12,05

Синтез, структурные, магнитные и теплофизические свойства Pb₃Mn₇O₁₅, допированного ионами титана

© С.Н. Софронова, Е.В. Еремин, М.С. Молокеев, Н.В. Михашенок, А.В. Карташев

Институт физики им. Л.В. Киренского Федерального исследовательского центра "Красноярский научный центр Сибирского отделения Российской академии наук" Красноярск, Россия

E-mail: ssn@iph.krasn.ru

Поступила в Редакцию 4 декабря 2020 г. В окончательной редакции 4 декабря 2020 г. Принята к публикации 7 декабря 2020 г.

Синтезированы кристаллы Pb₃Mn₇O₁₅, допированные ионами титана. Исследование структурных свойств показало, что ионы титана занимают позиции в "столбиках" между плоскостями, что приводит к ослаблению обменного взаимодействия между плоскостями. На температурных зависимостях намагниченности и теплоемкости обнаружены две аномалии при 62 и 35 К. При 62 К предположительно возникает дальний магнитный порядок, а при 35 К происходит спин-переориентационный переход, так же как и в Pb₃Mn₇O₁₅.

Ключевые слова: манганиты, магнитный фазовый переход, косвенные обменные взаимодействия.

DOI: 10.21883/FTT.2021.04.50722.252

1. Введение

Соединения, в которых один элемент входит в разном валентном состоянии, привлекают большое внимание исследователей, благодаря интересным физическим свойствам и практическим применениям. Среди манганитов такие соединения встречаются достаточно часто, поскольку марганец может реализовываться в различных валентных состояниях (2+, 3+, 4+).

Наиболее изучены соединения с перовскитоподобной структурой, однако существуют и другие семейства, в которых марганец встречается в разновалентных состояниях. Одним из таких соединений является Pb₃Mn₇O₁₅ [1–4]. Марганец входит в состав этого соединения в двух валентных состояниях: 3+ и 4+ в соотношении 4:3. В течение некоторого времени обсуждалась структура этого соединения, которая по одним данным являлась ромбической (Pnma) [2], по другим — гексагональной (Р63/тст) [3]. Главной особенностью структуры этого соединения является наличие плоскостей, соединенных между собой столбиками (рис. 1). В работе [4] было показано, что существует структурный фазовый переход между гексагональной и ромбической структурами, который происходит благодаря зарядовому и орбитальному упорядочениям. На кривых намагниченности Pb₃Mn₇O₁₅ обнаружено три аномалии. Первая — при 160 К связана с изотропным упорядочением кластерного типа, вторая — при 70 К связана с возникновением дальнего магнитного порядка и третья — при 20 К связана со спин-переориентационным переходом [3]. Не так давно была решена магнитная структура этого соединения, которая довольно сложна [5]. Магнитные моменты ионов марганца в разных симметрийных позициях ориентированы неколлинеарно.

Частичное замещение ионов марганца различными магнитными и немагнитными ионами приводит к существенному изменению транспортных, магнитных и структурных свойств. Так включение Fe^{3+} и Rh^{3+} стабилизирует гексагональную структуру [6,7]. Включение Ga^{3+} и Ge^{4+} стабилизируют ромбическую структуру [1]. Включение ионов никеля понижает симметрию до P3c1 [8].

Существенно изменяются магнитные свойства при допировании железом более чем на 10%: система переходит в состояние спинового стекла, исчезает дальний магнитный порядок [6]. При допировании никелем и галием, пропадает переход на 160 К, дальний магнитный порядок возникает при 65 и 60 К соответственно [1,8]. Допирование германием (5 at.%) практически не влияет на магнитные свойства [1].

В настоящей работе мы представляем исследование структурных, магнитных, теплофизических свойств Pb₃Mn₇O₁₅, допированного ионами титана.

2. Синтез кристаллов

Монокристаллы $Pb_3Mn_{7-x}Ti_xO_{15}$ с x = 0.05, исследованные в настоящей работе, были выращены методом спонтанной кристаллизации из раствора-расплава. Наличие PbO в составе позволило использовать данный оксид в качестве растворителя. Это помогло избежать загрязнения кристалла посторонними примесями и получить кристаллы высокого качества. В качестве исходных компонентов были взяты оксиды высокого качества PbO, Mn_2O_3 и TiO₂ в нужном соотношении. Данная смесь компонентов помещалась в платиновый тигель, нагревалась до 1000°С и выдерживалась при этой температуре в течение 4 h до полной гомогенизации расплава.

Рис. 1. Кристаллическая структура Pb₃(Mn,Ti)₇O₁₅.

После этого тигель с шихтой охлаждался до 900°С со скоростью dT/dt = 2-5°С/h. Далее печь выключалась и охлаждалась до комнатной температуры. Монокристаллы извлекались из тигля механическим путем. Полученные монокристаллы имели форму пластинок с черной гладкой поверхностью. Пластинки достигали размеров 2-4 mm.

3. Структурные свойства

Измерение рентгеновской дифракции на порошковом образце были выполнены с использованием дифрактометра D8 ADVANCE Bruker. Параметры эксперимента и параметры решетки приведены в табл. 1. Координаты атомов и распределение по позициям приведены в табл. 2. В табл. 3 приведены расстояния между металлическими ионами и кислородом.

Мы ожидали, что допирование титаном, так же как и допирование германием стабилизирует ромбоэдрическую структуру и ионы титана будут замещать ионы марганца в плоскостях [1]. Однако в отличие от $Pb_3Mn_{7-x}Ge_xO_{15}$ замещение марганца на титан привело к стабилизации гексагональной структуры. Ионы титана заняли позицию в столбиках между плоскостями. Эти позиции в $Pb_3Mn_7O_{15}$ преимущественно заняты трехвалентным марганцем. Ионы титана могут входить в состав кристалла как в четырехвалентном, так и

Таблица 1. Параметры эксперимента и параметры решетки $Pb_3(Mn,Ti)_7O_{15}$

$M_r = 1241$ (4)	<i>Z</i> = 4
Hexagonal, P6 ₃ /mcm	$D_x = 6.978 \mathrm{Mg}\mathrm{m}^{-3}$
a = 10.0140 (2) Å	Cu $K\alpha_{12}$ radiation, $\alpha = 1.5406$, 1.5443 Å
c = 13.6034 (4) Å	$T = 300 \mathrm{K}$
V = 1181.38 (6) Å ³	
D8 ADVANCE Bruker diffractometer	Scan method: step
Data collection mode: reflection	$2 heta_{\min} = 8.00^{\circ}, 2 heta_{\max} = 140.00^{\circ}, \ 2 heta_{step} = 0.02^{\circ}$
$R_{\rm p} = 2.985$	8250.4545 data points
$R_{\rm wp}=4.129$	Profile function: PearsonVII
$R_{\rm exp} = 1.602$	Preferred orientation correction:
$R_{\mathrm{Bragg}} = 1.97$	Anisotropic model of PO. Spherical harmonics 2 ordrer. [9]

в трехвалентном состоянии. Ионы четырехвалентного титана не являются магнитными ионами, в отличие от ионов трехвалентного титана. Определить валентное со-

Атом	x	у	Z	$B_{\rm iso}^*/B_{\rm eq}$	Occ. (< 1)
Pb1	0.6114 (2)	0.6114 (2)	0.75	2.59 (7)	1
Pb2	0.2644 (2)	0.2644 (2)	0.75	3.41 (9)	1
Mn1	0.8322 (3)	0.1678 (3)	0.5	1.8 (2)	1.00 (13)
Ti1	0.8322 (3)	0.1678 (3)	0.5	1.8 (2)	0.00 (13)
Mn2	0.333333	0.666667	0.1472 (5)	0.71 (18)	0.64 (11)
Ti2	0.333333	0.666667	0.1472 (5)	0.71 (18)	0.36 (11)
Mn3	0.5	0.5	0.5	1.6 (3)	1.00 (21)
Ti3	0.5	0.5	0.5	1.6 (3)	0.00 (21)
Mn4	0	0	0	2.5 (5)	1.00 (28)
Ti4	0	0	0	2.5 (5)	0.00 (28)
O1	0.4847 (17)	0.3319 (15)	0.0808 (12)	4.4 (3)	1
O2	0.519 (3)	0.170 (2)	0.25	4.4 (3)	1
O3	0.156 (2)	0.156 (2)	0.0719 (15)	4.4 (3)	1
O4	0.673 (2)	0.673 (2)	0.0658 (16)	4.4 (3)	1

Таблица 2. Координаты атомов и заселенность позиций Pb₃(Mn,Ti)₇O₁₅

Таблица 3. Длины связей Me-O (Å)

Pb1-O1 ⁱ	2.663 (15)	Mn2-O1 ^{vi}	2.027 (13)
Pb1-O2 ⁱⁱ	2.30 (2)	Mn2-O2 ^{vii}	2.099 (15)
Pb2-O2 ⁱⁱ	2.25 (2)	Ti2-O1 ^{vi}	2.027 (13)
Pb2-O4 ⁱ	2.58 (2)	Ti2-O2 ^{vii}	2.099 (15)
$Mn1 - O1^{iii}$	1.920 (14)	Mn3-O1 ^{viii}	1.951 (14)
Mn1-O3 ^{iv}	2.000 (20)	Mn3-O4 ^{viii}	1.950 (18)
Mn1-O4 ^v	1.867 (18)	Ti3-O1 ^{viii}	1.951 (14)
Ti1-O1 ⁱⁱⁱ	1.920 (14)	Ti3-O4 ^{viii}	1.950 (18)
Ti1-O3 ^{iv}	2.000 (20)	Mn4–O3	1.840 (19)
Ti1-O4 ^v	1.867 (18)	Ti4–O3	1.840 (19)

Симметрийные позиции: (i) -x + 1, -y + 1, -z + 1; (ii) x - y, x, -z + 1; (iii) -x + y + 1, y, z + 1/2; (iv) x + 1, -x + y, -z + 1/2; (v) -x + y + 1, -x + 1, -z + 1/2; (vi) x + 1, -x + y + 1, z; (vii) -x + 1, -x + y + 1, -z + 1/2; (viii) x + 1, -y + 1, z + 1/2.

стояние иона в кристалле достаточно не просто, однако валентное состояние титана должно заметно влиять на магнитные свойства исследуемого соединения.

Вероятно, позиция, которую при замещении занимает ион, в большей степени определяется ионным радиусом допирующего иона, а не его валентным состоянием. Ионный радиус Ge⁴⁺ составляет всего 0.044 nm, тогда как ионные радиусы Ga³⁺, Ti⁴⁺, Fe³⁺ и Ni²⁺ составляют 0.062; 0.064; 0.067 и 0.078 nm соответственно. Ионные радиусы Mn³⁺ и Mn⁴⁺ составляют 0.052 и 0.07 nm соответственно. Поскольку кристаллографические позиции в плоскости заняты преимущественно четырехвалентным марганцем, ионный радиус которого меньше ионного радиуса трехвалентного марганца, то ион германия с наименьшим радиусом занимает позиции в плоскости, а более крупные ионы независимо от валентности заселяют позиции между плоскостями, которые преимущественно заняты трехвалентным марганцем.

4. Результаты и обсуждение

Измерения намагниченности выполнялись на установке Physical Properly Measurement System (PPMS Quantum design). На рис. 2 показаны температурные зависимости намагниченности в поле H = 500 Ое когда поле приложено вдоль оси c (синие звезды) и в плоскости ab (черные и пустые круги). Измерения в плоскости выполнены в двух режимах: охлаждение в нулевом поле (ZFC) и охлаждение в поле (FC). На кривых намагниченности есть две особенности в области 62 и 35 К. В соединении Pb₃Mn₇O₁₅ наблюдался широкий сглаженный пик в области 140 K, од-

Рис. 2. Температурные зависимости намагниченности в поле H = 500 Ое, когда поле приложено вдоль оси *с* (синие звезды), и в плоскости *ab* (черные и пустые круги).

Рис. 3. Температурные зависимости теплоемкости: красная — образец, черная — решеточный вклад.

Рис. 4. Аномальная часть теплоемкости.

нако, в Pb₃(Mn,Ti)₇O₁₅ этот пик исчезает. При температуре 62К происходит магнитное упорядочение, а при 35 К вероятно происходит спин-переориентационный переход. Поведение намагниченности соединения $Pb_3(Mn,Ti)_7O_{15}$ очень похоже на поведение намагниченности Pb₃(Mn,Ga)₇O₁₅. В обоих соединениях температура магнитного упорядочения 62 К. В обоих соединениях ион замещает ионы марганца в столбиках между плоскостями. Ионы трехвалентного галия немагнитные и это ослабляет обменное взаимодействие между слоями. Вероятно, что в исследуемом соединении ионы также немагнитные в четырехвалентном состоянии. Однако поскольку замещающие ионы имеют разную валентность в Pb₃(Mn,Ga)₇O₁₅ и Pb₃(Mn,Ti)₇O₁₅, то в плоскостях должно происходить перераспределение Mn^{3+} и Mn^{4+} , и оно будет различным в этих двух составах.

Мы также провели измерения теплоемкости, которые были проведены на адиабатической установке, представляющей собой упрощенную версию адиабатического калориметра, детально описанную в [10], без внешнего термостатирующего экрана. Измерения были выполнены в диапазоне от 15 до 300 К. При температурах 15–100 К криостат помещался в ванну с жидким гелием, а выше 100 К — в ванну с жидким азотом.

Образец представлял собой прессованную таблетку, помещенную в алюминиевую ячейку массой 125.2 mg, тепловой контакт обеспечивался вакуумной смазкой ApiezonN. Теплоемкость ячейки и вакуумной смазки определялись в отдельном эксперименте и учитывались при вычислении теплоемкости исследуемого образца.

На рис. 3 представлены температурные зависимости удельной теплоемкости образца и решетки. Теплоемкость решетки была определена линейной комбинацией функций Дебая и Эйнштейна методом наименьших квадратов, по данным теплоемкости без учета температурного интервала 50–90 К, содержащего аномальную часть. Температуры и Дебая и Эйнштейна составили $a_1 = 239$ К и $a_3 = 574$ К, с весовыми коэффициентами $a_0 = 0.61$ и $a_2 = 0.27$ соответственно.

$$f(x, a) = a_0 \left(\frac{x}{a_1}\right)^3 \int_0^{\frac{a_1}{x}} t^4 \frac{\exp(t)}{\left(\exp(t) - 1\right)^2} dt + a_2 \left(\frac{a_3}{x}\right)^2 \frac{\exp\left(\frac{a_3}{x}\right)}{\left(\exp\left(\frac{a_3}{x}\right)^{-1}\right)^2}$$

Разность полной и решеточных теплоемкостей позволила получить аномальную теплоемкость, содержащую две размытые аномалии с максимумами при температурах 62 и 35 К (рис. 4). На основе аномальной теплоемкости была вычислена температурная зависимость энтропии. Энтропии фазовых превращений составили 1.5 mJ/(q·K) и 0.5 mJ/(q·K) при 62 и 35 К соответственно.

Основываясь на анализе обменной магнитной структуры $Pb_3Mn_7O_{15}$ [5] ,мы оценили обменные взаимодействия в $Pb_3(Mn,Ti)_7O_{15}$. Мы предполагали, что ионы титана вошли в соединение в четырехвалентном состоянии, а распределение трехвалентных и четырехвалентных ионов марганца по позициям было выполнено с учетом экспериментальной магнитной структуры $Pb_3Mn_7O_{15}$, а также с учетом длин связи Me-O в

Таблица 4. Заселенность позиций ионами Mn³⁺, Mn⁴⁺, Ti⁴⁺

Позиция симметрии	Mn ³⁺	Mn ⁴⁺	Ti ⁴⁺
6f 8h 12i 2b	1.0 0.64 0.445	 0.555 1.0	 0.36

Positions	12 <i>i</i> -6 <i>f</i>	12 <i>i</i> -12 <i>i</i>	12i - 2b	12i - 8h	6f-8h	8h-8h
$Pb_3(Mn,Ti)_7O_{15}$ J(K)	-5.4	-4.9	-5.5	-1.1	-1.3	-6.3
$Pb_{3}Mn_{7}O_{15} \ J(K) \ [1]$	-8.5	-6.9	-3.9	-1.2	-3.4	-15.4

Таблица 5. Сравнение обменных взаимодействий Pb₃(Mn,Ti)₇O₁₅ и Pb₃Mn₇O₁₅

соединении $Pb_{3}(Mn,Ti)_{7}O_{15}~(табл. 3)$ и приведено в табл. 4.

Для расчета обменных взаимодействий с учетом заселенности различных позиций ионами трех- и четырехвалетного марганца мы использовали величины обменных взаимодействий, полученные в работе [1]. Величины обменных взаимодействий приведены в табл. 5. Присутствие немагнитного иона в "столбиках" между плоскостями (позиция 8h) значительно ослабляет обменное взаимодействие между плоскостями. Однако в плоскости все обменные взаимодействия остаются антиферроманитными и сильно фрустрированы из-за того, что обменные пути формируют треугольные группы.

Вероятно упорядоченные области с ближним порядком, возникающие в районе 140 К, связаны с межплоскостными позициями, когда эти позиции занимают немагнитный ион или другой магнитный ион, формирование таких областей становится невозможным. Так в $Pb_3(Mn,Ge)_7O_{15}$ сохраняется особенность в области 140–160 К, поскольку ионы германия заселяют позиции в плоскости, тогда как в $Pb_3(Mn,Ga)_7O_{15}$, $Pb_3(Mn,Ti)_7O_{15}$, $Pb_3Mn_{5.5}Ni_{1.5}O_{15}$ она исчезает.

Расположение ионов в плоскости *ab* схоже со структурой Кагоме, а поскольку все обменные взаимодействия в плоскости антиферромагнитны и близки по значению, это приводит к возникновению сильных фрустраций. В результате фрустраций в $Pb_3Mn_7O_{15}$ магнитные моменты в большинстве позиций ориентируются неколлинеарно, и углы между магнитными моментами близки к 60 и 120 градусам [5]. Поскольку температурные зависимости намагниченности $Pb_3(Mn,Ti)_7O_{15}$, измеренные при приложении поля в плоскости *ab* и вдоль оси с при температурах ниже 62 K, схожи с температурными зависимостями намагниченности $Pb_3Mn_7O_{15}$, мы предполагаем, что дальний магнитный порядок в $Pb_3(Mn,Ti)_7O_{15}$.

5. Заключение

Таким образом, в работе представлен синтез, исследование структурных, магнитных и теплофизических свойств $Pb_3Mn_7O_{15}$, допированного ионами титана. Обнаружено, что ионы титана занимают позиции в "столбиках" между плоскостями, что приводит к ослаблению обменного взаимодействия между плоскостями. На температурных зависимостях намагниченности и теплоемкости обнаружены две аномалии — при 62 и 35 К. При 62 К предположительно возникает дальний магнитный порядок, а при 35 К происходит спин-переориентационный переход, так же как и в $Pb_3Mn_7O_{15}$.

Финансирование работы

Исследование выполнено при финансовой поддержке РФФИ, Правительства Красноярского края и Красноярского краевого фонда науки в рамках научного проекта № 18-42-240007.

Работа выполнена на оборудовании Красноярского регионального центра коллективного пользования.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Е.В. Еремин, Н.В. Волков, К.А.Саблина, О.А. Баюков, М.С. Молокеев, В.Ю. Комаров. ЖЭТФ 151, 5, 930 (2017).
- [2] J.C.E. Rash, D.V. Sheptyakov, J. Schefer, L. Keller, M. Boehm, F. Gozzo, N.V. Volkov, K.A. Sablina, G.A. Petrakovskii, H. Grimmer, K. Conder, J.F. Löffler. J. Solid State Chem. 182, 1188 (2009).
- [3] N.V. Volkov, L.A. Solovyov, E.V. Eremin, K.A. Sablina, S.V. Misjul, M.S. Molokeev, A.I. Zaitsev, M.V. Gorev, A.F. Bovina, N.V. Mihashenok. Physica B 407, 689 (2012).
- [4] S.A.J. Kimber. J. Phys.: Condens. Matter. 24, 186002 (2012).
- [5] S.A. Ivanov, A.A. Bush, M. Hudl, A.I. Stash, G. Andre', R. Tellgren, V.M. Cherepanov, A.V. Stepanov, K.E. Kamentsev, Y. Tokunaga, Y. Taguchi, Y. Tokura, P. Nordblad, R. Mathieu. J. Mater Sci: Mater Electron 2, 12562 (2016).
- [6] N.V. Volkov, E.V. Eremin, O.A. Bayukov, K.A. Sablina, L.A. Solov'ev, D.A. Velikanov, N.V. Mikhashenok, E.I. Osetrov, J. Schefer, L. Keller, M. Boehmd. J. Magn. Magn. Mater. 342, 100 (2013).
- [7] A.J. Gatimu, H. Mizoguchi, A. Sleight, M.A. Subramanian. J. Solid State Chem. 183, 866 (2010).
- [8] T.I. Milenov, P.M. Rafailov, V. Tomov, R.P. Nikolova, V. Skumryev, J.M. Igartua, G. Madariaga, G.A. López, E. Iturbe-Zabalo, M.M. Gospodinov. J. Phys.: Condens. Matter 23 156001 (2011).
- [9] M. Jarvinen. J. Appl. Cryst. 26, 525 (1993).
- [10] A.V. Kartashev, I.N. Flerov, N.V. Volkov, K.A. Sablina, Phys. Solid State **50**, 2115 (2008).

Редактор Д.В. Жуманов