Полупроводниковый сенсор термоэлектрического однофотонного детектора для регистрации излучения ближнего ИК диапазона

© А.А. Кузанян

Институт физических исследований Национальной академии наук Армении, 0203 Аштарак, Армения

E-mail: astghik.kuzanyan@gmail.com

Поступила в Редакцию 26 мая 2020 г. В окончательной редакции 28 ноября 2020 г. Принята к публикации 28 ноября 2020 г.

> Предложена конструкция четырехслойного чувствительного элемента однофотонного термоэлектрического детектора с полупроводниковым FeSb₂ сенсором. Методом компьютерного моделирования изучены процессы распространения тепла в чувствительном элементе после поглощения фотона. Расчеты проводились на основе уравнения распространения тепла из ограниченного объема с использованием трехмерного матричного метода для дифференциальных уравнений. Временные зависимости амплитуды сигнала детектора рассчитывались для различных толщин слоев чувствительного элемента и определялись следующие параметры: задержка сигнала, временной джиттер, максимальное значение сигнала, время достижения максимального сигнала, время затухания и скорость счета. Обосновано, что детектор с таким чувствительным элементом может обеспечить эффективность детектирования > 95% для фотонов ближней ИК области. Одновременно достигается терагерцовая скорость счета.

> Ключевые слова: полупроводниковый сенсор, однофотонный детектор, компьютерное моделирование, задержка сигнала, время достижения максимального сигнала.

DOI: 10.21883/FTP.2021.04.50735.9450

1. Введение

В последние годы наблюдается бурное развитие исследований устройств, способных излучать и регистрировать одиночные фотоны. Однофотонные детекторы (ОД) используются в различных областях науки и техники. Они наиболее востребованы в астрофизике, физике высоких энергий, лазерной спектроскопии, метрологии, медицинском приборостроении, телекоммуникационных системах, устройствах квантовой обработки информации и т.д. [1]. Важнейшими характеристиками ОД являются эффективность детектирования, скорость счета, энергетическое разрешение, скорость темнового счета, спектральный диапазон детектирования и рабочая температура [2,3].

Классические ОД, фотоумножители и полупроводниковые лавинные диоды, имеют ряд недостатков: большие размеры, низкую эффективность детектирования и скорость счета [4,5]. Сверхпроводящие ОД имеют более высокие характеристики [6]. На сегодняшний день рекордными характеристиками обладают сверхпроводящие нанопроволочные детекторы [7,8]. Недостатками сверхпроводящих детекторов являются жесткие требования к условиям работы и сложная конструкция сенсора.

Конкуренцию вышеперечисленным ОД может составить термоэлектрический однофотонный детектор (ТОД), физическая концепция которого была предложена в 2000 году группой ученых из США и Армении [9]. Главными преимуществами ТОД являются отсутствие строгих требований к условиям работы и простая конструкция чувствительного элемента [10]. Теоретические оценки показали, что термоэлектрический детектор может иметь более высокие характеристики, чем некоторые сверхпроводящие [11]. Характеристики однослойной и трехслойной конструкции чувствительного элемента ТОД были подробно рассмотрены методом компьютерного моделирования [12-19]. Исследования показали, что использование в качестве термоэлектрического сенсора гексаборидов церия СеВ₆ [12,13] и лантана церия (La,Ce)B₆ [14,15] может обеспечить высокую скорость счета и энергетическое разрешение ТОД при 9 и 0.5 К соответственно. Перспективным материалом сенсора ТОД является также обладающий при низких температурах гигантским коэффициентом Зеебека сильно коррелированный полупроводник FeSb₂ [16,17]. Для повышения эффективности детектирования была предложена четырехслойная конструкция чувствительного элемента ТОД с антиотражающим слоем [18,19].

Цель данной работы — определение методом компьютерного моделирования оптимальной конструкции четырехслойного чувствительного элемента ТОД с FeSb₂ сенсором для регистрации излучения в ближней ИК области. Рассмотрены особенности распространения тепла в чувствительном элементе ТОД после поглощения одиночных фотонов с длиной волны 1550 нм (0.8 эВ) и 1310 нм (0.95 эВ). Такое излучение используется в телекоммуникационных системах и устройствах квантовой обработки информации.

337

Таблица 1. Параметры используемых материалов при 9К

Параметр	Материал					
Параметр	SiO ₂	FeSb ₂	W	Al ₂ O ₃		
Плотность, кг/м ³ Удельная теплоемкость, Дж/кг · К Теплопроводность, Вт/м · К Коэффициент Зеебека, мкВ/К	2650 1.5 [21] 0.1 [22]]	8170 0.0133 [23] 500 [23] -4200 [24]	19250 0.187 [25] 9680 [26]	4000 0.0588 [27] 300 [28]		

2. Методика компьютерного моделирования

В данном параграфе рассмотрены особенности компьютерного моделирования процессов распространения тепла в чувствительном элементе ТОД после поглощения фотона. Подробности использованных подходов и приближений приведены в [20]. Уравнение распространения тепла из ограниченного объема можно представить в виде

$$\rho c \,\partial T/\partial t + \partial q_x/\partial x + \partial q_y/\partial y + \partial q_z/\partial z = 0, \quad (1)$$

где ρ — плотность теплопроводящего материала, c — удельная теплоемкость, q_x , q_y и q_z — проекции вектора плотности распространения тепла на соответствующие оси, задаваемые уравнениями

$$q_x = -\lambda \, \partial T / \partial x, \ q_y = -\lambda \, \partial T / \partial y, \ q_z = -\lambda \, \partial T / \partial z.$$
 (2)

В этих уравнениях λ — коэффициент теплопроводности. Мы не рассматриваем процесс конверсии энергии фотона в тепло. Рассматриваются процессы в чувствительном элементе ТОД после того, как фотон термализовался и выделенное им тепло заняло определенный объем в поглотителе. Этот момент является началом рассматриваемых процессов. В расчетах используется трехмерный матричный метод для дифференциальных уравнений в частных производных.

Моделирование процессов распространения тепла после поглощения фотона осуществлялось следующим образом. Весь объем чувствительного элемента делился на ячейки с размерами Δx , Δy и Δz . Чем меньше объем ячейки, чем больше их число, тем точнее, но продолжительнее расчеты. Начальная температура всех ячеек чувствительного элемента ТОД принималась равной рабочей температуре (T). В поглотителе выбиралась ячейка, в которой поглощается фотон. Температура данной ячейки задается уравнением $T_0 = T + \Delta T$, где $\Delta T = E/V \rho c$, E — энергия фотона, V — объем ячейки, *р* и *с* — плотность и удельная теплоемкость материала поглотителя. В результате расчетов определяется временная зависимость изменения температуры в различных участках чувствительного элемента и рассчитываются основные характеристики детектирования фотона с заданной энергией: максимальная разница температур на границах термоэлектрического сенсора (ΔT_m), время

достижения максимума (t_m), возникающее на сенсоре максимальное электрическое напряжение ($V_m = S\Delta T_m$, где S — коэффициент Зеебека сенсора), время спада температуры до фонового значения ($t_b = 0.1 \,\mathrm{mK}$) и скорость счета ($R = 1/t_b$). В эксперименте факт поглощения фотона должен подтверждаться появлением на сенсоре электрического напряжения. Регистрация максимального значения и длительности этого сигнала позволит определить энергию поглощенного фотона и какую скорость счета может обеспечить детектор. Поскольку генерируемое на термоэлектрическом сенсоре напряжение находится в прямой зависимости от коэффициента Зеебека, а для достижения большого значения соотношения сигнала к шуму необходимо спуститься в область низких температур, то в конструкции чувствительного элемента ТОД необходимо использовать материалы с высоким коэффициентом Зеебека при низких температурах. Исходя из этих соображений мы выбрали в качестве материала сенсора чувствительного элемента ТОД коррелированный полупроводник FeSb₂.

В настоящей работе рассматривается четырехслойный чувствительный элемент ТОД следующей конструкции. На подложке из сапфира (Al_2O_3) располагаются последовательно теплоотвод (W), сенсор (FeSb₂), поглотитель (W) и антиотражающий слой (SiO₂). Коэффициент Зеебека соединения FeSb₂ достигает максимального значения при 9 К. В наших исследованиях именно эта температура выбрана в качестве рабочей температуры детектора. Значения использованных в расчетах физических величин при данной температуре приведены в табл. 1. В расчетах используются также полученные экспериментально температурные зависимости теплоемкости и теплопроводности.

Чтобы добиться высокой эффективности детектирования необходимо обеспечить высокую оптическую связь чувствительного элемента ТОД с регистрируемым излучением, высокую вероятность поглощения попавшего в чувствительный элемент фотона и высокую вероятность регистрации уже поглощенного фотона. Антиотражающий слой SiO₂ в конструкции чувствительного элемента ТОД, как и в сверхпроводящих детекторах [29], должен обеспечить высокую оптическую связь излучения ближнего ИК диапазона с чувствительным элементом ТОД. Добиться высокой вероятности поглощения фотонов в поглотителе чувствительного элемента ТОД можно выбором материала поглотителя и его оптимальной толщины. Коэффициент поглощения излучения с длиной волны 1550 и 1305 нм в вольфраме равен 1.1667 · 10⁶ и 1.2908 · 10⁶ см⁻¹ [30]. Используя закон Бугера-Ламберта нетрудно посчитать, что фотоны с энергией 0.8 и 0.95 эВ поглотятся в вольфраме толщиной 0.05 мкм с вероятностью 99.7 и 99.8%. Поэтому в наших расчетах мы будем рассматривать чувствительные элементы ТОД, толщина поглотителя которых > 0.05 мкм. Высокая вероятность регистрации уже поглощенного фотона обеспечивается выбором материала сенсора и оптимальной конструкции чувствительного элемента. Эти факторы определяют величину получаемого сигнала и его отношение к уровню шума. Сигнал детектора на уровне микровольтов и десятикратное отношение сигнала к шуму могут гарантировать высокую эффективность регистрации поглощенного фотона.

3. Результаты и их обсуждения

Нами рассмотрены особенности распространения тепла после поглощения фотонов с энергией 0.8 и 0.95 эВ в центре поверхности четырехслойного чувствительного элемента SiO₂/W/FeSb₂/W/Al₂O₃ с площадью 10×10 мкм. Толщина антиотражающего слоя и теплоотвода во всех расчетах составляла 0.1 мкм. Толщина поглотителя и сенсора варьировалась. Рассматривалось поглощение фотонов только в центре поверхности чувствительного элемента, так как ранее нами было показано, что такие характеристики чувствительного элемента, как максимальная разность температур на сенсоре и время спада сигнала до фонового значения, не зависят от области термализации фотона на поверхности поглотителя трехслойного и четырехслойного чувствительного элемента ТОД [19].

а. Поглощение фотонов с энергией 0.8 эВ

Использованная методика расчета распространения тепла в чувствительном элементе ТОД позволяет определять температуру в любой области чувствительного элемента через любой промежуток времени начиная с момента поглощения фотона. Наше внимание было сосредоточено на регистрации изменения температуры на границах поглотитель-сенсор (А), сенсор-теплоотвод (B) и теплоотвод-подложка (C), данным с которых присвоены индексы а, b и c соответственно. Второй индекс параметра показывает, на каком расстоянии от центра данной границы он регистрируется. Данным с центральных областей слоев чувствительного элемента соответствует индекс О. Для выявления характеристик детектора нами рассматривались временные зависимости температуры в зоне термализации фотона (T_0) , непосредственно под зоной термализации фотона на границе A (T_{a0}), на границе B (T_{b0}), на границе $C(T_{c0})$, а также на границе A на отрезке 1 мкм

Рис. 1. Временная зависимость изменения температуры на различных участках границы поглотитель—сенсор после поглощения фотона с энергией 0.8 эВ в чувствительном элементе с толщинами поглотителя 0.2 мкм и сенсора 1 мкм. На вставке представлены графики временной зависимости температуры на границе сенсор-теплоотвод и теплоотвод—подложка.

от центра с шагом 0.1 мкм $(T_{a0.1}, T_{a0.2}, \ldots, T_{a1} -$ это температуры на границе поглотитель-сенсор на расстоянии от центра 0.1, 0.2, ..., 1 мкм соответственно) и на границе *B* на расстоянии от центра 2 мкм (T_{b2}) и 4 мкм (T_{b4}) .

Как изменяется температура на границе A после поглощения фотона в чувствительном элементе ТОД с толщиной поглотителя и сенсора 0.2 и 1 мкм показано на рис. 1. Можно видеть, что максимальная температура превосходит значение фона более чем в 10 раз и достигается за время t_m непосредственно под зоной термализации фотона (T_{a0m}). Чем дальше от центра находится рассматриваемая область, тем ниже максимум временной зависимости температуры и тем позже он достигается. Температура спадает до фонового значения позже всего также в центре границы A и, как мы увидим далее, именно это время определяет параметры t_h и R.

На вставке к рис. 1 видно, что за время спада температуры на границе A до значения фона на границе B наблюдается подъем температуры T_{b0} . Также растет температура T_{c0} . Однако их значения намного ниже фона, а роста температур T_{b2} и T_{b4} вообще не происходит. Сигнал детектора пропорционален максимальной разнице температур на границах A и B. В рассматриваемом случае, когда минимальная температура на границе B равна 9 K, возникающий на сенсоре сигнал будет определяться величиной T_{a0m} , t_m , V_m , t_b и R также будут определяться зависимостью $T_{a0}(t)$.

Теперь рассмотрим, какими характеристиками будут обладать ТОД при различных значениях толщин поглотителя и сенсора. Переменные параметры чувствитель-

N₂	Z ₂ , мкм	Z ₃ , мкм	T_{a0m}, K	T_{b0m}, K	T_{b2m}, \mathbf{K}	T_{c0m}, K	<i>t</i> _m , пс	<i>tb</i> , пс
1	0.2	1	9.00118	9.00001	9.00000	9.00001	0.00330	0.03684
2	0.2	0.5	9.00118	9.00007	9.00000	9.00006	0.00330	0.03768
3	0.2	0.1	9.00120	9.00061	9.00000	9.00042	0.00339	0.05472
4	0.2	0.05	9.00127	9.00092	9.00000	9.00061	0.00357	0.05952
5	0.1	1	9.00421	9.00002	9.00000	9.00002	0.00126	0.03456
6	0.1	0.5	9.00421	9.00011	9.00000	9.00009	0.00126	0.03642
7	0.1	0.1	9.00422	9.00166	9.00000	9.00096	0.00129	0.05778
8	0.1	0.05	9.00436	9.00281	9.00000	9.00148	0.00135	0.06288
9	0.05	1	9.00974	9.00002	9.00000	9.00002	0.00042	0.03282
10	0.05	0.5	9.00974	9.00014	9.00000	9.00011	0.00042	0.03498
11	0.05	0.1	9.00974	9.00305	9.00000	9.00152	0.00042	0.05844
12	0.05	0.05	9.00985	9.00559	9.00000	9.00248	0.00045	0.06294
	1							

Таблица 2. Характеристики чувствительного элемента SiO₂/W/FeSb₂/W/Al₂O₃ при поглощении фотонов с энергией 0.8 эВ

ного элемента SiO₂/W/FeSb₂/W/Al₂O₃ и результаты компьютерного моделирования процессов распространения тепла после поглощения фотона с энергией 0.8 эВ приведены в табл. 2. В таблице приведены номер расчета (Ne), толщина поглотителя (Z_2), толщина сенсора (Z_3) и данные компьютерного моделирования: T_{a0m} , T_{b0m} , T_{b2m} , T_{c0m} , t_m и t_b . Расчеты проводились при значениях толщины поглотителя 0.2, 0.1, 0.05 мкм и толщины сенсора 1, 0.5, 0.1, 0.05 мкм. Температура T_{b2m} во всех расчетах не превышает начальную температуру 9 К, следовательно, для всех рассмотренных конфигураций чувствительного элемента характеристики ТОД будет определять зависимость $T_{a0}(t)$.

В первых 4 строках таблицы приведены результаты расчетов для чувствительных элементов с толщиной $Z_2 = 0.2$ мкм и толщиной Z_3 , уменьшающейся от 1 до 0.05 мкм. Данные расчета № 1 соответствуют представленным на рис. 1 зависимостям T(t). Можно видеть, что на границе А достигается максимальная температура 9.00118 К за время 0.0033 пс, а время спада сигнала до фонового значения составляет 0.03684 пс. Значения параметров T_{b0m} и T_{c0m} на порядок ниже фонового значения. С уменьшением толщины сенсора значения Т_{а0m} несколько увеличиваются, тогда как параметры T_{b0m} и Т_{с0т} увеличиваются значительно. Последнее понятно, так как с уменьшением толщины сенсора до теплоотвода и подложки непосредственно под зоной термализации фотона, не успевая рассеиваться в стороны, доходит большее количество тепла. Временные параметры *t_m* и *t_b* с уменьшением Z_3 увеличиваются, причем t_b увеличивается значительно.

Следующие 4 расчета с номерами 5–8 соответствуют чувствительному элементу ТОД с толщиной поглотителя 0.1 мкм. Из представленных в таблице данных сразу же привлекают внимание значительно более высокие (по сравнению с первой четверкой) значения параметров T_{a0m} , T_{b0m} и T_{c0m} . Параметр t_m с уменьшением Z_3 несколько увеличивается, но значительно меньше, чем для $Z_2 = 0.2$ мкм. Параметр t_b с уменьшением Z_3 увеличивается, однако, если для $Z_3 = 1$ мкм он несколько

Рис. 2. Зависимость максимального напряжения на сенсоре (квадраты) и скорости счета (треугольники) от толщины сенсора (*Z*₃) для толщин поглотителя 0.2 мкм (сплошная линия), 0.1 мкм (пунктирная линия) и 0.05 мкм (штрихпунктирная линия).

меньше, то для $Z_3 = 0.05$ мкм он больше, чем в предыдущей четверке расчетов. Основным результатом данной серии расчетов надо считать значительное увеличение температуры T_{a0m} .

Еще более высокий сигнал можно ожидать от чувствительных элементов с толщиной поглотителя 0.05 мкм (расчеты 9–12). Из представленных в последних 4 строках таблицы данных следует, что параметры T_{a0m} , T_{b0m} и T_{c0m} выше, чем в предыдущих расчетах. Параметр t_m принимает значения меньше фемтосекунды. Параметр t_b существенных изменений не претерпевает.

Основываясь на данных табл. 2, рассчитаны значения возникающего на чувствительном элементе максимального напряжения V_m и скорости счета R. Зависимость этих параметров от толщины термоэлектрического сенсора для различных толщин поглотителя приведена на рис. 2. Можно видеть, что регистрируемый в эксперименте сигнал детектора мало изменяется с изменением

N⁰	<i>Z</i> ₂ , мкм	<i>Z</i> ₃ , мкм	<i>h</i> , мкм	T_{a0m}, K	T_{b0m}, K	T_{c0m}, K	<i>t</i> _m , пс	<i>t</i> _b , пс
13	0.2	1	0.01	9.00141	9.00002	9.00001	0.00330	0.04116
14	0.2	0.1	0.01	9.00143	9.00072	9.00050	0.00339	0.06168
15	0.2	0.05	0.01	9.00151	9.00061	9.00042	0.00351	0.06630
16	0.1	1	0.01	9.00500	9.00002	9.00002	0.00126	0.03852
17	0.1	0.1	0.01	9.00501	9.00197	9.00114	0.00129	0.06456
18	0.1	0.05	0.01	9.00518	9.00334	9.00176	0.00135	0.06948
19	0.05	1	0.01	9.01157	9.00003	9.00002	0.00045	0.03654
20	0.05	0.1	0.01	9.01157	9.00281	9.00148	0.00045	0.06468
21	0.05	0.05	0.01	9.01169	9.00664	9.00294	0.00045	0.06900
22	0.2	0.05	0.03	9.00156	9.00113	9.00072	0.00327	0.06630
23	0.2	0.05	0.05	9.00168	9.0012	9.00077	0.00282	0.06630
24	0.2	0.05	0.07	9.00192	9.00134	9.00082	0.00216	0.06630
25	0.2	0.05	0.09	9.00242	9.00159	9.00091	0.00153	0.06588
26	0.2	0.05	0.11	9.00321	9.00202	9.00106	0.00111	0.06558

Таблица 3. Характеристики чувствительного элемента SiO₂/W/FeSb₂/W/Al₂O₃ при поглощении фотонов с энергией 0.95 эВ

толщины сенсора, но увеличивается почти на порядок и достигает значения 41.37 мкВ при уменьшении толщины поглотителя до 0.05 мкм. Скорость счета не сильно зависит от толщины поглотителя, увеличивается с увеличением толщины сенсора и достигает максимального значения 30.47 ТГц при $Z_2 = 0.05$ и $Z_3 = 1$ мкм. При этих толщинах поглотителя и сенсора $V_m = 40.9$ мкВ. Такую конструкцию чувствительного элемента можно считать оптимальной для регистрации фотонов с энергией 0.8 эВ.

b. Поглощение фотонов с энергией 0.95 эВ

В табл. 3 представлены характеристики ТОД при поглощении фотонов с энергией 0.95 эВ в чувствительном элементе SiO₂/W/FeSb₂/W/Al₂O₃ с толщиной поглотителя 0.2, 0.1, 0.05 мкм и толщиной сенсора 1, 0.1 и 0.05 мкм. По сравнению с предыдущей таблицей в данной таблице добавлен столбец глубины термализации фотона в поглотителе (h), так как в некоторых расчетах этот параметр варьируется. Параметры T_{b2m} и T_{b4m} , во всех расчетах имеют значения много ниже уровня фона и поэтому не представлены в таблице. Данный факт, как и в рассмотренных выше расчетах для фотонов с энергией 0.8 эВ, позволяет сделать вывод, что сигнал детектора будет зависеть только от температуры на границе поглотитель—сенсор.

При термализации фотона с большей энергией в поглотителе чувствительного элемента ТОД выделяется большее количество тепла, что должно приводить к достижению более высоких значений параметров T_{a0m} , T_{b0m} и T_{c0m} . Также должны достигаться более высокие значения параметра t_b , так как требуется больше времени для рассасывания выделенного тепла и спада T_{a0} до фонового значения. И все это видно при сравнении данных табл. 3 и 2.

Рис. 3. Зависимость $T_{a0}(t)$ по расчетам чувствительных элементов с $Z_2 = 1$ мкм и Z_3 , равной 0.2 мкм (сплошная линия), 0.1 мкм (пунктир) и 0.05 мкм (штрихпунктир) после поглощения фотона с энергией 0.95 эВ. На вставке временная зависимость параметров T_{a0} , T_{b0} , T_{b2} и T_{c0} по данным расчета 21.

Сравнение характеристик ТОД трех групп расчетов с номерами 13–15, 16–18 и 19–21 для толщин Z_2 соответственно 0.2, 0.1 и 0.05 мкм показывает, что с уменьшением толщины Z_3 от 1 до 0.05 мкм несколько увеличиваются все полученные в результате расчетов параметры. Параметры, характеризующие максимальную температуру на границах слоев чувствительного элемента, увеличиваются в значительно большей степени с уменьшением толщины Z_2 . Временная зависимость температуры в различных областях чувствительного элемента ТОД при поглощении фотонов с энергией 0.95 эВ приведена на рис. 3. На рисунке показаны графики временной зависимости температуры T_{a0} расчетов 13, 16 и 19 для трех различных значений толщины Z_2

Рис. 4. Зависимость V_m (квадраты) и R (треугольники) от толщины Z_3 для значений Z_2 , равных 0.2 мкм (сплошная линия), 0.1 мкм (пунктирная линия) и 0.05 мкм (штрихпунктирная линия).

при одинаковой толщине Z_3 . Можно видеть, что с уменьшением Z_2 параметр T_{a0m} увеличивается, а t_m — уменьшается. Амплитуда сигнала тем выше, чем меньше толщина Z_2 на всем протяжении процесса вплоть до спада температуры T_{a0} до уровня фона.

На вставке рис. 3 представлены полученные в результате расчета 21 временные зависимости температуры в различных областях чувствительного элемента ТОД. На границе B достигаются довольно высокие значения T_{b0} , однако температура T_{b2} остается значительно ниже уровня фона.

Данные расчетов 13-21 позволяют определить значения параметров V_m и R после поглощения фотона с энергией 0.95 эВ в чувствительном элементе ТОД различной геометрии (рис. 4). Сравнение графиков на рис. 4 и 2 показывает, что в случае поглощения фотонов с энергией 0.95 эВ достигаются более высокие значения максимального сигнала и более низкая скорость счета по сравнению с поглощением 0.8 эВ фотонов в чувствительном элементе с одинаковой геометрией.

с. Термализация фотонов с энергией 0.95 эВ на различной глубине

В расчетах табл. 3 с номерами 15, 22–26 приведены данные термализации фотонов с энергией 0.95 эВ на глубине 0.01–0.11 мкм в вольфрамовом поглотителе толщиной 0.2 мкм ($Z_3 = 0.05$ мкм). Из данных таблицы видно, что чем ближе зона термализации фотона к сенсору, тем выше температуры T_{a0m} , T_{b0m} и T_{c0m} , тем меньше параметр t_m , а параметр t_b изменяется незначительно. Данные результаты не удивляют, так как чем ближе к сенсору термализуется фотон, тем больше тепла доходит до границ A, B и C, тем выше

параметры T_{a0m} , T_{b0m} и T_{c0m} , а параметр t_m меньше, так как выделенному фотоном теплу надо пройти в поглотителе меньшее расстояние, чтобы достичь границы A. Параметр t_b не претерпевает больших изменений, так как обусловливается в первую очередь геометрией всего чувствительного элемента.

Рассчитанные по данным этих расчетов значения параметров V_m и R представлены на рис. 5. В области значений глубины термализации от 0.01 до 0.05 мкм, где вероятность поглощения фотона с энергией 0.95 эВ составляет 99.8%, параметр R не меняется, а изменение V_m составляет всего 10%. Это меньше, чем разница параметров V_m расчетов 4 (0.8 эВ) и 15 (0.95 эВ) для чувствительного элемента одинаковой геометрии.

Важными характеристиками однофотонных детекторов являются время ожидания сигнала (t_d) и его разброс (временной джиттер), который определяется шириной на полувысоте функции распределения t_d . Оценим временной джиттер ТОД, используя вероятность поглоще-

Рис. 5. Зависимость параметров V_m (квадраты) и R (треугольники) от глубины зоны термолизации.

Рис. 6. Нормированная вероятность поглощения фотонов с энергией 0.95 эВ на определенной глубине в вольфраме и время ожидания сигнала.

ния фотонов с энергией 0.95 эВ в вольфраме. Время ожидания сигнала определялось как время достижения параметром Тао значения, в 2 раза превышающего уровень фона. Время ожидания сигнала и нормированная вероятность поглощения фотонов с энергией 0.95 эВ на глубине *h* в вольфраме приведены на рис. 6. Ширина на полувысоте зависимости вероятности поглощения фотонов от глубины h составляет 0.0055 мкм. Как видно из рис. 6, зависимость времени задержки сигнала от *h* практически линейна. Из наклона этой зависимости нетрудно рассчитать, что при разнице глубины термализации фотона 0.0055 мкм временная задержка будет отличаться на $4.6 \cdot 10^{-2}$ фс. Это и есть временной джиттер нашего детектора для регистрации фотонов с энергией 0.95 эВ, обусловленный различной вероятностью поглощения фотона на разной глубине поглотителя.

4. Заключение

Результаты компьютерного моделирования процессов распространения тепла в четырехслойном чувствительном элементе ТОД с полупроводниковым FeSb₂ сенсором после поглощения фотонов с энергией 0.8 и 0.95 эВ показали, что достигаются высокие характеристики.

Из данных табл. 2 и 3 следует, что чувствительный элемент с поглотителем толщиной 0.05 мкм (расчеты 9–12, 19–21) обеспечивает сигнал в 97 и более раз выше уровня фона. Это обеспечивает 100% эффективность регистрации поглощенного фотона. Согласно расчетам, эффективность поглощения 0.8 и 0.95 эВ фотонов в вольфраме толщиной 0.05 мкм составляет 99.7 и 99.8%. Антиотражающий слой SiO₂ в рассматриваемой области энергий фотонов обеспечивает эффективность оптической связи ~ 99%. Соответственно, системная эффективность детектирования ТОД, которая является произведением этих трех составляющих, также будет близка к 100%.

Использование FeSb₂ в качестве материала сенсора позволяет получать сигнал на уровне десятков микровольт, который для фотонов с энергией 0.8 эВ в 40 раз превышает сигнал четырехслойного чувствительного элемента с CeB₆ сенсором [19]. Такой сигнал в эксперименте можно регистрировать без применения сложных систем усиления, которые в свою очередь могут увеличивать уровень шумов. Одновременно достигаются высокие временные параметры: задержка сигнала меньше фемтосекунды, временной джиттер $4.6 \cdot 10^{-2}$ фс и терагерцовая скорость счета. Детекторы с такими характеристиками востребованы в различных областях науки и могут найти широкое применение в технологиях будущего.

Благодарности

Автор выражает благодарность А.С. Кузаняну и В.Р. Никогосяну за помощь в работе и полезные обсуждения.

Финансирование работы

Исследование выполнено при финансовой поддержке Государственного комитета по науке МОН РА в рамках научного проекта № 18Т-2F134.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

- C.J. Chunnilall, I.P. Degiovanni, S. Kuck, I. Muller, A.G. Sinclair. Opt. Eng., 53 (8), 081910 (2014).
- [2] M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov. Rev. Sci. Instrum., 82, 071101 (2011).
- [3] R.H. Hadfield. Nature Photonics, **3**, 696 (2009).
- [4] E. Martinenghi, L. Di Sieno, D. Contini, M. Sanzaro, A. Pifferi, A. Dalla Mora. Rev. Sci. Instrum., 87, 073101 (2016).
- [5] B. Korzh, T. Lunghi, K. Kuzmenko, G. Boso, H. Zbinden. J. Mod. Opt., 62 (14), 1151 (2015).
- [6] K.D. Irvin. Scientific American, 295, 86 (2006).
- [7] G.N. Gol'tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, R. Sobolewski. IEEE Trans. Appl. Supercond., 13 (2), 192 (2003).
- [8] H. Zhang, L. Xiao, B. Luo, J. Guo, L. Zhang, J. Xie. J. Phys. D, 53, 013001 (2020).
- [9] D. Van Vechten, K. Wood, G. Fritz, J. Horwitz, A. Gyulamiryan, A. Kuzanyan, V. Vartanyan, A. Gulian. Nucl. Instrum. Meth. Phys. Res. A, 444, 42 (2000).
- [10] K. Wood, G. Gilbert, A. Gulian, D. van Vechten. US Patent 6710343 (2004).
- [11] A. Gulian, K. Wood, D. Van Vechten, G. Fritzdet. J. Mod. Opt., 51 (9–10), 1467 (2004).
- [12] А.С. Кузанян, А.А. Кузанян, В.Р. Никогосян, В.Н. Гурин, М.П. Волков. ФТП, **51** (7), 908 (2017).
- [13] A.A. Kuzanyan, V.R. Nikoghosyan, A.S. Kuzanyan. J. Cont. Phys., **53** (4), 338 (2018).
- [14] A.A. Kuzanyan, V.R. Nikoghosyan, A.S. Kuzanyan. J. Cont. Phys., 53 (1), 73 (2018).
- [15] А.С. Кузанян, А.А. Кузанян, В.Н. Гурин, М.П. Волков, В.Р. Никогосян. ФТП, **53** (5), 689 (2019).
- [16] A.A. Kuzanyan, V.R. Nikoghosyan, A.S. Kuzanyan. J. Cont. Phys., **52** (3), 249 (2017).
- [17] A.S. Kuzanyan. Sensors Transducers, 217 (11), 28 (2017).
- [18] A.A. Kuzanyan, A.S. Kuzanyan, V.R. Nikoghosyan. J. Cont. Phys., 54 (2), 175 (2019).
- [19] A.A. Kuzanyan, V.R. Nikoghosyan, A.S. Kuzanyan. IEEE Sens. J., 20 (6), 3040 (2020).
- [20] A.A. Kuzanyan, V.R. Nikoghosyan, A.S. Kuzanyan. SPIE Proc., 9504 (2015).
- [21] G. Carini Jr., G. Carini, D. Cosio, G. D'Angelo, F. Rossi. Philos. Mag., 96, 761 (2016).
- [22] https://nanoheat.stanford.edu/sites/default/files/publications/ A33.pdf
- [23] M.S. Figueira, J. Silva-Valencia, R. Franco. Eur. Phys. J. B, 85 (203), 1 (2012).
- [24] A. Bentien, S. Johnsen, G.K.H. Madsen, B.B. Iversen, F. Steglich. Europhys. Lett., 80 (1), 17008 (2007).

- [25] T.R. Waite, R. S. Craig, W. E. Wallace. Phys. Rev., 104 (5), 1240 (1956).
- [26] http://www.efunda.com/materials/elements/TC_Table.cfm?Elment_ID=W
- [27] G.T. Furukawar, T.B. Douglasr, R.E. McCoske, jr, D.C. Ginnings. J. Res. Nat. Bur. Stand., 57, 67 (1956).
- [28] http://www.phys.ufl.edu/ireu/IREU2013/pdf_reports/Allen_ Scheie_FinalReport.pdf
- [29] M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R.J. Warburton, H. Zbinden, F. Bussiéres. Appl. Phys. Lett., **112**, 061103 (2018).
- [30] W.S.M. Werner, K. Glantschnig, C. Ambrosch-Draxl. J. Phys. Chem. Ref. Data, 38 (4), 1013 (2009).

Редактор Г.А. Оганесян

Semiconductor sensor of a thermoelectric single-photon detector for near-infrared radiation registration

A.A. Kuzanyan

Institute for Physical Research, National Academy of Sciences of Armenia, 0203 Ashtarak, Armenia

Abstract We proposed the design of a four-layer detection pixel of the single-photon thermoelectric detector with semiconductor FeSb₂ sensor. The processes of heat propagation in a detection pixel after the absorption of a photon were studied using computer simulation. The calculations were based on the equation of heat propagation from a limited volume using the three-dimensional matrix method for differential equations. The temporal dependences of the detector signal amplitude were calculated for various thicknesses of the detection pixel's layers and the following parameters were determined: signal delay, timing jitter, maximum signal value, time to reach the maximum signal, decay time and count rate. It was proved that a detector with such a detection pixel can provide detection efficiency above 95% for near-infrared photons. At the same time, the terahertz count rate was achieved.