Топологические моды в неэрмитовых фононных кристаллах, индуцированных оптически в массиве квантовых ям

© А.В. Пошакинский, А.Н. Поддубный

Физико-технический инстиут им. А.Ф. Иоффе, Санкт-Петербург, Росси

E-mail: poshakinskiy@mail.ioffe.ru

12

Поступила в Редакцию 1 декабря 2020 г. В окончательной редакции 1 декабря 2020 г. Принята к публикации 3 декабря 2020 г.

Изучено теоретически распространение акустических волн в массиве квантовых ям, в котором путем оптического возбуждения с частотой, близкой к экситонному резонансу, реализовано модулированное в пространстве усиление и ослабление звука. Рассчитана дисперсия звуковых волн вблизи брэгговских резонансов, соответствующих волновому вектору модуляции. Описано возникновение "мнимых" стопзон, в которых происходит расщепление мнимых частей частоты блоховских мод. Продемонстрировано возникновение на краю структуры акустических топологических мод.

Ключевые слова: структуры с квантовыми ямами, акустические фононы, оптомеханика.

DOI: 10.21883/FTT.2021.04.50721.249

1. Введение

Простейшими одномерными системами, поддерживающими топологические краевые состояния, являются структуры, описываемые моделью Обри-Андре-Харпера (Aubry-André-Harper, AAH) [1]. В этой модели рассматривается последовательность узлов, между которыми возможно туннелирование частиц, причем потенциал узла и/или константа туннелирования модулируется в зависимости от номера узла *j* как $\cos(2\pi\alpha j + \phi)$. Если α является рациональным числом, $\alpha = \mathcal{M}/\mathcal{N}$, где \mathcal{M} и \mathcal{N} целые, то такая структура является периодической, а ее элементарная ячейка содержит \mathcal{N} узлов. При иррациональном α структура является квазикристаллом. В обоих случаях оказывается возможным установить соответствие между рассматриваемой одномерной системой и двумерной решеткой во внешнем магнитном поле, причем а играет роль магнитного потока через элементарную ячейку двумерной решетки (отнесенного к кванту магнитного потока) [2,3]. Поэтому энергетический спектр модели ААН, так же как и спектр двумерной системы в магнитном поле, может содержать зоны блоховских состояний с нетривиальной топологией, характеризующейся отличными от нуля числами Черна. В промежутках между такими зонами возникают краевые топологические моды. При изменении фазы модуляции ϕ от 0 до 2π энергия топологической моды полностью заметает энергетический зазор между зонами.

Модель ААН, сформулированная изначально применительно к электронам, в настоящее время активно применяется для описания света в структурах, оптические свойства которых модулированы в пространстве. Ключевыми отличиями таких задач от канонической модели ААН является открытость и неэрмитовость. Радиационные потери, имеющие место в практически любой оптической системе, приводят к конечному времени жизни краевых топологических мод [4]. Такие излучающие краевые состояния проявляются в виде резонансных особенностей в спектрах отражения света от структуры, а по зависимости фазы коэффициента отражения от фазы модуляции ϕ можно определить числа Черна [5]. При наличии накачки возможно также реализовать оптическое усиление, модулированное в пространстве. Такая структура может быть описана неэрмитовой моделью ААН, где модуляция потенциалов узлов или констант туннелирования является комплексной величиной [6,7]. Топологическая классификация неэрмитовых моделей ААН гораздо богаче, чем канонических [8,9]. Краевые состояния могут быть стационарными, если накачка и потери сбалансированы. В обратном случае усиливающие краевые моды могут быть использованы для лазерной генерации [10]. Большое внимание в настоящее время привлекают также модели ААН за пределами одночастичного приближения, в которых взаимодействие возбуждений может приводить к топологическим фазовым переходам [11] и топологическим состояниям нескольких связанных частиц [12].

В настоящей работе рассмотрен теоретически массив квантовых ям, в котором путем оптического возбуждения с частотой, близкой к экситонному резонансу, реализовано модулированное в пространстве усиление и ослабление акустических волн, описываемое неэрмитовой моделью ААН. Рассчитана дисперсия звука в таком фононном кристалле, а также установлено существование в нем краевых топологических мод.

А. Взаимодействие звука с экситонами в квантовой яме

В работе [13] нами было показано, что в квантовой яме, возбуждаемой интенсивным лазерным светом с частотой, близкой к экситонному резонансу, может реализовываться, в зависимости от знака отстройки, эффективное усиление или ослабление акустических волн. Эффект обусловлен резонансным поглощением или стимулированным излучением фононов при возбуждении экситона фотоном, энергия которого меньше или больше энергии экситона.

В настоящей работе будет рассмотрено возбуждение квантовых ям одновременно двумя электромагнитными волнами с частотами ω_1 и ω_2 . Такое оптическое возбуждение индуцирует в квантовой яме экситоны на этих частотах с концентрациями $|b_1|^2$ и $|b_2|^2$,

$$|b_{1,2}|^2 = \frac{I_{1,2}}{\hbar\omega_{1,2}} \frac{\Gamma_0}{\Delta_{1,2}^2 + \Gamma_x^2},\tag{1}$$

где $b_{1,2}$ — когерентные амплитуды экситонов, $I_{1,2}$ — интенсивность света на частоте $\omega_{1,2}$, $\Delta_{1,2} = \omega_{1,2} - \omega_x$ — отстройки частот лазеров от экситонного резонанса, Γ_0 — радиационное затухание экситона, характеризующее силу его взаимодействия со светом, Γ_x — нерадиационное затухание экситона, обусловленное потерями. Мы будем считать, что $\Gamma_0 \ll \Gamma_x$, так что формирования гибридных фоноритонных мод [14,15], обусловленных интенсивными процессами конверсии фононов в фотоны на стоксовой и анти-стоксовой частотах, не происходит.

Изменение акустических свойств квантовой ямы под действием оптического возбуждения, обусловленное взаимодействием возбужденных экситонов с фононами по механизму деформационного потенциала, описывается собственно-энергетической частью фонона Σ , играющей роль акустической восприимчивости квантовой ямы. Диаграммы процессов, вносящих вклад в Σ во втором порядке по $b_{1,2}$, показаны на рис. 1, где сплошные линии соответствуют экситонам, а волнистые — фононам. Собственно-энергетическая часть, описывающая рассеяние фонона без изменения его частоты Ω , определяется диаграммами, изображенными на рис. 1, *a*, *b*, и имеет вид [13]:

$$\Sigma_{0}(\Omega) = \sum_{j=1,2} \frac{|\Xi|^{2} |b_{j}|^{2}}{2\rho_{0} s_{0}^{3}} \frac{2\Delta_{j}\Omega}{\Delta_{j}^{2} - (\Omega + i\Gamma_{x})^{2}}, \qquad (2)$$

где Ξ — константа деформационного потенциала, ρ_0 и s_0 — плотность материала квантовой ямы и скорость продольного звука в ней. Наличие когерентного оптического возбуждения на одновременно двух частотах приводит к возможности изменения частоты фонона на $\delta\omega_L = \omega_1 - \omega_2$. Амплитуда конверсии фонона с частотой Ω в фонон с частотой $\Omega + \delta\omega_L$ дается недиагональным

Рис. 1. Диаграммы процессов, вносящих вклад в акустическую восприимчивость квантовой ямы Σ во втором порядке по амплитуде оптического возбуждения. Внешними прямыми линиями показаны амплитуды $b_{1,2}$ оптически созданных экситонов на частотах $\omega_{1,2}$. Внутренняя прямая линия соответствует экситонному пропагатору. Фононы обозначены волнистыми линиями. Вершины описывают взаимодействие экситонов с фононами по механизму деформационного потенциала.

элементом собственно-энергетической части, который соответствует диаграмме, изображенной на рис. 1, *c*, и имеет вид

$$\Sigma_1(\Omega + \delta\omega_L, \Omega) = \frac{|\Xi|^2 b_1 b_2^*}{2\rho_0 s_0^3} \frac{2(\bar{\omega}_L - \omega_x)\sqrt{\Omega(\Omega + \delta\omega_l)}}{\bar{\omega}_L^2 - \left(\frac{\delta\omega_L}{2} + \Omega + i\Gamma_x\right)^2},$$
(3)

где $\bar{\omega}_L = (\omega_1 + \omega_2)/2$. Амплитуда обратного процесса $\Sigma_1(\Omega - \delta \omega_L, \Omega)$ дается диаграммой, изображенной на рис. 1, *d*, и может быть получена из уравнения (3) заменой $\omega_1 \leftrightarrow \omega_2$.

Наличие процессов конверсии приводит к появлению бесконечной лестницы частот $\Omega_m = \Omega + m\delta\omega_L$, где m — целое число. Переходы между модами m и m+1 формально аналогичны туннелированию между соседними узлами в модели сильной связи, что позволяет рассматривать m как дополнительное синтетическое измерение [16]. Однако если $\omega_1 + \omega_2 = 2\omega_x$, т.е. частоты двух возбуждающих лазеров расположены симметрично относительно частоты экситона, амплитуда конверсии (3) обращается в нуль. Именно такой случай, когда лестницы частот не возникает, будет рассмотрен в дальнейшем. В этом случае, коэффициенты прохождения и отражения звука, падающего на квантовую яму по нормали, могут быть выражены через акустическую восприимчивость (2):

$$t(\Omega) = \frac{1}{1 + i\Sigma_0(\Omega)}, \quad r(\Omega) = \frac{i\Sigma_0(\Omega)}{1 + i\Sigma_0(\Omega)}, \quad (4)$$

Коэффициент усиления звука квантовой ямой определяется мнимой частью восприимчивости

$$G(\Omega) = |t(\Omega)|^2 + |r(\Omega)|^2 - 1 = rac{2\operatorname{Im}\Sigma_0(\Omega)}{|1+i\Sigma_0(\Omega)|^2}.$$

Рис. 2. Схема оптически индуцированного акустического кристалла. Оптическое возбуждение массива квантовых ям двумя стоячими электромагнитными волнами на частотах, отстроенных положительно и отрицательно от экситонного резонанса, приводит к пространственной модуляции акустической восприимчивости квантовых ям. Оттенками серого цвета показана мнимая часть акустической восприимчивости: черный цвет соответствует усилению звука, белый — поглощению. Показан случай, когда период модуляции в пять раз больше периода структуры, $\alpha = 1/5$. Пунктиром выделена элементарная ячейка фононного кристалла.

В. Метод матриц переноса для акустических волн

Используя коэффициенты отражения и пропускания (4), можно построить матрицу переноса, связывающую амплитуды акустических волн на левой и правой границах квантовой ямы [17]. В базисе бегущих волн матрица переноса имеет вид

$$\hat{T}_{\rm QW}(\Sigma_0) = \begin{bmatrix} 1 - i\Sigma_0(\Omega) & i\Sigma_0(\Omega) \\ -i\Sigma_0(\Omega) & 1 + i\Sigma_0(\Omega) \end{bmatrix}.$$
 (6)

Помимо взаимодействия с оптически созданными экситонами, фононы также испытывают отражение от интерфейсов квантовой ямы, обусловленное различием механических свойств материала квантовой ямы и барьеров. Матрица переноса через интерфейс барьер/квантовая яма имеет вид [17]:

$$\hat{T}_{int}(\beta) = \frac{1}{2} \begin{bmatrix} 1+\beta & 1-\beta\\ 1-\beta & 1+\beta \end{bmatrix},$$
(7)

где $\beta = (\rho s)/(\rho_0 s_0)$ характеризует отличие плотностей $(\rho_0 \ u \ \rho)$ и продольных скоростей звука $(s_0 \ u \ s)$ в материале квантовой ямы и барьере. Для квантовых ям GaAs/AlAs параметр $\beta \approx 0.84$. Матрица переноса через интерфейс квантовая яма/барьер дается $\hat{T}_{int}(1/\beta)$.

Матрица переноса через квантовую яму и интерфесы определяется произведением $\hat{T}_{int}(1/\beta)\hat{T}_{\rm sp}(k_0a/2)\hat{T}_{\rm QW}\hat{T}_{\rm sp}(k_0a/2)\hat{T}_{\rm int}(\beta)$, где $\hat{T}_{\rm sp}$ есть матрица переноса через однородную среду,

$$T_{\rm sp}(\Phi) = \begin{bmatrix} e^{i\Phi} & 0\\ 0 & e^{-i\Phi} \end{bmatrix},\tag{8}$$

 $k_0 = \Omega/s_0$ — волновой вектор фонона внутри квантовой ямы, a — ширина квантовой ямы. Мы будем рассматривать достаточно узкие квантовые ямы, для которых $k_0 a \ll 1$. В этом случае матрица переноса через квантовую яму с интерфейсами принимает вид, схожий с уравнением (6), где Σ_0 необходимо заменить на Σ ,

$$\Sigma = \beta \sigma_0 + \frac{k_0 a (1 - \beta^2)}{2\beta}.$$
 (9)

Первое слагаемое в уравнении (9) описывает перенормировку силы взаимодействия звука с экситонами, обусловленную интерфейсами и аналогичную эффекту Парселла в оптике. Второе слагаемое представляет собой вещественный вклад в акустическую восприимчивость квантовой ямы и описывает отражение звука, обусловленное акустическим контрастом.

С. Фононный кристалл на основе массива квантовых ям

Мы рассматриваем периодическую структуру из N квантовых ям, разделенных барьерами толщиной d, см. рис. 2. Структура возбуждается слева двумя лазерами на частотах $\omega_1 = \omega_x + \Delta$ и $\omega_2 = \omega_x - \Delta$ с одинаковой интенсивностью. Справа от системы находится зеркало, отражение от которого формирует внутри структуры стоячую электромагнитную волну. Интенсивность волны зависит от координаты вдоль оси роста z как

$$I_{1,2}(z) = I_0 \sin^2 [q_{1,2}(z - z_{\rm mir})], \qquad (10)$$

где $q_{1,2} = \omega_{1,2}/c$ — волновой вектор света, z_{mir} — координата зеркала. Мы пренебрегли поглощением света на экситонном резонансе, которое дается формулой $2N\Gamma_0\Gamma_x/(\Delta^2 + \Gamma_x^2)$ и мало, если $\Gamma_0 \ll \Gamma_x$, а частота лазера достаточно отстроена от резонанса. Согласно формуле (2), обусловленный оптическим возбуждением вклад в акустическую восприимчивость *j*-ой квантовой ямы, находящейся в точке $z_j = jd$, определяется разностью интенсивностей положительно и отрицательно отстроенного от частоты экситона электрического поля, $I_1(z_j) - I_2(z_j)$, и имеет вид

$$\Sigma_{0}(\Omega) = \frac{|\Xi|^{2}\Gamma_{0}I_{0}}{\rho_{0}s_{0}^{3}\omega_{L}(\Delta^{2}+\Gamma_{x}^{2})}\frac{\Omega\Delta}{\Delta^{2}-(\Omega+i\Gamma_{x})^{2}}$$

$$\times \sin\left[(q_{1}-q_{2})(z_{j}-z_{\mathrm{mir}})\right]\sin\left[(q_{1}+q_{2})(z_{j}-z_{\mathrm{mir}})\right].$$
(11)

Разностью волновых векторов $q_1 - q_2 = 2\Delta/c$ можно пренебречь на масштабах длины структуры Nd, если период структуры $d \sim s/\Delta$, а число квантовых ям

 $N \ll c/s \sim 10^5$. Тогда первый синус в зависимости (11) равен константе, и вся координатная зависимость определяется $\sin [2q_L(z_i - z_{\min})]$.

Мы будем интересоваться свойствами звука, частота которого близка к отстройке лазеров от экситонного резонанса, $\Omega \approx \Delta$. В этом случае влияние оптического возбуждения на акустические свойства, описываемое уравнением (11), максимально. Полная собственно-энергетическая часть, уравнение (9), для *j*-ой квантовой ямы принимает вид

$$\Sigma_j = \Sigma' + i\Sigma'' \sin(2\pi\alpha j + \phi), \qquad (12)$$

где $\alpha = q_L d/\pi$ определяется отношением периода структуры d к длине волны света лазера, фаза $\phi = -2q_{LZ\,mir}$ контролируется положением зеркала, $\Sigma' = k_0 a (1 - \beta^2)/(2\beta)$ определяется акустическим контрастом, а $\Sigma'' = |\Xi|^2 \Gamma_0 I_0/(2\rho_0 s_0^3 \omega_L \Delta \Gamma_x)$ обусловлено оптической накачкой. Для реалистичных массивов квантовых ям GaAs/AlGaAs, подобных изученным в работе [18], $\Sigma' \sim 0.4$, а $\Sigma' \sim 0.05$ для накачки с интенсивностью 0.1 mW/ μ ^{m²}, соответствующей концентрации экситонов $|b_L|^2 \sim 10^{10}$ сm⁻² [13].

Гармоническая модуляция акустических свойств (12) имеет вид, аналогичный модуляции энергий узлов в модели ААН. Ключевым отличием является то, что в рассматриваемой задаче амплитуда модуляции чисто мнимая. Модулируется не вещественная, а мнимая часть акустического импеданса, т. е. коэффициент поглощения и усиления звука.

3. Дисперсия звука и краевые акустические моды

А. Дисперсия звука

Для простоты мы будем считать, что длина волны лазера соразмерна с расстоянием между квантовыми ямами d, т.е. α рационально, $\alpha = \mathcal{M}/\mathcal{N}$, где \mathcal{M} и \mathcal{N} — целые числа. Тогда период структуры с учетом оптической модуляции увеличивается до $D = d\mathcal{N}$. Акустическая матрица переноса через период дается выражением

$$\hat{T}^{(1)} = \prod_{j=1}^{\mathcal{N}} \hat{T}_{\rm sp}(kd) \hat{T}_{\rm QW}(\Sigma_j), \qquad (13)$$

где при вычислении произведения множители должны располагаться справа налево в порядке увеличения j. Учитывая, что в реальных системах $\Sigma_j \ll 1$, матрицу $\hat{T}^{(1)}$ можно вычислить в линейном порядке по Σ_j , что дает

$$\hat{T}^{(1)} = \begin{bmatrix} (1 - if_0)e^{ikD} & if_k e^{ikD} \\ -if_{-k}e^{-ikD} & (1 + if_0)e^{-ikD} \end{bmatrix}.$$
 (14)

Здесь f_k — структурный фактор, представляющий собой дискретное преобразование Фурье от Σ_j внутри элементарной ячейки,

$$f_k = \sum_{j=1}^{\mathcal{N}} \Sigma_j e^{-2ikz_j}.$$
 (15)

541

Приравнивая собственные числа матрицы переноса через элементарную ячейку (14) величине $e^{\pm iKD}$, можно определить блоховский волновой вектор K, описывающий распространение звука в бесконечной периодической структуре. Закон дисперсии блоховских мод, т.е. связь между блоховским волновым вектором K и частотой звука $\Omega = sk$, имеет вид

$$\sin^2 KD = \sin^2 (kD - f_0) - f_k f_{-k}.$$
 (16)

Если $f_{-k} = \pm f_k^*$, т.е. f_k вещественное или чисто мнимое, дисперсионное уравнение (16) представляет собой аналитическую функцию с вещественными коэффициентами, а значит его решения либо вещественны, либо представляют собой пары комплексно сопряженных чисел.

Вдали от границ зоны Биллюэна вторым слагаемым в правой части уравнения (16), которое квадратично по Σ_j , можно пренебречь, и дисперсия звука принимает простую форму $K = \Omega/s - f_0/D$. Этот результат соответствует перенормировке скорости звука в слоистой структуре, вследствие усреднения акустических свойств (гармоника f_0 представляет собой усредненный акустический контраст).

Вблизи частот $\Omega_g = (s/D)(g\pi + f_0)$, где g — целое, дисперсия акустических волн сильно модифицируется вследствие брэгговской дифракции. Линеаризуя уравнение (16) вблизи таких частот, получаем

$$\tilde{\Omega}^2 = s^2 \tilde{K}^2 + \delta^2, \tag{17}$$

где

$$\delta^{2} = (s/D)^{2} f_{g\pi/D} f_{-g\pi/D}, \qquad (18)$$

 $\tilde{\Omega} = \Omega - \Omega_g$ и $\tilde{K} = K - g\pi/D$ — отстройка частоты и волнового вектора от величин, соответствующих условию Брэгга. В случае вещественного и положительного δ^2 уравнение (17) описывало бы дираковскую дисперсию, в которой δ играет роль массы и приводит к появлению акустической стоп-зоны шириной 2δ при $\tilde{K} = 0$.

В рассматриваемом нами неэрмитовом фононном кристалле с модуляцией акустического поглощения и усиления, описываемой уравнением (12), отличные от нуля компоненты структурного фактора имеют вид

$$f_0 = \mathcal{N}\Sigma',$$

$$f_{\pm\pi\mathcal{M}/D} = \pm \mathcal{N}e^{\pm i\phi}\Sigma''/2.$$
(19)

Вблизи частот $\Omega \approx sn \mathcal{N}\pi/D$, где n — целое, дисперсия звука описывается уравнением (17) с вещественным

Рис. 3. (*a*) Дисперсия звука в оптически индуцированном неэрмитовом фононном кристалле на основе массива квантовых ям, акустическая восприимчивость которых описывается формулой (12) с $\alpha = 1/5$, $\phi = 0$, $\Sigma' = 0.1 \Omega d/s$, $\Sigma'' = 0.05$. Панели (*b*-*e*) показывают в более крупном масштабе дисперсию звука вблизи четырех брэгговских резонансов, обусловленных оптической модуляцией.

 $\delta = \Sigma' s/d$. Вблизи частот $\Omega \approx s \pi (n \mathcal{N} \pm \mathcal{M})/D$ дисперсия звука описывается уравнением (17) с "чисто мнимой" стоп-зоной $\delta = i\Sigma''s/(2d)$. В этом случае частоты собственных мод в диапазоне $|\vec{K}| < \delta/s$ являются комплексными, а расщепление между ними — чисто мнимым. Одна из собственных частот имеет положительную мнимую часть, т.е. мода нарастает со временем, а другая — отрицательную, т.е. мода затухает со временем. Физически, наличие нарастающей моды означает возможность акустической лазерной генерации. Генерация начинается, когда мнимая часть частоты моды превосходит затухание, обусловленное неучтенными в нашей модели, но всегда присутствующими в реальной системе акустическими потерями. Вдали от брэгговского резонанса частоты обоих мод мод вещественны, что обусловлено тем, что накачка и поглощение звука в рассматриваемом фононном кристалле в среднем скомпенсированы.

На рис. 3, а показана дисперсия звука в фононном кристалле с $\alpha = 1/5$. Широкая стоп-зона на частотах (измеряемых в единицах s/d) от 3.2 до 3.8 обусловлена акустическим контрастом между материалом ямы и барьеров, который описывается величиной $\Sigma' = 0.35$. Оптическая накачка, приводящая к модуляции акустического усиления и поглощения с периодом в пять раз большим, чем период массива квантовых ям, приводит к появлению еще четырех брэгговских резонансов на более низких частотах, интенсивность которых определяется величиной $\Sigma'' = 0.05$. Дисперсия вблизи этих резонансов показана на панелях рис. 3, b-e. Для брэгговских резонансов вблизи частот 0.70 и 2.73, см. рис. 3, b, e, описываемых отличными от нуля структурными факторами $f_{\pm\pi/(5d)}$, δ чисто мнимое, что приводит к появлению "мнимых" стоп-зон. Структурные факторы $f_{\pm 2\pi/(5d)}$, соответствующие брэгговским резонансам вблизи частот 1.398 и 2.084, для рассматриваемой модуляции равны нулю. Брэгговская дифракция возможна лишь во втором порядке по Σ'' . В результате в этих точках возникают узкие реальные стоп-зоны, описываемые вещественным δ, см. рис. 3, *с*, *d*.

В. Акустические топологические состояния

При изменении фазы модуляции ϕ от $-\pi$ до π структурный фактор $f_{\pm\pi\mathcal{M}/D} \sim e^{\pm i\phi}$ делает в комплексной плоскости один полный оборот вокруг начала координат. Отличное от нуля число намоток структурного фактора $w = \pm 1$ свидетельствует о нетривиальной топологии блоховских состояний и должно приводить к возникновению |w| краевых топологических мод, которые при изменении ϕ пересекают соответствующую стоп-зону в направлении, определяемом знаком w. Наличие краевых мод топологически защищено от модификаций границы структуры: при добавлении на границу произвольных дополнительных слоев краевые моды сохраняются, хотя диапазон ϕ , в котором они существуют, может измениться [5].

Частоты мод, локализованных на левом краю полубесконечного массива, могут быть найдены из уравнений для компонент матрицы переноса через период [4]

$$\hat{T}_{12}^{(1)}(\Omega) = 0, \quad |\hat{T}_{22}^{(1)}(\Omega)| < 1.$$
 (20)

На рис. 4, a-d сплошными кривыми показаны рассчитанные зависимости вещественной части частоты краевого состояния от фазы модуляции. Как и ожидалось исходя из чисел намотки структурного фактора $w = \pm 1$, состояния на рис. 4, a, d пересекают частоту соответствующей "мнимой" стоп-зоны, обозначенную пунктиром, один раз, но в противоположных направлениях. Краевые состояния на рис. 4, b, c пересекают частоту, соответствующую реальной стоп-зоне, два раза, и также в противоположных направлениях. Более высокие числа намотки $w = \pm 2$ объясняются тем, что смешивание зон в данных брэгговских резонансах происходит лишь во

Рис. 4. (a)-(d) Частоты акустических краевых мод, возникающих вблизи четырех брэгтовских резонансов, обусловленных оптической модуляцией, как функция фазы модуляции. Пунктиром показаны границы реальных стоп-зон и частоты "мнимых" стоп-зон. (e-h) Мнимая часть частоты краевой моды как функция фазы модуляции. (i)-(l). Пространственная скорость затухания краевых мод вглубь структуры как функция фазы модуляции. Расчет выполнен для тех же параметров, что рис. 3

втором порядке теории возмущений и пропорционально $f_{\pm\pi/(5d)}^2 \sim e^{\pm 2i\phi}$.

На рис. 4, e-h показаны рассчитанные зависимости мнимой части частоты краевого состояния от фазы модуляции. Несмотря на то, что в структуре есть как квантовые ямы, усиливающие звук, так и ямы, его ослабляющие, мнимая часть частоты краевого состояния является всегда отрицательной, т.е. краевое состояние является всегда затухающим, в отличие от объемных блоховских мод, которые могут как затухать, так и возрастать. Это обусловлено тем, что доминирующий вклад в мнимую часть энергии краевого состояния

вносят радиационные потери на границе, вблизи которой оно локализовано. Обратная глубина локализации краевых состояний, определяемая величиной $-\ln |\hat{T}_{22}^{(1)}(\Omega)|$, построена на рис. 4, *i*–*l*. Чем более состояние делокализовано, тем ближе к нулю мнимая часть его частоты.

4. Заключение

Нами предложен способ реализации неэрмитовой модели Обри–Андре–Харпера (Aubry–André–Harper, AAH) для звука, основанный на оптической модуляции

акустических свойств массива квантовых ям стоячей электромагнитной волной. Амплитуда модуляции определяется интенсивностью света, а фазой модуляции можно управлять, меняя положение зеркала, формирующего стоячую волну. Показано, что на краю структуры возникают акустические топологические моды, частота которых пересекает акустические стоп-зоны при сканировании фазы модуляции. Краевые моды обладают конечным радиационным временем жизни, обусловленным уходом звука через границу системы.

Финансирование работы

Работа выполнена при поддержке гранта Российского научного фонда № 20-12-00194.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] S. Aubry, G. Andre. Ann. Isr. Phys. Soc. 3, 133 (1980).
- [2] L.-J. Lang, X. Cai, S. Chen. Phys. Rev. Lett. **108**, 220401 (2012).
- [3] Y.E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, O. Zilberberg. Phys. Rev. Lett. 109, 106402 (2012).
- [4] A.V. Poshakinskiy, A.N. Poddubny, L. Pilozzi, E.L. Ivchenko. Phys. Rev. Lett. 112, 107403 (2014).
- [5] A.V. Poshakinskiy, A.N. Poddubny, M. Hafezi. Phys. Rev. A 91, 043830 (2015).
- [6] A.K. Harter, T.E. Lee, Y.N. Joglekar. Phys. Rev. A 93, 062101 (2016).
- [7] Q.-B. Zeng, S. Chen, R. Lu. Phys. Rev. A 95, 062118 (2017).
- [8] S. Longhi. Phys. Rev. Lett. 122, 237601 (2019).
- [9] Q.-B. Zeng, Y.-B. Yang, Y. Xu. Phys. Rev. B 101, 020201 (2020).
- [10] L. Pilozzi, C. Conti. Phys. Rev. B 93, 195317 (2016).
- [11] D.-W. Zhang, Y.-L. Chen, G.-Q. Zhang, L.-J. Lang, Z. Li, S.-L. Zhu. Phys. Rev. B 101, 235150 (2020).
- [12] Y. Ke, J. Zhong, A.V. Poshakinskiy, Y.S. Kivshar, A.N. Poddubny, C. Lee. Phys. Rev. Res. 2, 033190 (2020).
- [13] A.V. Poshakinskiy, A.N. Poddubny, A. Fainstein. Phys. Rev. Lett. 117, 224302 (2016).
- [14] A.L. Ivanov, L. Keldysh. Zh. Eksp. Teor. Fiz. 84, 404 (1982),
 [Sov. Phys. JETP 57, 234 (1983)].
- [15] A.V. Poshakinskiy, A.N. Poddubny. Phys. Rev. Lett. 118, 156801 (2017).
- [16] L. Yuan, Q. Lin, M. Xiao, S. Fan. Optica 5, 1396 (2018).
- [17] E.L. Ivchenko. Optical Spectroscopy of Semiconductor Nanostructures. Alpha Science International, Harrow, UK (2005).
- [18] B. Jusserand, A.N. Poddubny, A.V. Poshakinskiy, A. Fainstein, A. Lemaitre. Phys. Rev. Lett. 115, 267402 (2015).

Редактор Е.Ю. Флегонтова