08,09

NaSrBO₃: Ce, Yb Phosphor for NIR Emission around $1 \mu m$

© P.K. Tawalare 1, P.D. Belsare 1, S.V. Moharil 2

¹ Shri Ramdeobaba College of Engineering and Management,

Nagpur 440013, India

² Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University,

Nagpur 440033, India

E-mail: priteetawalare@gmail.com Received: December 25, 2020 Revised: December 25, 2020 Accepted: January 1, 2021

Synthesis and characterization of NaSrBO₃:Ce, Yb phosphor is described. NaSrBO₃:Ce phosphor exhibited characteristic Ce³⁺ emission around 414 nm. Co-doping with Yb³⁺ resulted in near-infrared (NIR) emission around 981 nm. This is attributed to phonon-assisted cooperative energy transfer from Ce³⁺ to two Yb³⁺ ions. Ce³⁺ \rightarrow Yb³⁺ energy transfer is proved using a variety of measurements such as dependence of photoluminescence intensity of visible and NIR emissions on Yb³⁺ concentration, excitation spectrum for Yb³⁺, accelerated decay of Ce³⁺ emission after Yb³⁺ codoping, etc. Using lifetime measurements, the efficiency of Ce³⁺ \rightarrow Yb³⁺ energy transfer is estimated to be 48.65%.

Keywords: near-infrared, photoluminescence, $Ce^{3+} \rightarrow Yb^{3+}$ energy transfer, borate.