08,04

Парамагнитные центры Mn^{2+} , Gd^{3+} и Cu^{2+} в легированном хромом монокристалле Li_2CaSiO_4

© В.А. Важенин, А.П. Потапов, М.Ю. Артёмов, А.В. Фокин

Уральский федеральный университет (Институт естественных наук и математики), Екатеринбург, Россия

E-mail: Vladimir.Vazhenin@urfu.ru

Поступила в Редакцию 21 декабря 2020 г. В окончательной редакции 21 декабря 2020 г. Принята к публикации 23 декабря 2020 г.

В кристалле Li₂CaSiO₄ кроме интенсивных аксиальных центров Cr⁴⁺ обнаружены и исследованы спектры ЭПР примесных ионов Mn²⁺ (S = 5/2), Gd³⁺ (S = 7/2) и Cu²⁺ (S = 1/2). Ионы марганца и гадолиния демонстрируют спектры тетрагональной симметрии, ионы меди представлены спектрами как аксиальной, так и триклинной симметрии. Определены параметры спиновых гамильтонианов тетрагональных центров. Показано, что ионы Mn²⁺ и Gd³⁺ замещают ионы кальция с восьмикратным кислородным окружением, ионы меди локализуются в позициях лития с тетраэдрическим окружением. Обсуждаются причины возникновения триклинных центров Cu²⁺.

Ключевые слова: примесные ионы, силикаты, парамагнитный резонанс.

DOI: 10.21883/FTT.2021.05.50816.267

1. Введение

В работе [1] сообщается о наблюдении и исследовании спектра электронного парамагнитного резонанса (ЭПР) четырехзарядных ионов хрома как при температуре жидкого гелия, так и при комнатной температуре в кристаллах Li₂CaSiO₄, перспективных для применения в лазерной физике [2]. Ионы Cr⁴⁺, находящиеся в тетраэдрическом окружении, обеспечивают лазерные свойства форстерита и параметры пассивного лазерного затвора на иттрий-алюминиевом гранате [3,4]. Спектроскопические исследования легированного хромом Li₂CaSiO₄ [2,5] привели авторов к выводу, что длинное время жизни возбужденного состояния делает кристалл перспективной лазерной средой для ближнего ИК-диапазона.

В образце Li₂CaSiO₄, исследованном авторами [1], в *X*-диапазоне наблюдаются слабые (на полтора порядка меньшие, чем сигналы Cr⁴⁺) переходы центров неконтролируемых примесей Mn²⁺ (S = 5/2), Gd³⁺ (S = 7/2) и Cu²⁺ (S = 1/2). Настоящая работа посвящена исследованию методом ЭПР указанных парамагнитных центров, т.е. определению энергетических параметров, локализации их в кристаллической решетке и атомной структуры.

2. Образцы и методика эксперимента

Монокристаллы Li₂CaSiO₄: Сг были выращены методом Чохральского с высокочастотным нагревом. Содержание оксида хрома в шихте составляло от 0.1 до 0.5 wt.%. Концентрация хрома в выращенных кристаллах не измерялась. Образец, на котором проводились измерения, предварительно был сориентирован на рентгеновском дифрактометре.

Пространственная группа кристалла Li₂CaSiO₄ $I\bar{4}2m$ (D_{2d}^{11}) . Кристаллическая решетка состоит из тетраэдров SiO₄ и додекаэдров CaO₈ (двух тетраэдров), имеющих группу локальной симметрии $\bar{4}2m(D_{2d})$, а также тетраэдров LiO₄ с точечной симметрией $\bar{4}(S_4)$ [6]. Горизонтальные ребра тетраэдров SiO₄ и CaO₈ лежат в плоскостях отражения $m(\sigma_d)$ кристалла, тогда как ребра двух типов тетраэдров LiO₄ повернуты вокруг S₄ относительно плоскости отражения σ_d на углы $\pm 14^\circ$. В связи с этим, согласно [7], для парамагнитного иона, заместившего кальций или кремний, магнитная кратность будет 1, а локализованного в позиции лития — 2.

Измерения выполнялись на спектрометре ЭПР *X*-диапазона Bruker EMX Plus при 300, 165 и 120 К. При комнатной температуре образец в резонаторе спектрометра находился во фторопластовом бочонке, закрепленном на штанге штатного одноосного автоматического гониометра и обеспечивающем вращение кристалла в вертикальной плоскости. Для измерений при низких температурах образец приклеивался к торцу кварцевой трубки, закрепленной в одноосном гониометре.

3. Результаты и обсуждение

На рис. 6 работы [1] приведен спектр ЭПР центров Mn^{2+} в Li₂CaSiO₄ при **B** || S_4 (**B** — индукция магнитного поля). Нами было показано, что три одиночных (без сверхтонкой структуры) сигнала (2270, 3530, 4800 G), присутствующие в этом спектре, являются переходами тетрагонального центра Gd^{3+} (S = 7/2). Интенсивности спектров Gd^{3+} и Mn^{2+} сравнимы во всем исследованном

Рис. 1. Полярная угловая зависимость положений переходов тетрагональных центров Gd^{3+} и Cr^{4+} при комнатной температуре вблизи плоскости (110) на частоте 9860 MHz. Символы — эксперимент, кривые — расчет с параметрами табл. 1. Большие пустые символы трех типов — резонансные поля трех переходов центров Cr^{4+} (квадрат — переход 1 \leftrightarrow 3, треугольник — переход 1 \leftrightarrow 2, круг — переход 2 \leftrightarrow 3) [1].

Рис. 2. Азимутальная угловая зависимость положений переходов центров Gd³⁺ при $\theta = 90^{\circ}$ и комнатной температуре на частоте 9860 MHz, $x \parallel [100]$. Кривые — расчет с параметрами табл. 1. Цифры под кривыми — номера уровней энергии соответствующих переходов, нумерация уровней снизу вверх.

диапазоне температур. Измеренная нами полярная угловая зависимость положений сигналов центра Gd^{3+} при комнатной температуре вблизи плоскости (110) приведена на рис. 1. Видно, что предсказываемые расчетом переходы Gd^{3+} на крыльях центров Cr^{4+} измерить не удалось в связи с большой интенсивностью и шириной сигналов центров Cr^{4+} (см. рис. 1). Азимутальная угловая зависимость положений двух переходов центров Gd^{3+} при $\theta = 90^{\circ}$ и комнатной температуре показана на рис. 2.

Использование в fitting-процедуре (оптимизация параметров спинового гамильтониана методом наимень-

Таблица 1. Параметры спинового гамильтониана тетрагональных центров Gd^{3+} и Mn^{2+} в Li₂CaSiO₄, $z \parallel [001]$, $x \parallel [100]$. (Среднеквадратичное отклонение F(n) и b_{nm} приведены в MHz, где n — число экспериментальных точек, использованных в fitting процедуре)

Параметры	Gd ³⁺		Mn ²⁺
Температура	300 K	165 K	300 K
$\begin{array}{c} g \parallel \\ g \parallel \end{array}$	1.991	1.991 1.991	2.0001 2.0012
b_{20}	1956	2038	1105
b_{40} b_{44}	29 196	31 194	2 17
F(n)	34(112)	18(13)	3.7(58)

ших квадратов) положений переходов, приведенных на рис. 1–2, позволило определить параметры тетрагонального спинового гамильтониана центра Gd^{3+} [8] в системе координат $z \parallel [001], x \parallel [100]$:

$$H = \beta(BgS) + \frac{1}{3}b_{20}O_{20} + \frac{1}{60}(b_{40}O_{40} + b_{44}O_{44}) + \frac{1}{1260}(b_{60}O_{60} + b_{64}O_{64}),$$
(1)

где **g** — *g*-тензор, β — магнетон Бора, *S* — оператор электронного спина, O_{nm} — косинусоидальные спиновые операторы Стивенса, b_{nm} — параметры тонкой структуры. Величины полученных параметров при двух температурах приведены в табл. 1. Параметры шестого ранга не приводятся из-за слабого влияния на спектр.

Спиновый гамильтониан тетрагональных центров Mn^{2+} (S = 5/2) представляет собой выражение (1) без последнего слагаемого шестого ранга и с добавлением члена сверхтонкого взаимодействия (СТВ) с собственным ядром (SAI), где ядерный спин ⁵⁵Mn I = 5/2. Результаты fitting процедуры с использованием положений сверхтонких компонент в параллельной (**B** || S_4 , см. рис. 6 работы [1]) и перпендикулярной ориентациях магнитного поля (рис. 3) приведены в табл. 1. Для параметров СТВ получены следующие значения: $A_{\parallel} = -255.6$ MHz, $A_{\perp} = -250$ MHz.

При исследовании азимутальной угловой зависимости центров Mn^{2+} в Li₂CaSiO₄ при $\theta = 90^{\circ}$ была замечена следующая особенность: при вращении магнитного поля от [100] или [010] к [110] пиковая интенсивность всех переходов уменьшается, а их ширина растет, при этом интегральная интенсивность сохраняется (рис. 3). Такое поведение ширины и интенсивности сигналов можно было бы объяснить анизотропией неразрешенной суперсверхтонкой структуры, которая при **B** || *S*₄ частично разрешается (см. рис. 7 статьи [1]). Но в этом случае следует ожидать примерно одинакового уширения и, следовательно, одинакового падения пиковой интенсивности сигналов различных электронных переходов. Экспериментальное ориентационное поведение пиковой интенсивности разных переходов Mn^{2+} , как хорошо видно на рис. 4, радикально отличается, что делает невозможным объяснение наблюдаемого эффекта за счет поведения суперсверхтонкой структуры.

На рис. 4 также приведена, за исключением малых φ , азимутальная зависимость интенсивности перехода Gd³⁺. Как видно, центр Gd³⁺ тоже демонстрирует уменьшение пиковой интенсивности при вращении поля от [100] к [110]. Скорее всего, наблюдаемые на двух центрах (Mn²⁺ и Gd³⁺) указанные эффекты имеют одну и ту же природу.

Рис. 3. Поведение ЭПР-спектра центра Mn^{2+} в зависимости от ориентации магнитного поля при $\theta = 90^{\circ}$ и комнатной температуре, $x \parallel [100]$. Вертикальные стрелки указывают на сверхтонкие компоненты электронного перехода $4 \leftrightarrow 5$, наклонные — $3 \leftrightarrow 4$ центра Mn^{2+} . Уровни энергии пронумерованы снизу вверх. Ломаная кривая показывает зависимость положения перехода $5 \leftrightarrow 6$ центра Gd^{3+} от ориентации поля (рис. 2).

Рис. 4. Зависимость пиковой интенсивности переходов Mn^{2+} ($a - 3 \leftrightarrow 4, b - 4 \leftrightarrow 5$) и Gd^{3+} ($c - 4 \leftrightarrow 5$) от азимутального угла при $\theta = 90^{\circ}$. При малых углах φ интенсивность перехода $4 \leftrightarrow 5 Gd^{3+}$ измерить сложно из-за перекрытия его с сигналом центров Mn^{2+} .

Рис. 5. Расчетная азимутальная зависимость положений перехода 4 \leftrightarrow 5 центров Mn²⁺ при $\theta = 90^{\circ}$ с параметрами табл. 1 и $c_{22} = 4$ MHz.

Качественно объяснить сильное уширение сигналов вблизи $\phi = 45^{\circ}$ можно, допустив появление в спиновом гамильтониане слагаемого $c_{22}\Omega_{22}$ (Ω_{22} — синусоидальный оператор Стивенса), вызванного случайными локальными деформациями, понижающими симметрию парамагнитного центра. На рис. 5 приведены расчетные азимутальные зависимости положения перехода 4 \leftrightarrow 5 центров Mn^{2+} при $\theta = 90^{\circ}$ с $c_{22} = 0$ и $c_{22} = 4$ MHz. За счет разброса локальных деформаций будет формироваться вклад в ширину линии, пропорциональный разности между приведенными кривыми, тогда как величина вклада определяется дисперсией случайных деформаций. Указанная разность для перехода 4 \leftrightarrow 5 Mn^{2+} при $\varphi = 45^{\circ}$ равна 0.17 mT, а для 3 \leftrightarrow 4 всего 0.03 mT, что качественно объясняет экспериментальное соотношение ширин или пиковых интенсивностей этих переходов. Для перехода 4 \leftrightarrow 5 центров Gd³⁺ расчетный сдвиг зависимости за счет члена $c_{22}\Omega_{22}$ с $c_{22} = 4 \text{ MHz}$ при $\varphi = 45^{\circ}$ равняется 0.1 mT, что, казалось бы, противоречит данным рис. 4. Однако не следует считать, что параметры с 22, возникающие в результате квазиодинаковых деформаций окружения, для центров Mn²⁺ и Gd³⁺ будут равны.

В работе [1] на основании близости вида суперсверхтонкой структуры компонент перехода 3 \leftrightarrow 4 Mn²⁺ и не идентифицированного сигнала с g = 1.991 (см. рис. 7 [1]) сделан вывод о локализации этих центров в одной позиции. Обнаружение в произвольной ориентации магнитного поля небольшого расщепления сигнала с g = 1.991 было расценено авторами как существование у него и Mn²⁺ двух магнитнонеэквивалентных центров. Основываясь на этом был сделан вывод о локализации иона марганца в позиции лития.

Детальное исследование спектра центров Mn^{2+} и Gd^{3+} , переходом $4 \leftrightarrow 5$ которого является не идентифицированный сигнал с g = 1.991, показало, что их магнитные кратности равны 1. Об этом говорит совпа-

Рис. 6. ЭПР-спектр двух центров Cu^{2+} (*a* и *b*) при **В** || S_4 и 120 К на частоте 9450 МНz. Каждый центр представлен квартетами двух изотопов ⁶³Си и ⁶⁵Си.

дение экстремумов азимутальных угловых зависимостей положений сигналов Gd^{3+} (рис. 2) и интенсивностей переходов Mn^{2+} (рис. 3) с направлениями [100] и [110]. При замещении гадолинием иона лития на рис. 2 у каждого перехода Gd^{3+} должны присутствовать два сигнала, угловые зависимости которых смещены относительно [110] на углы $\pm 14^\circ$. Наблюдение в [1] слабого расщепления сигнала с g = 1.991, обусловлено, скорее всего, небольшой блочностью образца. Следовательно, Mn^{2+} и Gd^{3+} , имеющие ионные радиусы в шестикратной координации 0.096 и 0.105 nm [9] соответственно, вполне могут замещать Ca^{2+} ($R_i = 0.112$ nm). Позиция кремния для этих ионов слишком тесная ($R_i = 0.026$ nm).

Кроме обсуждаемых парамагнитных центров, в Li_2CaSiO_4 наблюдаются ЭПР-спектры (S = 1/2) двух центров Cu^{2+} (*a* и *b*), интенсивности которых при комнатной температуре и В || S₄ примерно равны интенсивностям сигналов Mn²⁺. При понижении температуры до 120 К за счет уменьшения ширины Cu^{2+} линий пиковая интенсивность сигналов относительно центров Mn²⁺ вырастает более, чем на порядок (рис. 6). Каждый спектр представлен двумя сверхтонкими квартетами изотопов 63 Cu (I = 3/2, естественная распространенность 69%) и 65 Cu (I = 3/2, 31%). Для *а*-центра при 300 К получено: $g_{\parallel} = 2.351$, $A_{\parallel}({}^{63}\text{Cu}) = -320 \text{ MHz}, \quad A_{\parallel}({}^{65}\text{Cu}) = -344 \text{ MHz}, \quad для$ *b*-центра: $g_{\parallel} = 2.369, A_{\parallel}({}^{63}\text{Cu}) = -238 \text{ MHz}, A_{\parallel}({}^{65}\text{Cu}) =$ = -255 MHz (A - параметр CTB).

На рис. 7 показано ориентационное поведение положений сигналов двух центров Cu^{2+} при 165 К и вращении магнитного поля от [001] к [110]. Судя по приведенным зависимостям *a*-спектр является центром аксиальной (тетрагональной) симметрии с $z \parallel S_4$, тогда как *b*-центр более низко симметричный. Наблюдаемое в произвольной ориентации расщепление всех переходов *b*-спектра говорит о существовании трех одинаковых, но различно ориентированных центров Cu^{2+} с симметрией ниже S_4 . Скорее всего один из этих спектров представ-

Таблица 2. Параметры спинового гамильтониана тетрагональных *a*-центров Cu^{2+} при 165 К. (Среднеквадратичное отклонение F(n) и A приведены в MHz)

Параметры	⁶³ Cu	⁶⁵ Cu
g_{\parallel}	2.354	2.354
g_{\perp}	2.066	2.066
A_{\parallel}	-349.5	-375.2
A_{\perp}	-13.	-13.
F(n)	4(69)	3(47)

ляет при **В** || (110) сумму двух магнитно-эквивалентных центров.

Высокополевые переходы *а*-центра (⁶³Cu и ⁶⁵Cu) перекрываются с другими сигналами (рис. 7) при полярных углах более 60°, остальные переходы идентифицируются еще в меньшем диапазоне. В результате анализа интенсивностей низкополевых переходов а-центра (рис. 7) удалось определить положения его сигналов только до 60° . Это позволило провести fitting-процедуру, используя только положения резонансных полей, помеченных на рис. 7 пустыми кружками и треугольниками. В связи с тем, что в оптимизации использованы положения сигналов лишь при углах меньших 60° погрешность в определении величины А_⊥ должна быть очень большой. Результаты приведены в табл. 2. Из-за малости значений, полученных для А_⊥ обоих изотопов, вблизи $\mathbf{B} \perp S_4$ должно быть заметно влияние на положения переходов ядерного квадрупольного взаимодействия, что еще более усложняет задачу идентификации сигналов. Параметры *b*-спектра не определялись, так как идентифицированных положений переходов для построения спинового гамильтониана трех магнитнонеэквивалентных центров триклинной симметрии недостаточно.

Низко симметричные центры Cu^{2+} в Li₂CaSiO₄ могут возникать в результате эффекта Яна-Теллера (CdS [10]), нецентральной локализации (CdS [11,12], CaF₂ и SrF₂ [13], Pb₅Ge₃O₁₁ [14]) или локальной компенсации избыточного электрического заряда (Li₂Ge₇O₁₅ [15]) парамагнитного иона. Прежде чем моделировать низкосимметричные центры Cu^{2+} следует обсудить локализацию этих ионов в решетке Li₂CaSiO₄.

Замещение ионом меди ($R_i = 0.057$ nm) позиции кремния ($R_i = 0.026$ nm) маловероятно из-за существенных различий, как ионных радиусов, так и зарядовых состояний. Ионный радиус Cu²⁺ в восьмикратном окружении 0.073 nm [9] заметно меньше, чем у иона Ca²⁺ ($R_i = 0.112$ nm). Положительным моментом для такого замещения является также изозарядность матричного и примесного ионов. Однако отсутствие у спектров Cu²⁺ в отличие от центров гадолиния и марганца каких-либо признаков суперсверхтонкой структуры свидетельствует в пользу различной их локализации. Таким образом, весьма вероятно, что ионы Cu²⁺ ($R_i = 0.057$ nm) в Li₂CaSiO₄ занимают позиции Li⁺ ($R_i = 0.059$ nm) с за-

Рис. 7. Полярная угловая зависимость положений переходов *a*-, *b*-центров Cu^{2+} при 165 К и *z* || [001] вблизи плоскости (110). Пустыми кружками и треугольниками показаны положения переходов *a*-центров для изотопов ⁶³Cu и ⁶⁵Cu соответственно, штриховые и жирные кривые — расчет с параметрами табл. 2.

рядовой компенсацией вакансиями лития, которые часто возникают в кристаллах ниобата, танталата и германата лития [15,16].

Если предположить, что, как и в работах [11-14], ион Cu²⁺ в Li₂CaSiO₄ испытывает смещение в сторону грани координационного полиэдра (тетраэдра LiO₄), то образуется восемь низкосимметричных центров (C_1) с одинаковой структурой, но различно ориентированных. При вращении магнитного поля в плоскости (110) спектры ионов Cu²⁺, расположенных в развернутых на углы ±14° кислородных тетраэдрах, будут попарно совпадать. В получившемся квартете центров два спектра при вращении поля от S₄ в плоскости (110) будут расщепляться сильно, в два других — слабо. Такая модель предполагает расщепление спектра Cu²⁺ на три компоненты, что и наблюдается для *b*-центров (см. рис. 7). При измерениях в бо́льшем диапазоне углов (там, где идентифицировать сигналы не удается) возможно расщепление *b*-центра на четыре спектра.

Повышение температуры увеличивает частоту переходов парамагнитного центра Cu^{2+} между различными минимумами адиабатического потенциала, что должно приводить к усреднению спектров, обусловленных тремя различно ориентированными центрами [13,17]. Проведенные нами измерения спектра Cu^{2+} при **B** || *S*₄ от 120 К до 470 К не обнаружили указанного усреднения низко симметричных центров, хотя показали сильное уширение сигналов и уменьшение на 10% величин *A*_{||}. В связи с этим, рассмотрим вариант возникновения низко симметричных центров Cu^{2+} в результате локальной зарядовой компенсации.

Если вакансия лития находится на расстоянии 0.357 nm в одной из позиций четверки ионов Li⁺, образующей квадрат в плоскости \perp оси [001] и содержащей примесный ион, то при вращении поля в плоскости (110) можно ожидать не более двух различных спектров, что не согласуется с наблюдениями.

Можно предполагать, что компенсация Cu²⁺ осуществляется вакансией лития, расположенной в вершине квадратной призмы, боковые грани которой ортогональны направлениям типа [100], с расстоянием до иона меди 0.482 nm и полярными углами 47.7, 132.3°. В этом случае образуется 16 низкосимметричных центров Cu^{2+} , восемь из них отличаются от 8 других лишь знаком электрического дипольного момента и в магнитном резонансе не различаются. Учет плоскости отражения $m(\sigma_d)$, связывающей кислородные тетраэдры, повернутые на углы ±14°, для магнитного поля в плоскости (110) уменьшает число магнитнонеэквивалентных центров до трех. Таким образом, модель локальной зарядовой компенсации, как и версия нецентральной локализации иона Cu²⁺ качественно одинаково объясняют наблюдаемое расщепление спектра *b*-центров. В пользу варианта локальной компенсациия заряда говорит отсутствие усреднения спектров при высоких температурах, поскольку допустить столь быстрое движение вакансии лития невозможно.

Кроме того, в окружении позиции Li⁺ на оси S₄ на расстоянии 0.324 nm располагаются два иона лития. В случае замещения ионом Cu²⁺ позиции Li⁺ с компенсацией заряда вакансией одного из упомянутых ионов лития образуется тетрагональный центр с $z \parallel [001]$, который можно предполагать ответственным за *a*-спектр меди. Хотя спектр *a*-центра может быть обусловлен и ионом Cu²⁺ в позиции лития с нелокальной компенсацией избыточного заряда.

Возможен вариант и совместного действия рассмотренных механизмов формирования низко симметричных *b*-центров Cu^{2+} . Наличие вакансии лития в ближайшем окружении кислородного тетраэдра с ионом Cu^{2+} , склонным к смещению из центра тетраэдра, стабилизирует определенные смещения меди, изменяя глубину минимумов адиабатического потенциала. В таком случае, как и при чисто локальной зарядовой компенсации не следует при увеличении температуры ожидать усреднения сверхтонкой структуры спектра. Таким образом, для решения вопроса о механизме возникновения низко симметричных *b*-центров необходимы дополнительные исследования.

4. Заключение

В кристалле Li₂CaSiO₄ наряду с интенсивными центрами Cr⁴⁺ обнаружены слабые (на полтора порядка меньше, чем сигналы Cr⁴⁺) ЭПР переходы ионов Mn²⁺ и Gd³⁺. В результате исследования полярных и азимутальных зависимостей положений переходов этих центров определены параметры тетрагональных спиновых гамильтонианов и показано, что эти примеси локализуются в позиции Ca²⁺. Предложено объяснение аномальной азимутальной зависимости пиковой интенсивности сигналов Mn²⁺ за счет случайных деформаций окружения примесного иона.

Кроме того, исследованы спектры ионов Cu²⁺, представленные центрами тетрагональной и триклинной симметрии и замещающие в кристалле ионы лития. Обсуждаются возможные причины понижения симметрии: локальная компенсация избыточного электрического заряда, нецентральная локализация примесного иона меди или их совместное действие.

Благодарности

Авторы благодарны Г.Р. Булке и Г.С. Шакурову за предоставление образцов, а В.А. Шустову за их ориентацию на дифрактометре.

Финансирование работы

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации, тема № FEUZ-2020-0054.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] В.А. Важенин, Г.С. Шакуров, А.П. Потапов. ФТТ **62**, 1870 (2020).
- [2] M.Yu. Sharonov, A.B. Bykov, V. Petricevich, R.R. Alfano. Opt. Commun. 231, 273 (2004).
- [3] V. Petricevich, S.K. Gayen, R.R. Alfano. Appl. Phys. Lett. 53, 2590 (1988).
- [4] G.M. Zverev, A.V. Shestakov. OSA Proc. Tunable Solid State Lasers 5, 6 (1989).
- [5] C. Anino, J. Thery, D. Vivien. Opt. Mater. 8, 121 (1997).
- [6] J.A. Gard, A.R. West. J. Solid State Chem. 7, 422 (1973).
- [7] М.Л. Мейльман, М.И. Самойлович. Введение в спектроскопию ЭПР активированных монокристаллов. Атомиздат, М. (1977). С. 30.
- [8] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972). С. 121.
- [9] R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).
- [10] I. Broser, H. Maier, H.-J. Schulz. Phys. Rev. 140, A2135 (1963).
- [11] Li Hua Wei, Shao Yi Wu, Yue Xia Hu, Xue Feng Wang. Defect Diffusion Forum 280–281, 15 (2008).
- [12] M. Schulz. Solid State Commun. 11, 1161 (1972).
- [13] В.А. Уланов, О.А. Аникеенок, М.М. Зарипов, И.И. Фазлижанов. ФТТ 45, 1814 (2003).
- [14] В.А. Важенин, А.П. Потапов, В.Б. Гусева, А.Д. Горлов. ФТТ **49**, 627 (2007).
- [15] М.П. Трубицын, М.Д. Волнянский, А.Н. Долинчук. ФТТ 50, 1373 (2008).
- [16] H. Söthe, L.G. Rowan, J-M. Spaeth. J. Phys.: Condens. Matter 1, 3591 (1989).
- [17] В.А. Важенин, А.Д. Горлов, А.И. Кроткий, А.П. Потапов, К.М. Стариченко. ФТТ **31**, 187 (1989).

Редактор Д.В. Жуманов