02.3;13.3

Сглаживание тонких поликристаллических пленок AIN кластерными ионами аргона

© И.В. Николаев¹, Н.Г. Коробейщиков¹, М.А. Роенко¹, П.В. Гейдт¹, В.И. Струнин^{2,3}

¹ Новосибирский государственный университет, Новосибирск, Россия

² Омский государственный университет им. Ф.М. Достоевского, Омск, Россия

³ Институт радиофизики и физической электроники ОНЦ СО РАН, Омск, Россия

E-mail: i.nikolaev@nsu.ru

Поступило в Редакцию 1 сентября 2020 г. В окончательной редакции 28 сентября 2020 г. Принято к публикации 11 декабря 2020 г.

> Исследована модификация поверхности тонких поликристаллических пленок нитрида алюминия с помощью бомбардировки ионно-кластерным пучком. Обработка проводилась высоко- (105 eV/atom) и низкоэнергетическими (10 eV/atom) кластерными ионами аргона. С помощью метода атомно-силовой микроскопии с применением спектральной функции шероховатости продемонстрировано высокоэффективное сглаживание наноструктурированной поверхности в широком диапазоне пространственных частот ($\nu = 0.02 - 128 \, \mu m^{-1}$) при ультрамалой глубине травления (< 100 nm).

Ключевые слова: ионно-кластерный пучок, тонкие пленки, нитрид алюминия, сглаживание поверхности.

DOI: 10.21883/PJTF.2021.06.50759.18536

Обработка материалов слабосвязанными кластерными ионами, генерируемыми ионизацией нейтральных кластеров из сверхзвуковой газовой струи, является многообещающим инструментом для различных практических приложений: приповерхностной имплантации, осаждения тонких пленок, масс-спектрометрии вторичных ионов с помощью кластерных ионов [1]. В частности, нелинейные эффекты взаимодействия кластеров с обрабатываемой поверхностью обеспечивают эффективное сглаживание поверхности различных материалов (металлов, диэлектриков, монокристаллов и сверхтвердых материалов) до субнанометрового уровня шероховатости при минимальном повреждении подповерхностной структуры [2–5].

Нитрид алюминия обладает уникальным набором химических и физических свойств, таких как большие пьезоэлектрические коэффициенты, высокая теплопроводность, высокое напряжение пробоя, хорошая механическая прочность и др. Тонкие пленки на основе нитрида алюминия широко используются в современной микроэлектронике (датчики, силовые полупроводниковые приборы, ультразвуковые преобразователи и т.д.), оптике, оптоэлектронике и других приложениях [6,7]. Поэтому модификация и диагностика материалов (в частности, тонких пленок) на основе AlN представляют собой актуальную задачу для современных приложений. В настоящей работе методом атомно-силовой микроскопии (АСМ) с использованием функции спектральной плотности мощности (СПМ, power spectral density, PSD) шероховатости исследовано влияние кластерных ионов аргона на топографию поверхности поликристаллической пленки AlN.

Поликристаллические пленки AlN толщиной 1 µm были синтезированы методом магнетронного распыления мишени из чистого Al (99.99%) при постоянной мощности магнетрона 600 W. Формирование пленок AlN осуществлялось на подложке из ситалла СТ-50-1-1-0.6 в азот-аргоновой среде при расходе рабочих газов 5 sccm для N₂ и 4 sccm для Ar. Фоновое давление в вакуумной камере составляло 0.07 Ра. Температура подложки поддерживалась на уровне 623 К. Обработка пленок AlN проводилась интенсивным несепарированным по размерам кластеров ионно-кластерным пучком аргона на экспериментальной установке КЛИУС [8]. Средний размер кластеров N варьировался за счет изменения давления торможения в источнике газа и определялся по методике, описанной в [9]. Эксперименты выполнялись при нормальном падении кластерных ионов на поверхность мишени.

Известно, что при кластерной бомбардировке сглаживание поверхности происходит за счет двух параллельных процессов: распыления приповерхностных атомов мишени и их латерального перемещения. Как для наклонных углов [9–11], так и для нормального падения кластеров [9] коэффициент распыления мишени определяется отношением кинетической энергии кластеров *Е* к их среднему размеру *N*. При высоких энергиях Е/N преобладает процесс распыления, и значительная часть начальной кинетической энергии Е тратится на выбивание атомов мишени [11]. Предполагается, что при уменьшении E/N от 100 до нескольких eV/atom начальная энергия кластеров преимущественно тратится на перемещение атомов мишени в приповерхностном слое и уносится рассеянными атомами кластеров. В результате коэффициент распыления нелинейно уменьшается почти

Таблица 1. Главные параметры режимов обработки

Рис. 1. АСМ-изображения поверхности пленки AlN при размерах области сканирования 2×2 и $10 \times 10 \,\mu$ m. a — исходная поверхность; b — после обработки в режиме 1; c — после обработки в режиме 2.

на три порядка (примерно с 1 до 0.001) [9]. Исходя из этого для обработки образцов AlN были выбраны два режима: высоко- (105 eV/atom) и низкоэнергетический (10 eV/atom). Основные параметры режимов обработки приведены в табл. 1.

Топография поверхности образцов исследовалась методом ACM. Измерения проводились на приборе NTEGRA Prima HD (NT-MDT) в контактном режиме с помощью высокоточных ACM-зондов ETALON HA_C (NT-MDT) с радиусом закругления менее 10 nm и пространственным разрешением 1024 × 1024 пикселей. Для повышения достоверности ACM-измерения были

проведены до и после обработки в одних и тех же областях поверхности мишени, расположенных на расстоянии 3 mm друг от друга. Глубина травления определялась путем измерения "ступеньки", формируемой под маской на левой и правой границах обработанной области. На каждой границе были выбраны три области измерения размерами $100 \times 100 \,\mu$ m. В каждой области были построены три профиля ступеньки. Средние скорости травления поверхности мишени, определяемые отношением усредненной высоты ступеньки и времени обработки, составили 1.5 и 0.25 nm/min в режимах 1 и 2 соответственно.

Режим обработки	Размер области сканирования, µm								
	2×2		10 × 10		40 imes 40		100×100		σ_{eff}^{total} ,
	$\langle R_q \rangle$, nm	$\langle \sigma_{eff} angle,$ nm	$\langle R_q \rangle$, nm	$\langle \sigma_{eff} angle,$ nm	$\langle R_q \rangle$, nm	$\langle \sigma_{eff} angle,$ nm	$\langle R_q \rangle$, nm	$\langle \sigma_{eff} angle,$ nm	nm
Исходная поверхность	29.2	30.0	35.9	36.4	26.4	28.1	21.3	22.3	41.0
После режима 1 После режима 2	9.9 4.9	10.0 4.8	16.8 11.3	16.9 11.1	14.3 11.1	15.1 11.7	12.3 9.5	12.6 9.9	20.6 14.0

Таблица 2. Характеристики шероховатости поверхности нитрида алюминия

П р и м е ч а н и е. $\langle R_q \rangle$ — среднеквадратичная шероховатость, $\langle \sigma_{eff} \rangle$ — средняя эффективная шероховатость, σ_{eff}^{total} — эффективная шероховатость, обобщенная по всему измеренному диапазону пространственных частот ν .

Рис. 2. Функция спектральной плотности мощности шероховатости до и после обработки ионно-кластерным пучком аргона.

На рис. 1 представлены 3D ACM-изображения поверхности пленки AlN до и после обработки ионно-кластерным пучком аргона. Как правило, при магнетронном распылении монокристаллы AlN растут на мелких равноосных зернах и с увеличением толщины пленки приобретают столбчатую структуру [12,13]. В наших образцах средний диаметр столбчатых микрокристаллов составлял около 330 nm.

СПМ-функции шероховатости на различных масштабах области сканирования (2 × 2, 10 × 10, 40 × 40 и 100 × 100 μ m) позволяют корректно охарактеризовать топографию поверхности в широком диапазоне пространственных частот ν и определить эффективную шероховатость поверхности σ_{eff} [8,14]. Усредненные значения эффективной σ_{eff} и среднеквадратичной R_q шероховатости поверхности при различных размерах области сканирования до и после обработки показаны в табл. 2. Профили поверхности на рис. 1 и данные табл. 2 наглядно показывают, что шероховатость поверхности AlN значительно уменьшилась на всех масштабах сканирования после обработки кластерными ионами в обоих режимах. После обработки в низкоэнергетическом режиме на малых масштабах $(2 \times 2 \mu m)$ наблюдается максимальное снижение шероховатости — в 6 раз, а при бо́льших размерах области сканирования $(10 \times 10 \mu m)$ шероховатость снижается в 3.2 раза.

Следует уточнить, что для достоверной характеризации шероховатости, особенно в случае наноструктурированной поверхности, важную роль играет размер области сканирования. Как видно из табл. 2, наибольшая шероховатость наблюдалась на масштабе $10 \times 10 \,\mu$ m, т. е. при размере пикселя около 10×10 nm. Причинами уменьшения параметров шероховатости при бо́льших масштабах являются отсутствие неровностей больших латеральных размеров и снижение разрешающей способности, а при меньших масштабах ($2 \times 2 \,\mu$ m) небольшое количество монокристаллитов для корректного отображения их размеров на данном масштабе. Таким образом, параметры шероховатости на масштабе $10 \times 10 \,\mu$ m являются наиболее корректными для анализа наноструктур соответствующих размеров.

На рис. 2 приведены обобщенные СПМ-функции поверхности пленки AlN до и после обработки кластерами. Видно, что в результате обработки шероховатость значительно понизилась во всем измеряемом диапазоне пространственных частот $v = 0.02-128 \,\mu m^{-1}$. Данный диапазон частот соответствует неровностям с характерными размерами от нескольких нанометров до 50 $\,\mu$ m. Ранее [5,8] нами было показано, что для сверхгладких поверхностей ($R_q \leq 1$ nm) различных материалов обработка кластерными ионами обеспечивает сглаживание в одном и том же более узком диапазоне $v = 0.2-128 \,\mu m^{-1}$.

Важнейшей характеристикой процесса обработки является глубина травления. В нашем случае глубина травления составила всего 90 и 30 nm для высокои низкоэнергетического режимов соответственно. При этом обобщенная эффективная шероховатость σ_{eff}^{total} , определяемая как интеграл СПМ-функции [9], после обработки кластерами с энергией E/N = 10 eV/atom составляет 14 nm, что в 1.5 раза меньше соответствующего значения для поверхности, полученной после обработки в режиме 1, и в 2.9 раза ниже, чем σ_{eff}^{total} для исходной поверхности. Таким образом, полученные результаты свидетельствуют о том, что газовые кластерные ионы могут успешно использоваться для высокоэффективного сглаживания поликристаллической поверхности различных материалов. Данным методом обеспечивается сглаживание неровностей с латеральными размерами до $50\,\mu$ m при ультрамалой глубине распыления (десятки нанометров). Наибольшая эффективность достигается в режимах при малой удельной энергии кластеров (единицы eV/atom), что обусловлено активным латеральным перемещением приповерхностных атомов мишени.

Благодарности

Работа выполнена с использованием оборудования ЦКП "Прикладная физика" НГУ.

Финансирование работы

Работа выполнена при финансовой поддержке Минобрнауки РФ (гранты FSUS-2020-0039, FSUS-2020-0029) и госзадания ОНЦ СО РАН (№ 075-03-2020-614).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] I. Yamada, *Materials processing by cluster ion beams. History, theory, and applications* (CRC Press, Boca Raton, 2015).
- [2] I. Yamada, J. Matsuo, N. Toyoda, T. Aoki, T. Seki, Cur. Opin. Solid State Mater. Sci., 19, 12 (2015).
 DOI: 10.1016/j.cossms.2014.11.002
- [3] A.T. Wu, D.R. Swenson, Z. Insepov, Phys. Rev. Spec. Top., 13, 093504 (2010). DOI: 10.1016/j.nimb.2018.02.019
- [4] A.E. Ieshkin, D.S. Kireev, Yu.A. Ermakov, A.S. Trifonov, D.E. Presnov, A.V. Garshev, Yu.V. Anufriev, I.G. Prokhorova, V.A. Krupenin, V.S. Chernysh, Nucl. Instrum. Meth. Phys. Res. B, 421, 27 (2018). DOI: 10.1016/j.nimb.2018.02.019
- [5] Н.Г. Коробейщиков, И.В. Николаев, М.А. Роенко, Письма в ЖТФ, 45 (6), 30 (2019).
 DOI: 10.21883/PJTF.2019.06.47496.17646 [Пер. версия: 10.1134/S1063785019030295].
- [6] Y.Q. Fu, J.K. Luo, N.T. Nguyen, A.J. Walton, A.J. Flewitt, X.T. Zu, Y. Li, G. McHale, A. Matthews, E. Iborra, H. Du, W.I. Milne, Prog. Mater. Sci., 89, 31 (2017). DOI: 10.1016/j.pmatsci.2017.04.006
- [7] V.S. Kudyakova, R.A. Shishkin, A.A. Elagin, M.V. Baranov, A.R. Beketov, J. Eur. Ceram. Soc., 37, 1143 (2017).
 DOI: 10.1016/j.jeurceramsoc.2016.11.051
- [8] N.G. Korobeishchikov, I.V. Nikolaev, M.A. Roenko, Nucl. Instrum. Meth. Phys. Res. B, 438, 1 (2019).
 DOI: 10.1016/j.nimb.2018.10.019
- [9] N.G. Korobeishchikov, I.V. Nikolaev, M.A. Roenko, V.V. Atuchin, Appl. Phys. A, **124**, 833 (2018).
 DOI: 10.1007/s00339-018-2256-3
- [10] M.P. Seah, J. Phys. Chem. C, 117, 12622 (2013).
 DOI: 10.1021/jp402684c

- [11] R.J. Paruch, Z. Postawa, B.J. Garrison, J. Vac. Sci. Technol. B, 34, 03H105 (2016). DOI: 10.1116/1.4940153
- [12] B.-H. Hwang, C.-S. Chen, H.-Y. Lu, T.-C. Hsu, Mater. Sci. Eng. A, **325**, 380 (2002). DOI: 10.1016/S0921-5093(01)01477-0
- [13] C. Duquenne, M-P. Besland, P.Y. Tessier, E. Gautron, Y. Scudeller, D. Averty, J. Phys. D: Appl. Phys., 45, 015301 (2011). DOI: 10.1088/0022-3727/45/1/015301
- [14] N.I. Chkhalo, A.V. Kirsanov, G.A. Luchinin, O.A. Malshakova, M.S. Mikhailenko, A.I. Pavlikov, A.E. Pestov, M.V. Zorina, Appl. Opt., 57, 6911 (2018). DOI: 10.1364/AO.55.001249