03,19

Термоэлектрические свойства твердых растворов *p*-Bi_{2-*x*}Sb_{*x*}Te₃ под давлением

© С.В. Овсянников¹, Ю.А. Григорьева¹, Г.В. Воронцов¹, Л.Н. Лукьянова², В.А. Кутасов², В.В. Щенников¹

¹ Институт физики металлов УрО РАН, Екатеринбург, Россия ² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

E-mail: vladimir.v@imp.uran.ru, lidia.lukyanova@mail.ioffe.ru

(Поступила в Редакцию 6 июля 2011 г.)

Исследовано поведение коэффициента термоэдс и параметра мощности \varkappa в твердых растворах *p*-Bi_{2-x}Sb_xTe₃ с различным содержанием атомов сурьмы в подрешетке висмута при x = 0, 1.4, 1.5 и 1.6 в зависимости от давления до 15 GPa. Обнаружен немонотонный рост величины \varkappa в области давлений 2–4 GPa.

Для параболической модели энергетического спектра с изотропным рассеянием носителей заряда определены эффективная масса плотности состояний m/m_0 и подвижность μ_0 , рассчитанная с учетом вырождения.

Показано, что давление приводит к снижению эффективной массы m/m_0 и увеличению подвижности носителей заряда. В составе *p*-Bi_{0.6}Sb_{1.4}Te₃ при давлении *P* \approx 4 GPa наблюдалось наибольшее увеличение параметра мощности \varkappa вследствие слабого снижения эффективной массы m/m_0 и увеличения подвижности носителей заряда по сравнению с другими составами твердых растворов.

Особенность изменения параметра мощности \varkappa от давления в теллуриде висмута вблизи $P \approx 3$ GPa, которая сопровождается перегибом зависимости m/m₀ от P, можно объяснить электронным топологическим переходом.

Работа выполнена при поддержке проектов РФФИ № 10-08-00945, 10-08-00645 и Президиума РАН 09-П-2-1020.

1. Введение

Одной из основных задач при исследовании термоэлектрических (ТЭ) материалов является поиск путей улучшения их ТЭ параметров: мощности ($\varkappa = S^2/\rho$) и добротности ($ZT = TS^2/(\rho\lambda)$), где S — термоэдс, ρ — электросопротивление, λ — теплопроводность, T — температура.

Соединения на основе теллурида висмута Bi_2Te_3 являются одними из наиболее известных материалов, используемых в высокоэффективных ТЭ модулях. В последнее время было установлено, что комбинация легирования и синтеза при высоком давлении может привести в этих соединениях к значительному улучшению параметров \varkappa и ZT, благодаря падению сопротивления даже при небольшом уменьшении термоэдс [1–3]. В бинарном соединении Bi_2Te_3 с не очень высокими исходными термоэлектрическими параметрами удалось получить под давлением рост термоэдс и существенное повышение параметра мощности [4]. Подобные исследования проводились на других материалах на основе Bi_2Te_3 (см. [5]).

Целью настоящей работы является исследование поведения термоэдс и сопротивления под давлением до 15 GPa в твердых растворах p-Bi_{2-x}Sb_xTe₃ (x = 0, 1.4, 1.5, 1.6), обладающих высокими начальными значениями ТЭ параметров при нормальном давлении [6].

2. Методика эксперимента

Образцы твердых растворов p-Bi_{2-x}Sb_xTe₃ для исследований при высоких давлениях были вырезаны из текстурированных слитков, полученных методом вертикального зонного выравнивания. Слитки состояли из монокристаллических зерен с плоскостями спайности (0001), ориентированными вдоль оси роста, перпендикулярной оси третьего порядка C_3 .

Для генерации давления использовались наковальни двух типов: одна пара — Бриджменовского типа из искусственных алмазов с рабочим диаметром $d \sim 0.6$ mm (рис. 1, *a*) и вторая — из карбида вольфрама с рабочим диаметром центральных полусферических наковален $d \sim 1$ mm (рис. 1, *b*). В обеих камерах образцы (~ 200 × 200 × 30 и ~ 200 × 200 × 250 μ m³ соответственно) помещались в прокладки из литографского камня [4].

Давление определялось с погрешностью ~ 10% с помощью калибровочной кривой, полученной для различных материалов (Be, PbS, PbSe, CdSe), испытывающих фазовые переходы при известных значениях давления. Прикладываемое усилие измерялось с помощью цифрового динамометра на основе тензорезисторных датчиков [7–9]. Измерения проводились в двух автоматизированных установках высокого давления [4,7–9].

Рис. 1. Образец в камере высокого давления. a — алмазная камера; b — твердосплавная камера, 1 — образец; 2 — прокладка из литографского камня, служащая в качестве передающей давление среды; 3 — вставки из искусственных алмазов (наковальни); 4 — поддерживающие матрицы из твердых сплавов. Кольцеобразное утолщение прокладки 2 производит поддерживающее давление P_s (до 10 GPa) по краям наковален. Высокое гидростатическое давление P генерируется в центральной части камеры.

Наковальни обладают высокой электрической проводимостью и были использованы в качестве электрических выводов от образца, а также как нагреватель и охладитель. Температурная разность в образце (ΔT) измерялась между верхней и нижней наковальнями, к фиксированным точкам которых были подведены термопары. Расчет температурного распределения в системе "наковальня-прокладка-образец"проводился в работах [7,8,10,11].

Термоэдс измерялась в трех режимах: при фиксированной разности температур ΔT и непрерывном изменении давления; при фиксированном давлении и постепенном изменении разности температур ΔT ; при одновременном изменении *P* и ΔT . Все три метода дали одинаковые результаты. Сопротивление ρ измерялось двухконтактным методом с погрешностью ~ 5%, погрешность измерения термоэдс ~ 10%.

3. Параметр мощности

Термоэдс и сопротивление твердых растворов $p-\text{Bi}_{2-x}\text{Sb}_x\text{Te}_3$ при x = 0, 1.4, 1.5, 1.6 уменьшались с ростом давления (рис. 2, 3). Начальные значения термоэдс

в пределах экспериментальной погрешности совпадали с данными, полученными при нормальном давлении на крупных текстурированных образцах, состоящих из монокристаллических зерен. Характеристики образцов приведены в таблице. Под высоким давлением сплавы BiSbTe испытывают структурные фазовые переходы [11], которые наблюдаются на кривых термоэдс (например, для образца с x = 1, 6 выше ~ 6 GPa на рис. 2).

Зависимости параметра мощности от давления $\varkappa(P)$ были определены по данным термоэдс и сопротивления: $\varkappa = S^2/\rho$ (рис. 3, 4). Несмотря на снижение термоэдс и сопротивления под давлением, параметр мощности

Рис. 2. Зависимости коэффициента термоэдс *S* от давления в твердых растворах $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_3$. *x*: *I* — 1.4 (№ 7), *2* — 1.5 (№ 8), *3* — 1.6 (№ 6), *4* — 0 (№ 10).

Рис. 3. Зависимости относительного электросопротивления ρ/ρ_0 от давления в твердых растворах $\operatorname{Bi}_{2-x}\operatorname{Sb}_x\operatorname{Te}_3$. *х*: *1* — 1.4 (№ 7), 2 — 1.5 (№ 8), 3 — 1.6 (№ 6), 4 — 0 (№ 10). На вставке рис. 3 — зависимости электропроводности σ от давления в твердых растворах $\operatorname{Bi}_{2-x}\operatorname{Sb}_x\operatorname{Te}_3$. *х*: *1* — 1.4 (№ 7), 2 — 1.5 (№ 8), 3 — 1.6 (№ 6), 4 — 0 (№ 10). 5, 6, 7, 8 — электропроводности σ , при которых наблюдаются максимальные величины параметра мощности в образцах № 7, № 8, № 6, № 10 соответственно. 9 — [12].

Рис. 4. Зависимости параметра мощности \varkappa от давления в твердых растворах $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_3$. *x*: *I* — 1.4 (№ 7), *2* — 1.5 (№ 8), *3* — 1.6 (№ 6), *4* — 0 (№ 10). Параметр мощности \varkappa при нормальном давлении: *5* — № 7, *6* — № 8, *7* — № 6, *8* — № 10, *9* — [12].

ведет себя немонотонно, демонстрируя максимумы в области 2–4 GPa. В этой области давлений наибольшая величина максимума параметра мощности получена для состава x = 1.4 (рис. 4, кривая *I*). Отметим, что в работе фактически измерялось относительное изменение электросопротивления, и результаты несколько различались для твердосплавной и алмазной камер из-за разной геометрической формы ячеек высокого давления и образцов (рис. 1, 3).

В образце № 7 с меньшим количеством замещенных атомов в подрешетке Ві при x = 1.4 наблюдалось ослабление зависимости S(P), которое вместе с уменьшением сопротивления (ростом электропроводности) обеспечило наибольшее повышение параметра мощности по сравнению с другими образцами (рис. 2–4, кривые 1). Полученные данные для коэффициента термоэдс, электропроводности и параметра мощности в исследованных образцах согласуются с результатами для p-Bi_{2-x}Sb_xTe₃ (x = 1.5), полученными при гидростатическом давлении до 1.5 GPa [12] (рис. 2–4).

В образце Bi_2Te_3 (Nº 10) наблюдается изменение характера зависимости параметра мощности \varkappa от давления *P* в области давлений около 3 GPa (рис. 4, кривая 4).

4. Эффективная масса и подвижность

Исследования коэффициента термоэдс S и электропроводности σ при высоких давлениях в твердых растворах p-Bi_{2-x}Sb_xTe₃ с различным содержанием атомов сурьмы в подрешетке висмута дают возможность рассчитать для однозонной параболической модели энергетического спектра с изотропным рассеянием носителей заряда эффективную массу плотности состояний m/m_0 и подвижность μ , учитывая вырождение носителей заряда.

В последующих расчетах m/m_0 и μ_0 учитывалось изменение механизма рассеяния в зависимости от состава и концентрации дырок в твердом растворе с помощью эффективного параметра рассеяния носителей заряда $r_{\rm eff}$.

Величины $r_{\rm eff}$ и приведенного уровня Ферми η были определены из решения системы уравнений для коэффициента термоэдс $S(r, \eta)$ и параметра вырождения $\beta_d(r, \eta)$, отвечающего за процессы рассеяния в твердых растворах. Для этого были использованы результаты исследований термоэлектрических и гальваномагнитных свойств твердых растворов *p*-типа на основе Bi₂Te₃ [13,14].

В рассматриваемых материалах основным является акустический механизм рассеяния носителей заряда, для которого параметр рассеяния r = -0.5. Полученные в расчетах отклонения от значения -0.5 связаны с влиянием на процессы рассеяния замещений атомов в подрешетке Ві и изменением концентрации дырок.

Для образцов № 6–8 с x = 1.4, 1.5 и 1.6 $r_{\rm eff} \approx -0.65$, для образца № 10 (x = 0) величина $r_{\rm eff} \approx -0.75$. Эти значения $r_{\rm eff}$ согласуются с результатами исследований материалов на основе Bi₂Te₃ [15,16].

Зависимости коэффициента термоэдс от приведенного уровня Ферми $S(\eta)$ и концентрации носителей заряда S(p), необходимые для расчета эффективной массы m/m_0 и подвижности μ_0 , были получены в соответствии с работами [13,14] из результатов исследований термоэлектрических и гальваномагнитных свойств в твердых растворах $p-\text{Bi}_{2-x}\text{Sb}_x\text{Te}_3$ (рис. 5).

Рассматриваемые образцы твердых растворов являются частично вырожденными, что подтверждается за-

Рис. 5. Зависимости коэффициента термоэдс *S* от приведенного уровня Ферми η (1) и концентрации дырок *p* (2), а также параметра вырождения β_d от коэффициента термоэдс *S* (3) в твердых растворах *p*-Bi_{2-x}Sb_xTe₃.

Экспериментальные и расчетные характеристики исследованных твердых растворов Bi2-xSbxTe3

Номер образца	Состав	$S, \mu V \cdot K^{-1}$	$\sigma, \Omega^{-1} \cdot \mathrm{cm}^{-1}$	κ , 10 ⁻⁶ W cm ⁻¹ K ⁻²	$cm^2 \cdot V^{-1} \cdot s^{-1}$	m/m_0
7	Bi _{0.6} Sb _{1.4} Te ₃	209	998	43	262	1.60
8	$Bi_{0.5}Sb_{1.5}Te_3$	220	1037	50	277	1.72
6	Bi _{0.4} Sb _{1.6} Te ₃	205	1216	51	336	1.73
10	Bi ₂ Te ₃	165	1400	38	268	1.50

Рис. 6. Зависимости эффективной массы m/m_0 плотности состояний от давления в твердых растворах $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_3$. $x: 1 - 1.4, 2 - 1.5, 3 - 1.6, 4 - 0.5, 6, 7, 8 - эффективные массы <math>m/m_0$, при которых наблюдаются максимальные величины параметра мощности в образцах № 7, № 8, № 6, № 10 соответственно.

висимостями $S(\eta)$ и $\beta_d(S)$ (рис. 5) и результатами исследований оптического поглощения в области края фундаментальной полосы в твердых растворах *p*-типа на основе Bi₂Te₃ при близких концентрациях дырок [17].

С увеличением давления P эффективная масса m/m_0 уменьшается как и коэффициент термоэдс S (рис. 2, 6). Увеличение x в твердых растворах приводит к более резкому снижению эффективной массы под давлением. Величина m/m_0 в Bi₂Te₃ ниже, чем в твердых растворах (рис. 6, кривая 4), как при нормальном давлении (см. таблицу), так и при повышенных P (рис. 6).

На зависимости m/m_0 от P в образце p-Bi₂Te₃ наблюдается резкий перегиб вблизи давления ($P \approx 3$ GPa), при котором была обнаружена особенность изменения параметра мощности \varkappa от давления (рис. 4, 6, кривые 4). Изменение поведения \varkappa и m/m_0 в этом образце в зависимости от давления при $P \approx 3$ GPa может быть связано с электронным топологическим переходом. Существование топологического перехода в теллуриде висмута было подтверждено из прецизионных дифракционных исследований постоянных решетки a и c [18]. Несмотря на монотонное снижение величин a и c в теллуриде висмута с ростом давления при $P \approx 3$ GPa наблюдалось резкое изменение модуля упругости и его производной в атомных слоях, связанных с изменением постоянной решетки *a*, которое авторы работы [18] объясняли электронным топологическим переходом.

Подтверждением возможности топологического перехода в *p*-Bi₂Te₃ являются также исследования коэффициента термоэдс и эффекта Шубникова–де-Гааза под давлением [19]. Эти исследования показали, что при топологических переходах в *p*-Bi₂Te₃, связанных с изменением топологии поверхности Ферми, были обнаружены аномалии барических зависимостей термоэдс.

В составе с меньшим значением x = 1.4, для которого наблюдалось значительное увеличение параметра мощности, зависимость $m/m_0(P)$ слабее по сравнению с другими составами (рис. 2, 6, кривые 1). Угловые коэффициенты зависимостей $d(\ln m/m_0)/d(\ln P)$ в исследованных образцах уменьшаются от -0.07 до -0.05 и качественно согласуются с аналогичными коэффициентами для p-Bi_{2-x}Sb_xTe₃ при x = 1.5, рассчитанными в многодолинной модели энергетического спектра [20].

Подвижность μ_0 , рассчитанная с учетом вырождения, возрастает с увеличением давления, а затем практически не изменяется при дальнейшем росте *P* для

Рис. 7. Зависимости подвижности μ_0 от давления в твердых растворах $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_3$. *x*: *1* — 1.4, *2* — 1.5, *3* — 1.6, *4* — 0. *5*, *6*, *7*, *8* — подвижности μ_0 , которым отвечают максимальные величины параметра мощности в образцах № 7, № 8, № 6, № 10 соответственно.

образцов № 6–8 твердого раствора (рис. 7, кривые 1-3). В образце Bi₂Te₃ № 10 подвижность выше, чем в твердых растворах, несмотря на более высокую концентрацию носителей заряда в этом образце. Небольшое снижение подвижности в образце Bi₂Te₃ при P > 5 GPa может быть связано с меньшей шириной запрещенной зоны в Bi₂Te₃, в котором $E_g \approx 0.15$ eV, по сравнению с твердыми растворами p-Bi_{2-x}Sb_xTe₃. Значения ширины запрещенной зоны, полученные при исследовании спектров отражения в p-Bi_{2-x}Sb_xTe₃ в области плазменных эффектов, показали, что $E_g = 0.2-0.21$ eV и слабо зависит от состава твердого раствора в интервале x = 1.4-1.6 [21].

Поскольку величины эффективной массы m/m_0 и подвижности μ_0 определяют параметр мощности в твердых растворах согласно отношению: $\varkappa \sim (m/m_0)^{3/2}\mu_0$, то характер изменения этих величин в зависимости от давления приводит к наибольшему росту \varkappa в составе с меньшим количеством замещенных атомов в подрешетке висмута при x = 1.4 (рис. 6, 7, кривые *I*) вследствие увеличения подвижности и эффективной массы по сравнению с другими составами твердых растворов p-Bi_{2-x}Sb_xTe₃.</sub>

Для описания поверхности постоянной энергии исследуемых материалов обычно используется многодолинная модель энергетического спектра, состоящая из шести эллипсоидов. Характер изменения эффективной массы *m*/*m*⁰ обусловлен отношениями компонентов тензора эффективных масс m_i/m_i , определяющих параметры эллипсоидов постоянной энергии, и связан с различной анизотропией поверхности постоянной энергии в валентной зоне твердых растворов *p*-Bi_{2-x}Sb_xTe₃. Различие в снижении эффективной массы *m/m*₀ под давлением в твердых растворах различного состава можно объяснить изменением отношений компонентов тензора эффективных масс m_i/m_i в зависимости от содержания атомов Sb. Резкий перегиб зависимости m/m₀ от P в теллуриде висмута при $P \approx 3$ GPa (рис. 6, кривая 4) также указывает на изменение параметров поверхности постоянной энергии под давлением вследствие электронного топологического перехода.

Результаты исследований гальваномагнитных эффектов при нормальном давлении в твердых растворах $Bi_{2-x}Sb_xTe_3$, которые были обработаны в многодолинной модели энергетического спектра с изотропным рассеянием носителей заряда, показали, что наблюдается изменение сжатия эллипсоидов постоянной энергии вдоль бинарной и биссектрисной осей и изменение растяжения вдоль тригональной оси в зависимости от состава и концентрации носителей заряда [14].

Давление может приводить к дальнейшему вытягиванию осей и появлению перемычек между псевдоэллипсоидами постоянной энергии и образованию замкнутой поверхности Ферми. С повышением давления возможен разрыв перемычек, при котором поверхность снова становится эллипсоидальной [22]. В рассматриваемой модели энергетического спектра влияние второй валентной зоны в твердых растворах $Bi_{2-x}Sb_xTe_3$ не учитывалось. Однако давление может также приводить к изменению параметров этой тяжелой валентной зоны в твердых растворах и, соответственно, к наблюдаемым немонотонным зависимостям термоэдс и параметра мощности (рис. 2, 4).

5. Заключение

Исследования коэффициента термоэдс *S* и параметра мощности \varkappa под давлением в твердых растворах *p*-Bi_{2-x}Sb_xTe₃ различного состава при *x* = 0, 1.4, 1.5, 1.6 показали, что величины термоэдс и сопротивления уменьшаются с увеличением давления.

Обнаруженное в области давлений 2–4 GPa увеличение параметра мощности $\varkappa \sim (m/m_0)^{3/2}\mu_0$ определяется оптимальными соотношениями между эффективной массой плотности состояний m/m_0 и подвижностью носителей заряда μ_0 , рассчитанными для параболической модели энергетического спектра с изотропным рассеяния в зависимости от состава твердого раствора. Наибольшее увеличение параметра \varkappa наблюдается при $P \approx 4$ GPa в составе с меньшим количеством Sb при x = 1.4 и определяется ослаблением зависимости $m/m_0(P)$ по сравнению с другими составами твердых растворов.

Перегиб в зависимости m/m_0 от P в теллуриде висмута вблизи давления $P \approx 3$ GPa, при котором наблюдается особенность изменения параметра мощности \varkappa от давления, можно объяснить электронным топологическим переходом.

Подвижность носителей заряда в этом составе возрастает вплоть до 4 GPa. Изменения эффективной массы m/m_0 под давлением связаны с уменьшением ширины запрещенной зоны, а также с другими особенностями изменения энергетического спектра и определяются параметрами эллипсоидальной поверхности постоянной энергии твердых растворов p-Bi_{2-x}Sb_xTe₃.

Список литературы

- [1] F.J. DiSalvo. Science 285, 703 (1999).
- [2] T.M. Tritt. Science 283, 804 (1999).
- [3] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn. Nature (London) 413, 597 (2001).
- [4] S.V. Ovsyannikov, V.V. Shchennikov, G.V. Vorontsov, A.Y. Manakov, A.Y. Likhacheva, V.A. Kulbachinskii. J. Appl. Phys. 104, 053 713 (2008).
- [5] J.F. Meng, N.V. Shekar, J.V. Badding, D.Y. Chung, M.G. Kanatzidis. J. Appl. Phys., 90, 6, 2836 (2001).
- [6] Л.Н. Лукьянова, В.А. Кутасов, В.В. Попов, П.П. Константинов. ФТТ 48, 4, 647 (2006).
- [7] V.V. Shchennikov, S.V. Ovsyannikov, G.V. Vorontsov, V.V. Kulbachinskii. J. Phys.: Conf. Ser. 215, 012 185 (2010).

- [8] S.V. Ovsyannikov, V.V. Shchennikov. Pressure-enhanced thermoelectricity. In: the Book of Abstracts of the 14th HPSP Inter. Conf. on High Pressure Semiconductor Physics, Changchun, China (2010). P. 36.
- [9] M.K. Jacobsen, R.S. Kumar, A.L. Cornelius, S.V. Sinogeiken, M.F. Nicol. Shock Compression of Condensed Matter edited by M. Elert, M.D. Furnish, R. Cliau, N. Holmes, J. Nguyen. American Institute of Physics 978-0-7354-0469-4/07 (2007).
- [10] S.V. Ovsynnikov, V.V. Shchennikov. Chem. Mater. 22, 3, 635 (2010).
- [11] V.V. Shchennicov, S.V. Ovsyannikov, A.Y. Manakov. J. Phys. Chem. Solids 71, 8, 1168 (2010).
- [12] А.А. Аверкин, Б.М. Гольцман, В.А. Кутасов, А.Р. Регель, Ю.З. Санфиров, Л.С. Стильбанс, Ж.Ж. Жапаров. Докл. Всесоюз. совещ. по деформационным и размерным эффектам в термоэлектрических материалах и пленках, технологии и применению пленок "Термоэлектрические материалы и пленки". ФТИ им. А.Ф. Иоффе, Л. (1976). С. 4.
- [13] Л.Н. Лукьянова, В.А. Кутасов, В.В. Попов, П.П. Константинов. ФТТ 46, 8, 1366 (2004).
- [14] Л.Н. Лукьянова, В.А. Кутасов, В.В. Попов, П.П. Константинов. ФТТ **52**, *8*, 1492 (2010).
- [15] H. Kaibe, Y. Tanaka, M. Sakata, I. Nishida. J. Phys. Chem. Solids 50, 945 (1989).
- [16] V.A. Kulbachinskii, A.V.G. Kytin, P.M. Tarasov. Proceedings of the XXV Int. Conf. on thermoelectrics. IEEE, Austria, Vienna (2006). P. 496.
- [17] А.Н. Вейс, Л.Н. Лукьянова, В.А. Кутасов. Сб. докл. XII Межгосударственного семинара "Термоэлектрики и их применения". СПб (2010). С. 133.
- [18] A. Polian, M. Gauthier. Phys. Rev. B 83, 113 106 (2011).
- [19] Е.С. Ицкевич, Л.М. Каширская, В.Ф. Крайденов. ФТП 31, 335 (1997).
- [20] А.А. Аверкин, О.С. Грязнов, Ю.З. Санфиров, В.Е. Селезнев. Докл. Всес. совещ. "Термоэлектрические материалы и пленки". ФТИ им. А.Ф. Иоффе, Л. (1976). С. 8.
- [21] Н.П. Степанов, А.А. Калашников. ФТП 44, 9, 1165 (2010).
- [22] V.B. Ansin, M.S. Bresler, I.I. Farbshtein, E.S. Itskevich, Yu.V. Kosichkin, V.A. Sukhoparov, A.S. Telepnev, V.G. Veselago. Phys. Status Solidi B 48, 531 (1977).