Current–Voltage, Capacitance–Voltage–Temperature, and DLTS Studies of Ni|6*H*-SiC Schottky Diode

© A. Rabehi^{1,2}, B. Akkal¹, M. Amrani¹, S. Tizi¹, Z. Benamara¹, H. Helal¹, A. Douara², B. Nail², A. Ziane¹

 ¹ Laboratoire de Micro-électronique Appliquée. Université Djillali Liabés de Sidi Bel Abbés, BP 89, 22000, Sidi Bel Abbés, Algeria
² Institute of Science and Technology, Tissemsilt University Center, 38000 Tissemsilt, Algeria

E-mail: rab_ehi@hotmail.fr

Received October 12, 2020 Revised October 12, 2020 Accepted for publication December 10, 2020

In this paper, we give a systematical description of Ni|6H-SiC Schottky diode by current–voltage I(V) characteristics at room temperature and capacitance–voltage C(V) characteristics at various frequencies (10-800 kHz) and various temperatures $(77-350^{\circ}\text{K})$. The I(V) characteristics show a double-barrier phenomenon, which gives a low and high barrier height ($\phi_{bn}^{L} = 0.91 \text{ eV}$, $\phi_{bn}^{H} = 1.55 \text{ eV}$), with a difference of $\Delta \phi_{bn} = 0.64 \text{ eV}$. Also, low ideality factor $n^{L} = 1.94$ and high ideality factor $n^{H} = 1.22$ are obtained. The C-V-T measurements show that the barrier height ϕ_{bn} decreases with decreasing of temperature and gives a temperature coefficient $\alpha = 1.0 \cdot 10^{-3} \text{ eV/K}$ and $\phi_{bn}(T = 0 \text{ K}) = 1.32 \text{ eV}$. Deep-level transient spectroscopy (DLTS) has been used to investigate deep levels in the Ni|6H-SiC Schottky diode. The traps signatures such as activation energies $E_a = 0.50 \pm 0.07 \text{ eV}$, capture cross-section $\sigma = 1.8 \cdot 10^{-20} \text{ cm}^2$, and defect concentration $N_{\rm T} = 6.2 \cdot 10^{13} \text{ cm}^{-3}$ were calculated from Arrhenius plots.

Keywords: sillicon carbide, Schottky diodes, I-V, C-V-T, deep-level transient spectroscopy (DLTS).

Full text of the paper will appear in journal SEMICONDUCTORS.