной подложке GaAs (#4). Также достаточно эффективным в этом диапазоне будет металлизированный волновод (#6), волновод с относительно тонким СdTe-буфером (#1) будет хорошо работать лишь в узком интервале длин волн 29.5-33.5 мкм. Для более длинноволнового излучения (на длине волны в пределах 33.5-41 мкм) оптимальным будет металлизированный волновод (#6).

При сопоставлении пассивных потерь в волноводах различной конструкции (рис. 1) мы ограничили рассматриваемый диапазон потерь на уровне  $(\alpha_p/\Gamma)_{\rm max} < 5 \cdot 10^3 \, {\rm cm}^{-1}$ , что приблизительно соответствует величине усиления, достижимой в диапазоне длин волн 25-41 мкм в одиночной КЯ HgTe/HgCdTe. На рис. 2 приведен соответствующий расчет коэффициента усиления  $(G - \alpha_a)$  в зависимости от концентрации фотовозбужденных носителей N, проведенный в соответствии с методикой [16] (температура решетки полагается равной  $T_0 = 4.2$  K, температура носителей  $T_e = 77$  K). Видно, что просветление КЯ ( $G = \alpha_a$ ) наступает при пороговой концентрации носителей  $N_{\rm th} \approx 5 \cdot 10^{10} \, {\rm cm}^{-2}$ , после чего усиление сублинейно растет с увеличением N и достигает  $(G - \alpha_a)_{\max} \approx 5 \cdot 10^3 \,\mathrm{cm}^{-1}$  при  $N_{\rm max} \approx 2 \cdot 10^{11} \, {\rm cm}^{-2}$ . Указанная концентрация носителей N<sub>max</sub> является, по-видимому, максимальной, реа-



**Рис. 2.** Зависимость коэффициента усиления в КЯ  $(G - \alpha_a)$  от концентрации фотовозбужденных носителей N в КЯ HgTe/HgCdTe для диапазона длин волн 25–40 мкм.

лизуемой в "длинноволновых" КЯ HgTe/HgCdTe при разумных мощностях накачки. Так, при меньших концентрациях носителей в КЯ HgTe/HgCdTe преобладающим процессом межзонной рекомбинации является оже-рекомбинация [17]. Характерные времена этого процесса — субнаносекундные,  $\tau \approx 0.5\,\mathrm{hc}$  при  $N_{
m th} pprox 5 \cdot 10^{10} \, {
m cm}^{-2}$  и  $\sim 0.1 \, {
m hc}$  при  $N_{
m max} pprox 2 \cdot 10^{11} \, {
m cm}^{-2}.$ При превышении величины N<sub>max</sub> пороговым образом включается сверхбыстрый процесс межзонной рекомбинации (времена ~ 1 пс), сопровождающийся генерацией двумерных плазмонов [17]. За счет этого процесса мощность накачки, необходимая для достижения схожей концентрации носителей, возрастает на 2 порядка величины. Отметим, что при этом в принципе возможна стимулированная генерация плазмонов, сильно локализованных вблизи КЯ и не требующих дополнительного волновода [18]; подобные эффекты остаются за рамками данной работы.

Сопоставление расчетных данных для величин усиления (рис. 2) и потерь (рис. 1) в рассматриваемых структурах позволяет оценить пороговые плотности мощности накачки, необходимые для возникновения СИ, исходя из соотношения

$$I_{\rm th} = \hbar \Omega N / \eta \tau. \tag{3}$$

Здесь  $\hbar\Omega$  и  $\eta$  — энергия фотона для излучения накачки и доля излучения накачки, поглощаемого в КЯ соответственно,  $\tau$  — время межзонной релаксации (оже-рекомбинации, см. выше). Если предположить, что оптическая накачка будет осуществляться СО<sub>2</sub>-лазером на длине волны 10.6 мкм ( $\hbar\Omega = 117$  мэВ), а  $\eta \approx 0.005$  для КЯ, для  $N \approx 5 \cdot 10^{10}$  см<sup>-2</sup> порог СИ оценивается на уровне  $I_{\rm th} \approx 400$  Вт/см<sup>2</sup>, в то время как для  $N \approx 2 \cdot 10^{11}$  см<sup>2</sup> величина составит  $I_{\rm th} \approx 7.5$  кВт/см<sup>2</sup>.

# 3. Заключение

В работе проведен расчет характеристик шести вариантов диэлектрического волновода лазерных структур на основе 20 КЯ HgTe/HgCdTe, излучающих в дальнем ИКдиапазоне: коэффициента поглощения, фактора оптического ограничения и усиления. Показано, что для каждой длины волны в диапазоне 25–41 мкм может быть подобран оптимальный вариант волновода, обеспечивающий возможность генерации стимулированного излучения.

#### Финансирование работы

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 20-52-50004 ЯФ\_а) в части расчета внутренних (фононных) потерь в рассматриваемых диэлектрических волноводах и при поддержке Министерства образования и науки Российской Федерации (проект МК-1430.2020.2) в части расчета достижимых величин усиления в КЯ HgTe/CdHgTe.

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

## Список литературы

- [1] M.S. Vitiello, G. Scalari, B. Williams, P. De Natale. Opt. Express, 23, 5167 (2015).
- [2] R.J. Falconer, A.G. Markelz. J. Infrared Milli. Terahz. Waves, 33, 973 (2012).
- [3] F. Castellano, A. Bismuto, M.I. Amanti, R. Terazzi, M. Beck, S. Blaser, A. Baechle, J. Faist. J. Appl. Phys., 109, 102407 (2011).
- [4] A. Rogalski. Rep. Progr. Phys., 68, 2267 (2005).
- [5] D. Ushakov, A. Afonenko, R. Khabibullin, D. Ponomarev, V. Aleshkin, S. Morozov, A. Dubinov. Opt. Express, 28, 25371 (2020).
- [6] I. Melngailis, A. Strauss. Appl. Phys. Lett., 8, 179 (1966).
- [7] S.V. Morozov, V.V. Rumyantsev, M.A. Fadeev, M.S. Zholudev, K.E. Kudryavtsev, A.V. Antonov, A.M. Kadykov, A.A. Dubinov, N.N. Mikhailov, S.A. Dvoretsky, V.I. Gavrilenko. Appl. Phys. Lett., **111**, 192101 (2017).
- [8] G. Alymov, V. Rumyantsev, S. Morozov, V. Gavrilenko, V. Aleshkin, D. Svintsov. ACS Photonics, 7, 98 (2020).
- [9] K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Hwang, A. Sergent, D. Sivco, A. Cho. Appl. Phys. Lett., 80, 3060 (2002).
- [10] F. Bachmann, P. Loosen, R. Poprawe. High power diode lasers. Technology and applications (N.Y., Springer, 2007).
- [11] Л.Д. Ландау, Е.М. Лифшиц. Электродинамика сплошных сред (М., Наука, 1989).
- [12] H.C. Casey, M.B. Panich. Heterostructure lasers (N.Y., Academic Press, 1978).
- [13] E.D. Palik. Handbook of optical constants of solids (Orlando, Academic Press, 1985).
- [14] J.S. Blackmore. J. Appl. Phys., 53, R123 (1982).
- [15] A. Dargys, J. Kundrotas. Handbook on Physical Properties of Ge, Si, GaAs and InP (Vilnius, Science and Encyclopedia Publishers, 1994).
- [16] V.Ya. Aleshkin, A.A. Dubinov, V.V. Rumyantsev, M.A. Fadeev, O.L. Domnina, N.N. Mikhailov, S.A. Dvoretsky, F. Teppe, V.I. Gavrilenko, S.V. Morozov. J. Phys.: Condens. Matter, 30, 495301 (2018).
- [17] V. Aleshkin, G. Alymov, A. Dubinov, V. Gavrilenko, F. Teppe. J. Phys. Commun., 4, 115012 (2020).
- [18] K. Kapralov, G. Alymov, D. Svintsov, A. Dubinov. J. Phys.: Condens. Matter, **32**, 065301 (2020).

Редактор Л.В. Шаронова

# Dielectric waveguide optimization for the laser structures with HgCdTe QWs emitting in far-infrared range

A.A. Dubinov<sup>1,2</sup>, V.V. Rumyantsev<sup>1,2</sup>, M.A. Fadeev<sup>1</sup>, V.V. Utochkin<sup>1</sup>, S.V. Morozov<sup>1,2</sup>

 <sup>1</sup> Institute for Physics of Microstructures, Russian Academy of Sciences,
 603950 Nizhny Novgorod, Russia
 <sup>2</sup> Lobachevsky State University of Nizhny Novgorod,
 603950 Nizhny Novgorod, Russia

**Abstract** We investigate optimized designs of dielectric waveguides for HgTe/HgCdTe quantum well heterostructures emitting in the wavelength range of  $25-41\,\mu$ m. We demonstrate that HgCdTe-based waveguides grown directly on CdTe substrates or on GaAs substrates with thick (~  $15\,\mu$ m) CdTe buffers are best suited for the  $25-33.5\,\mu$ m spectral range, while substrate removal followed by surface metallization provides an optimal way to define a waveguide for longer wavelength emission, at  $33.5-41\,\mu$ m.