Нелинейно-регрессионный алгоритм обработки сигналов полупроводниковых химических сенсоров, обеспечивающий селективное детектирование примесей в искусственном воздухе

© В.В. Чистяков, С.А. Казаков, М.А. Гревцев, С.М. Соловьев

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: v.chistyakov@mail.ioffe.ru

Поступило в Редакцию 28 сентября 2020 г. В окончательной редакции 19 ноября 2020 г Принято к публикации 1 декабря 2020 г.

Разработан новый способ обработки сигнала изменения электропроводности $\Delta \sigma$ при температурной (T) модуляции химического сенсора для селективного определения в воздухе следовых концентраций аммиака, ацетона, н-гексана, пропана, толуола и других примесей. Способ заключается в том, что в диапазоне прецизионно устанавливаемых концентраций *C* каждой из примесей *Y* сигнал $\Delta \sigma$ как функция обратной температуры $z = 10^3/T$ интерполируется при помощи нелинейной регрессии набором параметризованных функций $F_i(z, A_i, b_i, c_i, ...), i = 1-4$, и строятся зависимости для главных (концентрационных) параметров $A_{iY}(C)$, определяющие так называемый портрет селективности *Y*. Вписываясь в него, аналогичные величины у детектируемой примеси *X* подтверждают ее тождественность с *Y*, а общая абсцисса всех точек пересечения линий уровня A_{iX} с кривыми $A_{iY}(C)$ определяет численное значение и единицу измерения концентрации C_X .

Ключевые слова: химический сенсор, температурная модуляция, селективность, нелинейная регрессия, концентрация, углеводороды, аммиак, ацетон.

DOI: 10.21883/PJTF.2021.06.50751.18564

Ввиду высокой чувствительности электропроводности тонких пленок поликристаллических *n*-полупроводников (ZnO, SnO₂, SmS и др.) к хемосорбции из газовой среды на разветвленную поверхность как донорных (H₂, CH₄, CO, C₂H₆, NH₃ и т.д.), так и акцепторных молекул (O₂, O₃) давно утвердилось представление о таких пленках как о перспективных материалах для чувствительных элементов химических сенсоров — приборов искусственного обоняния [1]. При этом проблема различения (селекции) различных веществ традиционно решается при помощи так называемой термо- или температурной модуляции, когда рабочая температура T [K] сенсора в среде изменяется в интервале (T_{low} , T_{up}) монотонно либо циклическим образом [2–4].

В силу активационного характера хемосорбционных процессов температурная развертка должна давать различную кинетику прироста числа зонных носителей (электронов) и, следовательно, изменения во времени t проводимости $\Delta\sigma(t)$ для частиц с разной энергетической структурой электронных оболочек, т.е. химией (см., например, [4], с. 1643).

Математическим инструментом анализа здесь служит дискретное преобразование Фурье (быстрое преобразование Фурье) [2] временно́го ряда сигнала $\Delta \sigma(t_i)$, $i = 1-2^N$ при циклической термомодуляции с некоторым периодом τ . При этом действительные части (R_k , k = 0, 1, 2, ...) получаемых коэффициентов Фурье связывают с высотой приповерхностного потенциального барьера, а мнимые (I_k , k = 1, 2, ...) — с величиной собственно адсорбции на поверхности [4]. Методика, однако, до сих пор не реализована в виде универсаль-

ного, надежного и простого компьютерного алгоритма распознавания примеси в анализируемой среде.

В настоящей работе предлагается иной подход, базирующийся на статистическом моделировании вышеозначенного сигнала. Подход дает контролируемые, объективные и в отличие от коэффициентов Фурье устойчивые к различным факторам интервальные, а не точечные оценки калибровочных характеристик. Опирающийся на аксиомы, выводы и формулы математической статистики, подход дозволяет тем самым применение базирующихся на ней теории надежности, теории принятия решений и вообще искусственного интеллекта. Поэтому он может быть реализован в виде ясного алгоритма с использованием коммерческого программного обеспечения и затем воплощен в реальных сенсорных системах с передачей сигнала через Bluetooth или Wi-Fi на сервер автоматической обработки, анализа и принятия решений.

Метод строится на соображениях, что сигналы рассматриваемого сенсора от разных адсорбатов (рис. 1) при температурной развертке ("пиле") несут в себе различия, выражающиеся как явно — в положении особых точек (максимумов, минимумов, перегибов) (рис. 1, *a*), так и неявно, кумулятивным образом, — во всех остальных уровнях временно́го/температурного ряда $\Delta \sigma (t_k/t_k^0)$, $k = 1, \ldots, N = 400 \ldots 800$.

Прежде всего для всех адсорбатов группы выбирают один и тот же график нагрева. Аргументом сигнала $\Delta\sigma(z)$ формально служит величина $z = 10^3/T$ [K⁻¹] (рис. 1, *b*).

Рис. 1. Отклики прироста $\Delta \sigma$ электропроводности сенсора. *а* — для одинаковой (~ 400 mg/m³) концентрации разных веществ относительно времени экспозиции *t*; *b* — для различных концентраций паров сольвента относительно величины $z = 10^3/T$.

Определяемые исходя из отклика величины должны обладать свойством робастности, т.е. устойчивости к 1) замене на эквивалентный набор данных, 2) одиночным выбросам (своеобразным дискретным " δ -функциям", искажающим весь спектр Фурье) и 3) шумам сигнала. В качестве таковых выбирались значимо оцениваемые параметры формальной нелинейной по параметрам и объясняющей переменной регрессии сигнала $\Delta \sigma(z)$ с использованием ряда дискриминирующих функций $F_n(z)$:

$$F_1(z) = \frac{0.01A_1}{z^4 + b_1 z^3 + c_1 z^2},\tag{1}$$

$$F_2(z) = \frac{0.01A_2}{z^3 + b_2 z^2 + c_2 z},$$
(2)

$$F_3(z) = \frac{0.01A_3}{z^4 + b_3 z^3 + c_3 z^2 + d_3 z},$$
(3)

$$F_4(z) = \frac{0.0001A_4}{z^4 + b_4 z^3 + c_4 z^2 + d_4 z + h_4},$$
 (4)

$$F_5(z) = \frac{0.01A_5}{b_5 z^4 + c_3 z^3 + d_5 z^2 + h_5 z + 1}$$
(5)

(множители 0.01/0.0001 использованы для более точной оценки малых значений главных параметров A_i — центров соответствующих доверительных интервалов (ДИ) на доверительном уровне/вероятности P = 0.95).

В идеале все величины A_i должны расти с концентрацией *C*. Но у одних монотонность утрачивается в силу немонотонности размаха отклика $\Delta \sigma$ на пары жидкостей, у других — из-за неизбежных флуктуаций получаемых оценок или иных причин.

Необходимо выполнение следующих требований к зависимостям $A_i(C)$: 1) положительно определенность;

Рис. 2. Портреты селективности (gauge portraits) различных веществ в искусственном воздухе для сенсора на основе SnO_2 . *а* — аммиак, *b* — пропан.

Таблица 1. Результаты оценки по формуле (1) параметров сигнала $\Delta \sigma/\mu$ S SnO₂-сенсора на концентрацию $C = 951 \text{ mg/m}^3$ толуола (доверительный уровень P = 0.95 (95%))

Параметр	$adj - R^2 = 0.73335699$						
	Оценка	Стандартная ошибка	Критерий Стьюдента t	Нижняя граница	Верхняя граница		
A_1	7.05398	0.253780	27.80	6.55546	7.55251		
b_1	-3.08519	0.001573	-1961.59	-3.08827	-3.08210		
<i>C</i> ₁	2.38329	0.002524	944.40	2.37833	2.38824		

Таблица 2. Результаты оценки по формуле (1) параметров сигнала $\Delta \sigma / \mu S \operatorname{SnO}_2$ -сенсора на концентрацию $C = 45 \operatorname{mg/m}^3$ толуола (доверительный уровень P = 0.95 (95%))

Параметр	$adj - R^2 = 0.99579415$						
	Оценка	Стандартная ошибка	Критерий Стьюдента t	Нижняя граница	Верхняя граница		
$egin{array}{c} A_1 \ b \ c_1 \end{array}$	$\begin{array}{r} 0.10740 \\ -2.93652 \\ 2.16033 \end{array}$	0.002137 0.001519 0.002168	50.27 -1933.04 996.48	$0.10320 \\ -2.93950 \\ 2.15607$	0.11160 -2.93354 2.16458		

2) визуально непрерывность; 3) среди них обязательно должны быть монотонные в рабочем диапазоне концентраций или обладающие ярко выраженным растущим трендом и при этом 4) в координатах $\ln A_i - \ln C$ имеющие широкий участок крутого наклона.

В силу робастности значимых регрессионных оценок вообще фактически отпадают строгие требования на интервал температурной развертки ΔT , тем более что границы диапазона регрессора *z* слабо чувствительны к разумным изменениям уровней температурной "пилы": на 10–20 К для нижнего T_{low} и на 20–30 К для верхнего $T_{up} = T_{low} + \Delta T$.

По структуре дискриминирующих функций (1)-(5)главные параметры $A_i(C)$ должны быстро меняться с концентрацией C в противоположность медленно меняющимся $b_i(C)$, $c_i(C)$, $d_i(C)$, $h_i(C)$, играющим вспомогательную идентифицирующую роль.

Кроме того, такую же роль могут играть также исправленный коэффициент детерминации $adj-R^2$, показывающий в какой мере изменение сигнала $\Delta\sigma$ обусловлено изменением регрессора $z = 10^3/T$, и величины критерия Стьюдента оценок $t(A_i), t(b_i), t(c_i), \ldots,$ т.е. отношение сигнал/шум для всех оцениваемых параметров.

Основная идея метода заключается в том, что для каждой примеси из некоторой группы (аммиак, н-гексан, этанол, ацетон, сольвент, толуол и пр.) вышеозначенным образом оцениваются и строятся калибровочные кривые $A_i(C)$, i = 1-4 или 5, тем самым для каждого вещества формируется уникальный портрет селективности. Такой же набор $\{A_{iX}, i = 1-4$ или 5} также путем регрессии по формулам (1)-(5) находится и для неизвестной концентрации неизвестной же примеси X. Если он (набор) вписывается в портрет селективности некоторого вещества Y, т.е. все горизонтальные линии A_{iX} пересекаются со всеми соответствующими кривыми $A_{iY}(C)$

на портрете Y в точках с равными (в идеале) абсциссами C^* , то детектируемая примесь и есть Y, а C^* ее концентрация в единицах портрета Y.

Параметры оценивались опцией Nonlinear Estimation продукта StatSoft Statistica Release 12 (Trial, см. [5]), высокая оценка эффективности которого для обработки данных физических экспериментов дана в [6]. При этом минимизировалась стандартная сумма квадратов отклонений (loss function), а в качестве вычислительных алгоритмов служили методы Гаусса-Ньютона и Левенберга-Марквардта [5].

Начальные значения оцениваемых параметров, как правило, полагались нулевыми, но их можно получить из линейной по коэффициентам множественной регрессии для обратной величины сигнала $1/\Delta\sigma$ [MΩ] в соответствии с модельными зависимостями $\frac{1}{F_i(z)}$ (1)–(5) $(\frac{1}{F_i(z)} = \alpha z^4 + \beta z^3 + \gamma z^2)$ с последующим пересчетом найденных коэффициентов.

В работе анализировались массивы данных по изменению сигнала электропроводности при температурной развертке от ~ 430 до ~ 750 К примерно за время $\Delta \tau \sim 1.4$ s, полученные для тонких пленок poly-SnO₂(CuO), изготавливаемых по золь-гельтехнологии [1].

Функции (1)–(5) описывали экспериментальные данные при малых концентрациях с высоким коэффициентом $adj-R^2 = 0.99...0.999$, но с ростом *C* величины $adj-R^2$, как правило, монотонно плавно убывали до 0.73–0.80. При этом критерии Стьюдента оставались на высоком уровне: для главных параметров $t(A_i)$ порядка 15–150, для остальных коэффициентов $t(b_i)$, $t(c_i)$, $t(d_i)$, $t(h_i) - 200-2000$ (табл. 1, 2).

Параметр считался оцененным значимо на уровне P = 0.95 ($\alpha = 1 - P = 0.05$), только если на таком

Рис. 3. Идентификация сольвент—не сольвент при помощи портрета селективности. a — подтверждение в концентрации 72.2—79.8 mg/m³ (все линии уровня $\ln A_{iX}$ главных параметров для примеси X пересекаются с соответствующими кривыми $\ln A_i(C)$ для сольвента в точках с одинаковыми абсциссами); b — неподтверждение (абсциссы точек разные, для линии $\ln A_{5X}$ пересечения нет вообще, величина $\ln A_{3X}$ значимо не оценена).

уровне была значима вся их совокупность. Вследствие же незначимости на кривых $A_3(C)$ и $A_4(C)$ имели место пробелы. Параметры $A_1(C)$, $A_2(C)$ и $A_5(C)$ значимо оценивались у всех веществ и при всех C [mg/m³, vol.%], и именно их линии служили калибровочными кривыми.

Были получены различающиеся по виду наборы регулярных зависимостей $\ln A_i(\ln C)$ (портреты селективности) для следующих веществ в искусственном воздухе: аммиака, ацетона, н-гексана, пропана, сольвента и др. (рис. 2, 3); затем они использовались для безошибочной и точной идентификации газов из данного списка.

Пример такой идентификации паров неизвестного газа X (со следующим ДИ A_i : $A_{1X \, low} = 2.81870 < A_{1X}$ $< A_{1X \, up} = 2.90253, \ldots, A_{5X \, low} = 0.36973 < A_{5X} < A_{5X \, up}$

= 0.39618), оказавшегося сольвентом в концентрации ~ 78 mg/m³, схематично показан на рис. 3, *a*. Здесь горизонтальные линии центров ДИ A_{iX} для газа X пересекаются с кривыми портрета Y (сольвент) в точках с визуально одинаковыми абсциссами C^* . В спорных случаях необходимо будет оперировать уже интервалами концентраций C, границы которых для каждой точки пересечения (*i*) суть графические релевантные решения "уравнений" $A_{iY up}(C) = A_{iX low}$ и $A_{iY low}(C) = A_{iX up}$. В том случае, если пересечение всех таких интервалов не есть пустое множество, детектируемая примесь соответствует портрету.

На рис. 3, *b* представлен обратный случай отрицательной идентификации неизвестного газа X' (толуола). Оба примера свидетельствуют о простоте и эффективности нелинейно-регрессионного метода. И даже немонотонность откликов сенсора по концентрации (рис. 3, *a*) не является здесь серьезной помехой для идентификации и измерения.

Таким образом, разработанный метод позволяет уверенно идентифицировать донорные микропримеси в искусственном воздухе. Его возможности и ресурсы далеко не исчерпаны как в плане оптимизации по параметрам развертки, так и в плане применения искусственного интеллекта [7].

Метод уже сейчас может быть обобщен на детектирование двух примесей (X1, X2), например пропана и паров воды. На предварительно построенных 3D-портретах $A_i(C_1, C_2)$ линии уровня параметров $A_{iX1,X2}$, будучи спроецированы на плоскость концентраций (C_{X1}, C_{X2}) , пересекутся там в одной точке, которая и определит состав двойной примеси.

Финансирование работы

Исследование выполнено в рамках гранта Российского фонда фундаментальных исследований № 18-03-00660.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- K.S. Shalini Devi, A. Anantharamakrishnan, U. Maheswari Krishnan, J. Yakhmi, in *Smart sensors for environmental* and medical applications (IEEE, Inc., 2020), p. 103–127. DOI: 10.1002/9781119587422
- [2] S. Nakata, S. Akakabe, M. Nakasuji, K. Yoshikawa, Anal. Chem., 68, 2067 (1996).
- [3] A. Heilig, N. Bârsan, U. Weimar, M. Scheizer-Berberich, J.W. Gardner, W. Göpel, Sensors Actuators B, 43, 46 (1997).
- [4] S. Nakata, T. Hashimoto, H. Okunishi, Analyst, 127, 1642 (2002). DOI: 10.1039/b208295k
- [5] https://www.statsoft.de
- [6] В.В. Чистяков, Физическое образование в вузах, **21** (1), 120 (2015).
- [7] P. Gwiźdź, A. Brudniak, K. Zakrewska, Metrol. Meas. Syst., XXII (1), 3 (2015). DOI: 10.1515/mms-2015-0008