13,18

О природе красного сдвига *G*-пика раман-спектра в эпитаксиальном двумерном слое

© С.Ю. Давыдов¹, О.В. Посредник²

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Санкт-Петербургский государственный электротехнический университет (ЛЭТИ), Санкт-Петербург, Россия
 E-mail: Sergei_Davydov@mail.ru

Поступила в Редакцию 6 декабря 2020 г. В окончательной редакции 6 декабря 2020 г. Принята к публикации 7 декабря 2020 г.

В модели, исключающей наличие деформации на контакте монослоя и подложки, рассмотрена роль межплоскостного упругого взаимодействия. Показано, что это взаимодействие приводит к увеличению значений фононных частот. Кратко обсуждается роль внешнего давления и температуры.

Ключевые слова: силовые константы, фононы, давление, температура.

DOI: 10.21883/FTT.2021.04.50723.253

1. Введение

В настоящее время среди экспериментаторов популярно считать причиной красного сдвига рамановского G-пика $\Delta \omega_G$ эпитаксиального графена (эпиграфена) наличием упругой деформации на интерфейсе, возникающей вследствие различия постоянных решеток пленки и подложки. Впервые, насколько известно авторам, подобное объяснение сдвига было предложено в работе [1] при анализе рамановского спектра аморфного графитового слоя, сформированного на кремниевой пластине. Такая схема возникла благодаря давно уже установленной для алмазоподобных кристаллов зависимости $\Delta \omega_G \propto \sigma$, где σ — внешнее одноосное механическое напряжение [2] (та же зависимость имеет место и для свободного графена [3]). По нашему мнению, однако, первопричиной красного смещения G-пика эпитаксиального слоя является само взаимодействие слой-подложка, независимо от того, появляется ли при этом на интерфейсе напряжение или нет. Справедливость такого утверждения была продемонстрирована в работе [4] в рамках модели двух связанных осцилляторов. Здесь мы рассмотрим задачу о сдвиге G-пика в рамках более сложной модели эпитаксиального монослоя и субстрата, изначально исключающей деформацию на интерфейсе.

2. Модель эпитаксиальной структуры

Предлагаемая модель (рис. 1) представляет собой двумерную (2D) квадратную решетку, расположенную в плоскости (x, y, 0) (в дальнейшем — монослой (ML)), расположенную на поверхности (100) полубесконечной простой кубической решетки (SISCL). Обе решетки являются двухатомными структурами с массами составляющих их атомов $m_{1,2}$ (ML) и $M_{1,2}$ (SISCL) и одинако-

вым расстоянием между ближайшими соседями, равным a, что исключает наличие механических напряжений на интерфейсе. Расстояние между ML и SISCL положим равным a^* . В дальнейшем будем рассматривать только плоские (in-plane) колебания, характеризуемые смещениями $u_{i,j}$ атома i в плоскости j = 0, -1, -2, ... в направлении оси x. Для описания взаимодействия ближайших соседей (б. с.) введем центральные (bond-stretching) силовые константы α и β для ML и SISCL соответственно. Взаимодействие между б. с. ML и поверхностью (100) SISCL описываем нецентральной (bond-bending) силовой константой γ^* ; межплоскостное взаимодействие между б. с., принадлежащими к внутренним плоскостям SISCL характеризуем нецентральной

Рис. 1. Структурная модель двумерного эпитаксиального слоя, в котором отсутствуют механические напряжения на интерфейсе.

силовой константой γ (рисунок). Тогда для смещений $u_{ij} = U_{ij} \exp[i(k_x x_i + k_z z_j)]$, где U_{ij} — амплитуды колебаний, k_x — волновой вектор ($|k_x| \le \pi/2a$), k_z — действительное число, уравнения движения имеют вид

$$m_{1}\omega^{2}U_{00} = (2\alpha + \gamma^{*})U_{00} - 2\alpha\cos(k_{x}a)U_{10} - \gamma^{*}U_{0-1}e^{-ik_{z}a^{*}},$$

$$m_{2}\omega^{2}U_{10} = (2\alpha + \gamma^{*})U_{10} - 2\alpha\cos(k_{x}a)U_{00} - \gamma^{*}U_{1-1}e^{-ik_{z}a^{*}},$$

$$M_{2}\omega^{2}U_{0-1} = (2\beta + \gamma + \gamma^{*})U_{0-1} - 2\beta\cos(k_{x}a)U_{-1-1}$$

$$-\gamma^{*}U_{00}e^{ik_{z}a^{*}} - \gamma U_{0-2}e^{-ik_{z}a},$$

$$M_{1}\omega^{2}U_{1-1} = (2\beta + \gamma + \gamma^{*})U_{1-1} - 2\beta\cos(k_{x}a)U_{0-1}$$

$$-\gamma^{*}U_{10}e^{ik_{z}a^{*}} - \gamma U_{1-2}e^{-ir_{z}a},$$

$$M_{2}\omega^{2}U_{0-2} = 2(\beta + \gamma)U_{0-2} - 2\beta\cos(k_{z}a)U_{1-2}$$

$$-\gamma(U_{0-1}e^{ik_{z}a^{*}} + U_{0-3}e^{-ik_{z}a}),$$

$$M_{1}\omega^{2}U_{1-2} = 2(\beta + \gamma)U_{1-2} - 2\beta\cos(k_{x}a)U_{0-2}$$

$$-\gamma(U_{1-1}e^{ik_{z}a} + U_{1-3}e^{-ik_{z}a}),$$
(1)

и т.д. Так как нас в первую очередь интересует воздействие подложки на ML, рассмотрим для начала двухслойную структуру. Легко показать, что фононный спектр такой системы определяется из уравнения D = 0, где

$$D = (A_1A_2 - a^2)(B_1B_2 - b^2) - (\gamma^*)^2(A_1B_1 + A_2B_2 + 2ab) + (\gamma^*)^4, \qquad (2)$$

где $A_{1,2} = m_{1,2}\omega^2 - 2\alpha - \gamma^*$, $B_{1,2} = M_{1,2}\omega^2 - 2\beta - \gamma^*$, $a = 2\alpha \cos(k_x, a), b = 2\beta \cos(k_x a)$. Для свободного ML и бесконечной простой кубической решетки (ISCL) имеем соответственно

$$\omega_{\rm ML}^2 = \alpha \overline{m}^{-1} \left(1 \pm \sqrt{1 - (4\overline{m}^2/m_1m_2)\sin^2(k_x a)} \right),$$

$$\overline{m}^{-1} = m_1^{-1} + m_2^{-1},$$
(3)
$$\mathcal{O}_{\rm SCL}^2 = (\beta + \gamma) \overline{M}^{-1} \left(1 \pm \sqrt{1 - (4\overline{M}^2/M_1M_2)\sin^2(k_x a)} \right),$$

$$\omega_{\rm ISCL}^2 = (\beta + \gamma)\overline{M}^{-1} \left(1 \pm \sqrt{1 - (4\overline{M}^2/M_1M_2)\sin^2(k_xa)} \right),$$
$$\overline{M}^{-1} = M_1^{-1} + M_2^{-1}. \tag{4}$$

Частотный спектр SISCL со свободной поверхностью приведен в [5].

Положим для простоты $\gamma^* \ll \alpha, \beta, \omega = \omega_{A(B)} + v_{A(B)},$ $|v_{A(B)}| \ll \omega_{A(B)}$, где индексы A и B относятся к верхней (ML) и нижней плоскостям двухслойной структуры. Тогда из (2) в линейном по γ^* приближении для ML получим

$$\omega_A^2 = \alpha \overline{m}^{-1} \left(1 \pm \sqrt{1 - (4\overline{m}^2/m_1m_2)\sin^2(k_x a)} \right),$$
$$\overline{m}^{-1} = m_1^{-1} + m_2^{-1}, \tag{5}$$

$$v_A = \gamma^* \frac{(m_1 + m_2)\omega_A^2 - 4\alpha}{4\omega_A [m_1 m_2 \omega_A^2 - \alpha (m_1 + m_2)]}.$$
 (6)

Для частотных характеристик в центре зоны Бриллюэна $(k_z = 0)$ получаем

$$\omega_A^{opt}(0) = \sqrt{2\alpha/\overline{m}},$$

$$v_A^{opt}(0) = \gamma^* \frac{m_1^2 + m_2^2}{2m_1m_2(m_1 + m_2)} \frac{1}{\omega_A^{opt}(0)}, \quad v_A^{ac}(0) = 0, \quad (7)$$

где верхние индексы *opt* и *ac* обозначают оптические и акустические моды. Подчеркнем, что именно значение $v_A^{opt}(0)$ характеризует сдвиг *G*-пика раман-спектра ML, вызванный взаимодействием с SISCL. Здесь удобно ввести безразмерное отношение $\eta_{A(B)} = v_{A(B)}/\omega_{A(B)}$, где $\omega_{A(B)} \neq 0$, так что $\omega = \omega_{A(B)}(1 + \eta_{A(B)})$. Из (7) находим

$$\eta_A^{opt}(0) = (\gamma^*/4\alpha) \, \frac{m_1^2 + m_2^2}{(m_1 + m_2)^2}.\tag{8}$$

Таким образом, относительный сдвиг *G*-пика в первом приближении пропорционален отношению γ^*/α , что совпадает с результатом работы [4], где силовым константам α и γ^* соответствуют силовые константы k_{0g} и k. Полагая $m_1 \sim m_2$ и $\gamma^*/\alpha = 0.1$, получим $\eta_A^{opt}(0) \sim 10^{-2}$, что отлично согласуется с экспериментом для графена на карбиде кремния [4]. Принимая $m_1 = m + \Delta m$ и $m_2 = m - \Delta m$, получим $\eta_A^{opt}(0) = (\gamma^*/8\alpha)(1 + \Delta m^2)$. Для акустической ветви спектра на границе зоны Бриллюэна ($k_x = \pi/2a$) при $m_1 > m_2$ имеем

$$\omega_A^{ac}(\pi/2a) = \sqrt{2\alpha/m_1}, \quad v_A^{ac}(\pi/2a) = \gamma^*/2\sqrt{2\alpha/m_1},$$
$$\eta_A^{ac}(\pi/2a) = \gamma^*/4\alpha. \tag{9}$$

Выражения, аналогичные (5)-(9), можно записать для плоскости B, заменяя α на β и $m_{1,2}$ на $M_{1,2}$. Таким образом, учет взаимодействия между плоскостями ведет к увеличению значений всех частот (за исключением $\omega^{ac}(0) = 0$). Легко показать, что дополнительно полагая $\gamma \ll \beta$ (слоистая структура) и имея в виду дальнейшую линеаризацию по параметрам γ^* и γ , для определения дисперсии фононов можно вместо (2) записать выражение $D_{sub}^{surf} \approx (M_1 \omega^2 - 2\beta - \gamma - \gamma^*)(M_2 \omega^3 - 2\beta - \gamma - \gamma^*) - b^2$ для плоскости (100) и $D_{sub}^{bulk} \approx (M_1 \omega^2 - 2(\beta + \gamma))$ $\times (M_2 \omega^3 - (2\beta + \gamma)) - b^2$ для внутренних плоскостей SISCL. Заменяя в формулах (5)-(9) массы $m_{1,2}$ на $M_{1,2}$ и силовую константу α соответственно на $\beta + \gamma/2$ и $\beta + \gamma$, получим выражения для частотных характеристик.

3. Влияние давления и температуры на сдвиг *G*-пика

До сих пор мы пользовались гармоническим приближением, сейчас же перейдем к оценкам ангармонических характеристик фононного спектра ML. Отмеченное выше соответствие между отношениями γ^*/α и k/k_{0g} позволяет использовать выводы [4] о зависимости сдвига G-пика от давления P и температуры T для качественных оценок. Мы, однако, рассмотрим зависимости $v_{A(B)}(P)$ и $v_{A(B)}(T)$ более подробно, воспользовавшись результатами работ [6,7], но пренебрегая, для простоты, возможной полярностью связей. Так как для ковалентных σ - и π -связей, образованных sp^k-орбиталями (k = 1, 2, 3), силовые константы пропорциональны a^{-4} или $(a^*)^{-4}$ [6-8], то при деформации в линейном приближении имеем $\tilde{\alpha} \sim \alpha \vartheta$, $\tilde{\beta} \sim \beta \vartheta$, $\tilde{\gamma} \sim \gamma \vartheta$ и $\tilde{\gamma}^* \sim \gamma^* \vartheta^*$, где $\vartheta = 1 \mp 4\Delta a/a$, $\vartheta^* = 1 \mp 4\Delta a^*/a^*$, верхний знак отвечает сжатию ($\Delta a < 0$), нижний ($\Delta a > 0$) — растяжению и $\Delta a/a \propto \Delta P/B$ (В — модуль сжатия). Вводя обозначения $\omega_{A}^{opt}(0)=\omega_{GA}$ и $v_{A}^{opt}(0)=v_{GA},$ получим $\omega_{GA}' \sim \omega_{GA} (1 \mp 2\Delta a/a)$ и $\widetilde{v}_{GA} \sim v_{GA} (1 \mp 2\Delta a/a)$, причем аналогичные формулы справедливы для ω'_{GB} и v'_{GB} . При оценке v'_{GA} учтено, что в линейном приближении следует положить $\Delta a^*/a^* = \Delta a/a$. Здесь мы игнорировали появление на интерфейсе упругих напряжений при $\alpha \neq \beta$ как вторичный эффект, наведенный внешним давлением.

Сдвиг G-пика под действием внешнего давления в углеродных (графеноподобных) структурах экспериментально исследовался в работах [9,10], где в диапазоне изменений P от 0 до ~ 5–10 GPa наблюдался практически линейный рост ω'_{GB} . Более того, в [9] при постоянной Грюнайзена $\overline{\gamma} \approx 2$ (что соответствует результатам [6,7]) для одноосной деформации получено совпадающее с нашим отношение $\Delta \omega_G / \omega_G \approx 2 |\Delta a| / a$.

Перейдем теперь к оценкам влияния температуры на G-пик ML. При этом вновь воспользуемся результатами работ [6,7], представив квазигармоническую свободную энергию ML (на связь) в виде $F = U_{el} + F_{vib}$, где U_{el} упругая энергия, F_{vib} — колебательная энергия. При температурах выше температуры Дебая T_D положим $F_{vib} \sim (3T/N) \ln(\omega_{GA}'/T)$, где N=2, 3 — размерность структуры, температура T и частота ω_G'' измеряются в энергетических единицах. Тогда зависящая от температуры силовая константа $\alpha'' = \alpha''_{el} + \alpha''_{vib}$. Легко показать, что упругая составляющая $\alpha_{el}^{\prime\prime} \sim \alpha (1 - \alpha_T T)$, где α_T — коэффициент линейного теплового расширения (оценки [6,7] дают $\alpha_T \sim (5-8) \cdot 10^{-6} \, \mathrm{K}^{-1}$. Согласно [11], $\alpha_T \sim 6.5 \cdot 10^{-6} \,\mathrm{K}^{-1}$ для свободного графена и $\alpha_T \sim 8.7 \cdot 10^{-6} \, {
m K}^{-1}$ для слабосвязанного эпитаксиального графена на поверхности карбида кремния, что, в рамках нашей модели, объясняется наличием связи ML c SISCL.

Для колебательной составляющей центральной силовой константы получим $\alpha_{vib}'' \sim (3T/2N(\omega_G'')^2) \times [\partial^2(\omega_2'')^2/\partial a^2 - (\partial(\omega_G'')^2/\partial a)^2/(\omega_G'')^2]$. Так как $(\partial \ln \alpha''/\partial T) \propto (\partial \ln B/\partial T)$, оценки [6,7] для температурной зависимости модуля сжатия показывают, что знаки производных $\partial \alpha_{vib}''/\partial T$ и $\partial \alpha_{vib}''/\partial T$ одинаковы, откуда имеем $\partial \alpha_{vib}''/\partial T < 0$. Далее, в рамках самосогласованного квазигармонического приближения [12]

температура уменьшает межплоскостные силовые константы γ^* и γ как в трехмерных кристаллах [13], так и в наноструктурах [14]. Отсюда следует, что $\partial \omega''_G / \partial T < 0$. Здесь мы не учитываем возникновение на интерфейсе термоупругих напряжений, вызванных разницей коэффициентов теплового расширения вследствие различия силовых констант α и β , как вторичный эффект, наведенный температурой.

Температурный сдвиг *G*-пика экспериментально исследовался для графена в [15-18] и h-BN в [18], где, во-первых, показано, что энергия пика с линейно уменьшается: ростом Т для графена $\partial \omega_G'' / \partial T \approx -(0.015 - 0.020) \,\mathrm{cm}^{-1} \cdot \mathrm{K}^{-1},$ для h-BN $\partial \omega_G''/\partial T \approx -0.03 \,\mathrm{cm}^{-1} \cdot \mathrm{K}^{-1}$. Во-вторых, согласно [16], для графена, сформированного на 6H-SiC(0001), температурный сдвиг в 4 раза больше, чем у свободного графена, что, на наш взгляд, свидетельствует о роли связи ML-SISCL. Аналогичные эффекты наблюдаются для подложек SiO₂/Si, Au/SiN_x/Si, Cu [16,17].

4. Заключение

Итак, в настоящей работе с помощью простой модели и полуколичественных оценок мы продемонстрировали, что связь эпитаксиального слоя с подложкой ведет к красному смещению *G*-пика $\Delta\omega_G$, усиливает рост $\Delta\omega_G$ с увеличением внешнего давления и спад $\Delta\omega_G$ с ростом температуры. Выявленные тенденции в целом согласуются с известными авторам экспериментальными данными, хотя относительно *P*- и *T*-зависимостей $\Delta\omega_G$ требуются дополнительные исследования.

Деформационное описание $\Delta \omega_G$ для углеродных наноструктур стало популярным после появления работ [19,20], в которых полагали $\Delta \omega_G = C\sigma$, где σ — механическое напряжение, а коэффициент $C = 7.47 \,\mathrm{cm}^{-1} \cdot \mathrm{GPa}^{-1}$. В дальнейшем коэффициент Cстал рассматриваться как универсальный, а из экспериментального значения $\Delta \omega_G$ определяли величину σ . Тут сразу же возникают два возражения. Во-первых, представляется странным, что графен, обладающий минимальной постоянной решетки, испытывает сжатие $(\sigma > 0)$ со стороны подложки (на эту странность указывалось еще в работе [21]). Во-вторых, не ясно, как вызываемая подложкой деформация узлов большой элементарной ячейки эпиграфена (см., например, соответствующие рисунки в [20] и [22]), которая, очевидно, является переменной как по величине, так и по знаку, может быть описана в приближении $\sigma = \text{const.}$ Поэтому мы предлагаем анализировать измеренное отношение $\Delta \omega_G / \omega_G$ по формуле (8), извлекая из эксперимента значения отношения γ^*/α .

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- [1] J.W. Ager III, S. Anders, A. Anders, I.G. Brown. Appl. Phys. Lett. **66**, 3444 (1995).
- [2] E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak, M. Cardona. Solid State Commun. 8, 133 (1970).
- [3] K.L. Yang, J.O. Lee, H. Choo, F. Yang. J. Chem. Phys. C 122, 24467 (2018).
- [4] С.Ю. Давыдов. ФТТ 59, 610 (2017).
- [5] S. Takeno. Prog. Theor. Phys. **30**, 1 (1963).
- [6] С.Ю. Давыдов. Письма в ЖТФ 37, 24, 42 (2011).
- [7] С.Ю. Давыдов, О.В. Посредник. ФТТ 15, 819 (2015).
- [8] У. Харрисон. Электронная структура и свойства твердых тел. Мир, М. (1983).
- [9] J.E. Proctor, E. Gregoryanz, K.S. Novoselov, M. Lotya, J.N. Coleman, M.P. Halsall. Phys. Rev. B 80, 073408 (2009).
- [10] S. Lu, M. Yao, X. Yang, Q. Li, J. Xiao, Z. Yao, L. Jiang, R. Liu, B. Liu, S. Chen, B. Zou, T. Cui, B. Liu. Chem. Phys. Lett. 585, 101 (2013).
- [11] M. Pazzo, D. Alfe, P. Lacovig, P. Hofmann, S. Lizzit, A. Baraldi. Phys. Rev. Lett. **106**, 135501 (2011).
- [12] P.B. Allen. Modern Phys. Lett. B 34, 2050025 (2020).
- [13] L. Pietronero, E. Tosatti. Solid State Commun. 32, 255 (1979).
- [14] С.Ю. Давыдов. ФТТ]bf57, 1437 (2015).
- [15] I. Calizo, A.A. Balandin, W. Bao, F. Miao, C N. Lau. Nano Lett. 7, 2645 (2007).
- [16] N. Ferralis, R. Maboudian, C. Carraro. Phys. Rev. B 83, 081410(R) (2011).
- [17] M.S. Tivanov, E.A. Kolesov, A.G. Praneuski, O.V. Korolik, A.M. Saad, I.V. Komissarov, N.G. Kovalchuk. J. Mater. Sci. Matter Electron 27, 8879 (2016).
- [18] X. Li, J. Liu, K. Ding, X. Zhao, S. Li, W. Zhou, B. Liang. Nanoscale Res. Lett. 13, 25 (2018).
- [19] H. Sakata, G. Dresselhaus, M.S. Dresselhaus, M. Enda. J. Appl. Phys. 63, 2769 (1988).
- [20] Z.H. Ni, W. Chen, X.F. Fan, J.L. Kuo, T. Yu, A.T.S. Wee, Z.X. Shen. Phys. Rev. B 77, 115416 (2008).
- [21] J. Röhrl, M. Hundhausen, K.V. Emtsev, T. Seyller, R. Graupner, L. Ley. Appl. Phys. Lett. 92, 201918 (2008).
- [22] K.V. Emtsev, F. Speck, Th. Seyller, L. Ley, J.D. Riley. Phys. Rev. B 77, 155303 (2008).

Редактор Т.Н. Василевская