09.1;01.1

© М.А. Трусов¹, А.Е. Ефимов², Д.О. Соловьева³, И.С. Васкан^{3,4}, В.А. Олейников³, К.Е. Мочалов^{3,¶}

¹ Институт теоретической и экспериментальной физики им. А.И. Алиханова Национального исследовательского центра "Курчатовский институт", Москва, Россия

² Национальный медицинский исследовательский центр трансплантологии и искусственных органов им. акад. В.И. Шумакова Минздрава России, Москва, Россия

³ Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, Москва, Россия ⁴ Московский физико-технический институт (Национальный исследовательский университет), Долгопрудный, Московская обл., Россия

[¶] E-mail: mochalov@mail.ru

Поступило в Редакцию 9 октября 2020 г. В окончательной редакции 23 ноября 2020 г. Принято к публикации 27 ноября 2020 г.

Рассмотрены конкурентные схемы построения оптической системы для комбинации сканирующего зондового микроскопа и оптического микроспектрометра, позволяющие исследовать непрозрачные образцы методом зондового усиления интенсивности комбинационного рассеяния. Произведен подбор оптимальных объективов для реализации каждой схемы с учетом наличия зонда сканирующего микроскопа. Количественно оценена эффективность применения каждой оптической схемы как для возбуждения сигнала комбинационного рассеяния, так и для сбора вторичного излучения. В результате выявлена наиболее эффективная с точки зрения параметра "возбуждение/сбор" оптическая система.

Ключевые слова: сканирующая зондовая микроскопия, микроспектроскопия, зондовое усиление интенсивности комбинационного рассеяния.

DOI: 10.21883/PJTF.2021.05.50677.18576

В последнее десятилетие широкое распространение получили корреляционные методы микроскопических исследований, когда образец изучается несколькими комплементарными методами [1-5]. В связи с этим большой интерес представляет комбинация сканирующей зондовой микроскопии (СЗМ) со спектроскопией комбинационного рассеяния, ставшая основой метода локального зондового усиления интенсивности комбинационного рассеяния (tip enhanced Raman scattering, TERS) [6], в частности реализованная в уникальной научной установке — системе зондово-оптической 3D-корреляционной микроскопии, созданной авторами настоящей работы (http://ckp-rf.ru/usu/486825/). Благодаря возможности наномасштабной характеризации образцов метод TERS применяется как для химической визуализации различных материалов [7], так и для структурно-функциональных исследований биологических макромолекул [8]. На данный момент наилучшие результаты получены с использованием инвертированной оптической схемы микроспектрометра, позволяющей применять объективы с NA > 1 [7,9]. Однако на практике зачастую приходится иметь дело с непрозрачными образцами, не позволяющими реализовать эту схему. Необходимость установки СЗМ-зонда в область между объективом и образцом значительно снижает числовую апертуру используемого объектива. Это в свою очередь снижает эффективность возбуждения *z*-компоненты электромагнитного поля, необходимой для усиления поля под зондом и сбора вторичного излучения. На данный момент существует ряд конкурентных технических решений, направленных на преодоление указанной проблемы, и целью настоящей работы являются их сравнение и выбор наиболее оптимальной оптической системы ввода/вывода излучения.

В общем случае для описания явления комбинационного рассеяния света используется дипольное приближение. На рисунке представлены общая схема расположения основных элементов при проведении TERS-экспериментов и диаграмма направленности распространяющегося излучения. В дипольном приближении относительная интенсивность излучения в элемент телесного угла, нормированная на единицу, дается известным выражением

$$I = \frac{3}{8\pi} \int_{\theta_{\min}}^{\theta_{\max}} d\theta \sin^3 \theta \int_{\varphi_{\min}}^{\varphi_{\max}} d\varphi, \qquad (1)$$

где θ и φ — полярный и азимутальный углы соответственно. Для простоты примем, что ось диполя (ось Z) в данном случае ориентирована по нормали к образцу. Для достижения заметного усиления сигнала комбинационного рассеяния из-под зонда необходимо

Схема расположения основных элементов при проведении традиционных TERS-экспериментов. 1 — объектив в позиции 1; 2 — объектив в позиции 2; 3 — электромагнитное поле, излучаемое диполем; 4 — излучающий диполь; 5 — TERS-зонд.

обеспечить наличие вертикальной (z) компоненты электромагнитного поля **E** в области острия зонда. Известно два основных варианта реализации данного условия. Первый вариант заключается в использовании верхнего объектива (объектив в позиции 1 на рисунке) и секторальной фазовращательной пластинки, разворачивающей плоскость поляризации в каждом секторе так, чтобы вектор электрического поля был направлен от оптической оси. В такой схеме при полной равномерной засветке входного кольцевого зрачка мы получим относительное значение интенсивности *z*-компоненты в падающей волне, равной

$$\frac{\int\limits_{\theta_{\min}}^{\theta_{\max}} (\tan\theta)^3 d\theta}{\int\limits_{\theta_{\min}}^{\theta_{\max}} \frac{\tan\theta}{(\cos\theta)^2} d\theta} = 1 - \frac{2\ln\frac{\cos\theta_{\min}}{\cos\theta_{\max}}}{(\tan\theta_{\max})^2 - (\tan\theta_{\min})^2}, \quad (2)$$

где θ_{max} и θ_{min} — максимальный и минимальный углы засветки зрачка объектива из точки фокуса.

۵

Для более аккуратного математического описания данной оптической схемы необходимо также учесть фактор виньетирования (частичного затенения) фокусируемого пучка балкой СЗМ-зонда (кантилевера). Для этого достаточно ограничить пределы интегрирования по полярному углу в формуле (1) исходя из угла сходимости балки. Данный угол составляет примерно 30° для промышленно изготавливаемых TERS-зондов. Следовательно, пределы интегрирования составляют 15 < θ < 345°.

В частности, для зеркального объектива схемы Шмидта Thorlabs $40 \times /NA = 0.50$ (Thorlabs Inc., США) с затененной центральной частью имеем $\theta_{\text{max}} = 30^\circ$, $\theta_{\text{min}} \approx 14^\circ$, что дает относительное значение *z*-компоненты примерно 15%. Для линзового объектива Mitutoyo Plan Apo HR Infinity Corrected Objective $50 \times /NA = 0.75$ (Mitutoyo Corp., Япония) имеем $\theta_{\text{max}} = 30^\circ$, $\theta_{\text{min}} = 0^\circ$, что дает относительное значение *z*-компоненты примерно 32%.

Использование двух типов объективов диктуется различием в их конструкции. Зеркальные объективы позволяют завести бо́льшую часть излучения в обход балки кантилевера, тогда как линзовые объективы имеют бо́льшую числовую апертуру.

Второй вариант заключается в использовании бокового объектива (объектив в позиции 2 на рисунке) типа Mitutoyo Plan Apo SL200 (Mitutoyo Corp., Япония), в который заводится линейно поляризованное лазерное излучение *p*-типа. При угле 40° оптической оси объектива к вертикали (являющемся технически предельным) относительная величина интенсивности *z*-компоненты в падающей волне с таким объективом составит

$$(\sin 40^\circ)^2 \approx 41\%.$$
 (3)

Теперь приступим к анализу эффективности сбора вторичного излучения теми же объективами, которые были проанализированы выше. Вернемся к формуле (1) и данным рисунка. Классический вариант сбора "сверху" (позиция 1 на рисунке) линзовым объективом с числовой апертурой NA с оптической осью, ориентированной вдоль оси диполя, обеспечивает следующую эффективность:

$$\eta = \frac{3}{4} \int_{0}^{\arcsin NA} d\theta \sin^{3} \theta = \frac{1}{2} - \frac{3}{4} \cos \arcsin NA + \frac{1}{4} \cos^{3} \arcsin NA.$$
(4)

Для объектива Mitutoyo $50 \times /NA = 0.75$ эффективность сбора составляет примерно 7%. Если использовать в такой же позиции зеркальный объектив схемы Шмидта, то формулу расчета эффективности нужно модифицировать

$$\eta = \frac{3}{4} \int_{\theta_{\min}}^{\theta_{\max}} d\theta \sin^3 \theta, \tag{5}$$

где θ_{\max} определяется апертурой, а θ_{\min} — относительной величиной *r* затененной области зрачка объектива. Из геометрических соображений легко вычислить, что

$$\tan \theta_{\min} = \sqrt{\frac{r}{1+r}} \tan \theta_{\max}.$$
 (6)

Для зеркального объектива Thorlabs $40 \times /NA = 0.50$ находим, что $\theta_{\rm max} = 30^\circ$, $\theta_{\rm min} \approx 14^\circ$, и эффективность сбора составляет всего $\eta \approx 1.1\%$.

Рассмотрим теперь вариант сбора "сбоку" (позиция 2 на рисунке) линзовым объективом с оптической осью, наклоненной к вертикали на определенный угол θ_0 . Интегрирование по азимутальному углу в исходной формуле можно выполнить явно, и мы получаем следующее

выражение:

$$\eta = \frac{3}{8\pi} \int_{\theta_0 - \arcsin NA}^{\theta_0 + \arcsin NA} 2\sin^3 \theta$$

$$\times \arccos \frac{\sqrt{1 - NA^2} - \cos \theta_0 \cos \theta}{\sin \theta_0 \sin \theta} d\theta.$$
(7)

Для варианта Mitutoyo Plan Apo SL200 (NA = 0.62) имеем arcsin $NA \approx 38^{\circ}$. Рабочее расстояние объектива составляет 13 mm, его диаметр 32 mm, что и определяет упомянутый ранее его предельный наклон к вертикальной оси $\theta_0 \approx 40^{\circ}$. При данных параметрах получаем величину эффективности сбора $\eta \approx 5.1\%$.

Общую эффективности работы оптической системы можно представить как произведение эффективности возбуждения на эффективность сбора при фиксированной мощности возбуждающего излучения. Общая эффективность рассмотренных оптических схем реализации методики TERS выглядит следующим образом:

— для высокоапертурного объектива Міtutoyo 50 × /NA = 0.75 в схеме "сверху" $\sim 2.2\%;$

— для зеркального объектива схемы Шмидта Thorlabs 40 × /NA = 0.50 в схеме "сверху" $\sim 0.17\%$;

— для объектива Mitutoyo Plan Apo SL200 под углом 40° к нормали ~ 2.1%.

Таким образом, мы установили, что для реализации методики TERS одинаково возможно использование как бокового объектива, установленного под углом, так и высокоапертурного объектива "сверху". Важно отметить, что первый вариант значительно проще в реализации, однако в ряде случаев, например для недавно разработанных установок 3D-TERS [10], использование бокового объектива невозможно по конструктивным соображениям. Кроме того, боковой объектив в отличие от установленного сверху не позволяет реализовать методики стандартной широкопольной и конфокальной микроспектроскопии.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (проект № 18-19-00718).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- B. Joosten, M. Willemse, J. Fransen, A. Cambi, K. van den Dries, Front. Immunol., 9, 1908 (2018). DOI: 10.3389/fimmu.2018.01908
- T.L. Burnett, P.J. Withers, Nature Mater., 18, 1041 (2019).
 DOI: 10.1038/s41563-019-0402-8

- [3] A. Burel, M.-T. Lavault, C. Chevalier, H. Gnaegi, S. Prigent, A. Mucciolo, S.Dutertre, B.M. Humbel, T. Guillaudeux, I. Kolotuev, Development, 145 (12), dev160879 (2018).
 DOI: 10.1242/dev.160879
- [4] A.E. Efimov, I.I. Agapov, O.I. Agapova, V.A. Oleinikov,
 A.V. Mezin, M. Molinari, I. Nabiev, K.E. Mochalov, Rev. Sci. Instrum., 88 (2), 023701 (2017). DOI: 10.1063/1.4975202
- [5] K.E. Mochalov, A.E. Efimov, A. Bobrovsky, I.I. Agapov, A.A. Chistyakov, V. Oleinikov, A. Sukhanova, I. Nabiev, ACS Nano, 7 (10), 8953 (2013). DOI: 10.1021/nn403448p
- [6] J. Wessel, J. Opt. Soc. Am. B, 2 (9), 1538 (1985).
 DOI: 10.1364/JOSAB.2.001538
- [7] N. Kumar, B.M. Weckhuysen, A.J. Wain, A.J. Pollard, Nature Protocols, 14 (4), 1169 (2019).
 DOI: 10.1038/s41596-019-0132-z
- [8] C. D'Andrea, A. Foti, M. Cottat, M. Banchelli, C. Capitini, F. Barreca, C.Canale, M. de Angelis, A. Relini, O.M. Maragó, R. Pini, F. Chiti, P.G. Gucciardi, P. Matteini, Small, 14 (36), 1800890 (2018). DOI: 10.1002/smll.201800890
- [9] L. Gao, H. Zhao, T. Li, P. Huo, D. Chen, B. Liu, Int. J. Mol. Sci., 19 (4), 1193 (2018). DOI: 10.3390/ijms19041193
- [10] K.E. Mochalov, A.A. Chistyakov, D.O. Solovyeva, A.V. Mezin, V.A. Oleinikov, I.S. Vaskan, M. Molinari, I.I. Agapov, I. Nabiev, A.E. Efimov, Ultramicroscopy, **182**, 118 (2017). DOI: 10.1016/j.ultramic.2017.06.022

44