02

Взаимосвязь между молекулярной динамикой полистирола и его модификаций и параметрами терагерцового поглощения в ИК спектрах

© В.А. Рыжов

ФТИ им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: v.ryzhov@mail.ioffe.ru

Поступила в редакцию 22.10.2020 г. В окончательной редакции 22.10.2020 г.

Принята к публикации 19.11.2020 г.

Измерены и проанализированы ИК спектры полистирола (ПС) и его модификаций, полученных замещениями атомов водорода в бензольном кольце метильными группами и/или атомами хлора и брома. Все эти спектры имеют аномально широкую асимметричную полосу поглощения с положением максимума в терагерцовом диапазоне от 40 до 80 cm⁻¹ в зависимости от природы заместителя. Она может быть отнесена к поглощению, связанному с либрацией (вращательными колебаниями) фенольных колец мономерных звеньев, т. е. к поглощению по механизму Поли. Взаимосвязь между спектральными параметрами этого поглощения и молекулярными характеристиками изученных полимеров позволяет непосредственно анализировать роль молекулярной структуры и межмолекулярных сил в динамике их макромолекул. Обнаружено, что высоты потенциальных барьеров либрации мономерных единиц ПС и его модификаций, оцененные на основе анализа поглощения Поли, близки к энергиям активации низкотемпературной δ -релаксации в этих стеклообразных полимерах. Сравнение барьеров либрации мономерных единиц макромолекул ПС и его модификаций с активационными барьерами локальной сегментальной подвижности в тех же ПС подтверждает, что β -процесс как элементарный акт сегментальной динамики обусловлен коррелированным либрационным движением участка цепи, статистически независящего от соседних участков. В этом смысле универсальный δ -процесс является высокочастотным предшественником β -процесса в полимерах, подобных ПС.

Ключевые слова: молекулярная динамика, β-релаксация, стеклование, полистирол и его модификации, ИК спектры.

DOI: 10.21883/OS.2021.03.50655.264-20

Введение

Влияние особенностей молекулярного строения и взаимодействий полимерных молекул на их локальную и сегментальную динамику по-прежнему остается в кругу теоретических и экспериментальных исследований [1,2]. В последние годы существенные успехи в этом направлении были достигнуты при совместном использовании высокочастотной диэлектрической и низкочастотной колебательной (ИК и Раман) спектроскопии благодаря их уникальной способности непосредственно анализировать особенности неупорядоченной конденсированной среды, определяемые как индивидуальными, так и коллективными свойствами молекул и природой межмолекулярных сил [3,4].

Использование терагерцового диапазона частот в таких исследованиях представляет особый интерес, поскольку здесь спектр релаксационного типа и резонансный спектр имеют тенденцию сосуществовать, и, таким образом, низкочастотные колебательные спектры являются прямым источником информации о молекулярной подвижности, предшествующей релаксационной динамике в стеклообразных полимерах. Речь идет о проявлении в интервале 10–130 сm⁻¹ ИК спектров жидкостей и неупорядоченных материалов, включая полимеры, аномально широкой полосы поглощения, обусловленной малоугловыми вращательными колебаниями молекул [5–7]. Такие малоугловые вращательные колебания (либрации) фенольных колец в мономерных звеньях полистирола (ПС), ответственные за δ -релаксацию в этом полимере, проявляются в ИК спектре ПС широкой полосой поглощения с максимумом при 80 сm⁻¹ [8,9].

Либрационное поглощение (также называемое поглощением по механизму Поли) в ИК спектрах полимеров изучалось как теоретически, так и экспериментально. Было показано, что его интенсивность пропорциональна величине μ^2/I , где μ и I — дипольный момент и момент инерции боковой группы (фенольного кольца) полимера соответственно. Положение максимума этого поглощения пропорционально $(V/2I)^{1/2}$, где V — высота потенциального барьера для либрации, сопоставимого по величине с энергией активации δ -перехода в ПС [8,10]. Найденная связь между спектральными параметрами поглощения Поли с молекулярными характеристиками полимеров позволяет проанализировать роль молекулярной структуры и межмолекулярных сил в динамике макромолекул. В настоящей работе найденные корреляции применялись для определения потенциальных барьеров крутильных колебаний в макромолекулах ПС и его производных, отличающихся строением бензольного кольца. Проведение исследований на подобной серии полимерных объектов, когда задаваемым и контролируемым образом варьируются их молекулярные параметры, позволяет выявить роль электронной структуры и стерического фактора в таких элементарных актах сегментального движения, как крутильные колебания мономерных звеньев, подготавливающие релаксационную подвижность макромолекул.

Полученные результаты сравнивались с данными других методик, и, в частности, с оценками и выводами работы [11], выполненной на таких же объектах методом ДСК и УФ спектроскопии.

Методика

Объектами исследования были ПС и его модификации, синтезированные с помощью сложной многоступенчатой процедуры; это привело к созданию набора полимеров с контролируемым изменением структуры бензольного кольца. Структуру ароматического кольца изменяли путем замещения метильными группами (CH₃) и/или атомами хлора (Cl) и брома (Br) атомов водорода в разных положениях на кольце с различным числом замещений и различной комбинацией заместителей [12]. Перечень образцов и некоторые их теплофизические и энергетические характеристики представлены в табл. 1. Молекулярные массы полимеров лежали в диапазоне $(1-2) \cdot 10^5$. Молекулярные массы и ван-дер-ваальсовы объемы их мономерных звеньев также приведены в табл. 1.

ИК спектры регистрировали на однолучевых вакуумных спектрометрах с дифракционными решетками от 10 до 150 cm⁻¹ на приборе, разработанном в Петербургском государственном университете и модернизированном в ФТИ с помощью приемника ОАП-7 и новой системы фильтрации, и от 150 до 450 cm⁻¹ на спектрометре "Hitachi" FIS-21 (Япония). Разрешение при отношении сигнала к шуму порядка 100 составляло 1-2 cm⁻¹. Точность определения частоты максимума полосы составляла 0.5-1 cm⁻¹.

Коэффициент поглощения $k(v) = \ln(J_0/J)/(t-t_0)$, где J_0 и J — пропускание образцов толщиной t_0 и t, измерялся с погрешностью от 5 до 10%. Все спектры были измерены для образцов, полученных в виде пленок толщиной от 200 до 300 μ m, измерения проводились при комнатной температуре.

Результаты и их обсуждение

На рис. 1, *a*-*l* показаны ИК спектры ПС и его 11 модификаций в области 20–450 сm⁻¹. Поглощение на этих частотах в спектрах замещенных бензолов, стиролов и ПС, как установлено [17,18], обусловлено, главным образом, деформационными колебаниями бензольных колец (моды 9b, 10b и 16a), смешанными в полимере с деформационными колебаниями основной цепи, а также крутильными колебаниями мономерных единиц и СН₃-группы, если таковая имеется.

Предложенное в работах [15,16] отнесение низкочастотных полос, наблюдаемых в ИК спектре ПС (рис. 1, a), может быть представлено следующим образом: интенсивная полоса при $\sim 405\,{
m cm}^{-1}$ — внеплоскостное деформационное колебание связи С-С ароматического кольца (мода 16а); слабые полосы при 325 и 295 cm⁻¹ обусловлены деформационными колебаниями С-С-С- и С-С-Н-групп основной цепи. Наиболее интенсивная полоса в ИК спектре ПС с максимумом при $218\,\mathrm{cm}^{-1}$ имеет сложный контур, состоящий, по меньшей мере, из двух компонент при 218 и 245 cm⁻¹. Соответствующая пара полос наблюдалась для модельных соединений ПС [17], и одна компонента дублета (при 218 cm⁻¹) была отнесена к моде 9b, а другая (при 245 cm⁻¹) к скелетным колебаниями основной цепи. Мода 10b внеплоскостных колебаний связей С-Н ароматического кольца, предсказанная расчетом для замещенных ПС в диапазоне от 150 до $200\,\mathrm{cm}^{-1}$, в ИК спектре ПС отдельной полосой не проявляется. И, наконец, низкочастотная аномально широкая полоса поглощения в ИК спектре ПС с максимумом примерно при $80 \,\mathrm{cm}^{-1}$ (рис. 2, *a*) в основном обусловлена крутильными колебаниями (либрацией) ароматического кольца, т.е. относится к поглощению по механизму Поли [18,19]. Вышеприведенное отнесение наблюдаемых полос в ИК спектре ПС позволяет достаточно уверенно идентифицировать основные полосы поглощения в ИК спектрах модифицированных ПС.

Из представленных на рис. 1 и 2 спектров видно, что при замещении атомов водорода в бензольном кольце атомами Cl, Br или CH₃-группами наиболее существенно изменяется контур ИК спектра на частотах проявления поглощения по механизму Поли в области 10-120 cm⁻¹, а также в интервале 150-350 cm⁻¹, где находятся полосы колебаний 9b и 10b. Заметим, что привлечение последних для качественного анализа и при установлении различных корреляций следует все же проводить с большой осторожностью. Подобное замечание относится и к информативности полосы колебания 16а, проявляющегося вблизи 405 cm⁻¹ в ИК спектрах ПС и всех его модификаций, представленных здесь, независимо от числа, типа и положения заместителя в бензольном кольце.

Наиболее перспективным для анализа и установления взаимосвязи параметров ИК спектров с молекулярными характеристиками и динамикой исследуемых полимеров является использование спектральных параметров поглощения в диапазоне ниже 150 сm⁻¹, поскольку теоретические предсказания исключают участие внутренних мод на этих частотах [20]. В настоящее время хорошо установлено, что основной составляющей ИК спектров

№ поли- мера	Полимер	Van der Waals объем V , $10^{-}24 \text{ cm}^3$	Молекулярная масса <i>M</i> , 10 ⁻²⁷ kg	Радиус <i>R</i> , 10 ⁻¹⁰ m боковой группы	Момент инерции $I_{\mu} = 0.4MR^2$, 10^{-47} kg · m ²	Дипольный момент µ, 3.33 · 10 ⁻³⁰ C m	Энергия когезии $E_{\rm coh},$ 10^{-19} J	$\mu^2/I_{\mu}, \ 10^{-16} \ { m C}^2{ m kg}^{-1}$
1	Полистирол	85	134	2.8	420	0.18	0.46	0.85
2	Поли-2-метил -стирод	104	160	2.96	560	0.39	0.58	3.02
3	Поли-4-	103	160	2.95	560	0.36	0.56	2.56
4	Поли-2,4-	115	182	3.07	690	0.37	0.66	2.22
5	Поли-2,5-	115	182	3.07	690	0.32	0.58	1.65
6	Диметил-стирол Поли-4-	112	195	3.03	720	1.65	0.57	43
7	хлор-стирол Поли-4-хлор	117	216	3.08	820	1.82	0.58	44
8	-3-метил-стирол Поли-2-хлор-3,4-	135	240	3.24	1000	1.70	0.69	31.5
9	Поли-2-хлор-3,5-	135	240	3.24	1000	1.50	0.77	24.8
10	Поли-2,4,5-три	126	306	3.16	1230	1.70	0.67	25.7
11	-метил-стирол Поли-4-бром-2,	138	314	3.26	1340	1.65	0.83	22.5
12	5-диметилстирол Поли-2,3-дихлор-4,5 -диметил-стирол	150	300	3.35	1350	2.40	0.8	47

Таблица 1. Молекулярные характеристики ПС и его модификаций

Примечание. Величины V и M взяты из справочников [13,14] или, как в случае μ и $E_{\rm coh}$, оценивались по аддитивной схеме по вкладам функциональных групп.

полимеров в диапазоне ниже $150 \,\mathrm{cm^{-1}}$ является поглощение по механизму Поли (Poley-type absorption). Это аномально широкое поглощение в диапазоне частот от 10 до $130 \,\mathrm{cm^{-1}}$ не уникально для полимеров, оно также характерно для жидкостей и многих неупорядоченных твердых тел, например для стекол [19,21].

Появление поглощения в области ниже 150 cm⁻¹ может быть описано моделью затухающих вращательных колебаний (либраций) полярных молекул. Одна из наиболее простых моделей молекулярного движения, применяемая в настоящее время для анализа этого поглощения, — модель ограниченных ротаторов или либрации молекулы в потенциальной яме Бро-Дармона [10,22]. Согласно этой модели, либрационное движение полярной молекулы с моментом инерции І совершается в пределах образованной ее ближайшим окружением потенциальной ямы, имеющей форму $U(\varphi) = V_0 \sin^2 \pi \varphi / 2\xi$, где V₀ — глубина ямы, ξ — ее полуугловая апертура (ширина на высоте, равной половине полного барьера) и φ — угол либрации (амплитуда ограниченных качаний). Движение совершается с круговой частотой $\omega_0 = 2\pi c \nu_{\text{libr}} = \pi \xi^{-1} (V_0/2I)^{1/2}$. Интегральная интенсивность поглощения определяется выражением

$$A = \int k(v)dv = \pi/3c^2 \sum \mu_z^2 (1/I_x + 1/I_y),$$

где k(v) — коэффициент поглощения, μ_z — дипольный момент вдоль молекулярной оси, I_x и I_y — моменты инерции, перпендикулярные этой оси. Это либрационное Poley-type absorption в ИК спектрах полимеров предоставляет информацию, принципиально отличающуюся от получаемой из спектров средней ИК области, поскольку оно характеризуется большей ролью межмолекулярной динамики.

Полосы Poley-type absorption в ИК спектрах исследованных производных ПС приведены в увеличенном масштабе на рис. 2. Как видно, интенсивность и положение этих широких (с полушириной $\Delta v = 30-50 \text{ cm}^{-1}$) полос существенно изменяется при вариации структуры бензольного кольца замещениями. В зависимости от типа заместителя, их количества и положение в бензольном кольце интенсивность этого поглощения (k_{max}) может увеличиться в несколько раз, а положение его максимума (v_{max}) сместиться на 30–40 сm⁻¹ по сравнению с ИК спектром ПС (табл. 2).

Взаимосвязь значений k_{\max} и ν_{\max} с такими молекулярными характеристиками исследованных полимеров, как эффективный дипольный момент боковой группы (μ), ее геометрия (момент инерции I) и энергия когезии $E_{\rm coh}$, характеризующая межмолекулярное взаимодействие в полимерах [13], иллюстрируют кривые на рис. 3, *a*, *b*.

Рис. 1. ИК спектры ПС и его модификаций. ПС (a); поли-2-метилстирол (b); поли-4-метилстирол (c); поли-2,4-диметилстирол (d); поли-2,5-диметилстирол (e); поли-4-хлоростирол (f); поли-4-хлор-3-метилстирол (g); поли-2-хлор-3,4-диметилстирол (h); поли-2-хлор-3,5-диметилстирол (i); поли-2,4,5-три хлор-стирол (j); поли-4-бром-2,5-диметилстирол (k); Поли-2,3-дихлор-4,5-диметилстирол (l).

Рисунок 3, *а* показывает, что для исследованных полимеров имеет место пропорциональная зависимость между k_{max} и величиной μ^2/I , непосредственно свидетельствующая о либрационной природе этого поглощения. В соответствии с этим отнесением находится и иллюстрированная рис. 3, *b* пропорциональность между v_{max} и величиной $(E_{\rm coh}/2I)^{1/2}$, отражающая зависимость потенциального барьера для ограниченных крутильных

Рис. 2. Полоса поглощения Поли в ИК спектрах ПС (a) и его модификаций (b-l). Обозначения те же, что на рис. 1. Пунктирными линиями на рис. 2, a и 2, f показаны спектры C₆H₆ и C₆H₅Cl соответственно.

колебаний (либрации) от уровня межмолекулярных вза-имодействий в исследованных полимерах.

Обнаруженные корреляции позволяют, используя модель Бро–Дармона, оценить потенциальные барьеры для либрации боковых групп в макромолекулах ПС и его модификациях. Согласно такому подходу, при малых углах крутильных колебаний либрационная частота ($v_{\rm libr}$) и потенциальный барьер для либрации ($Q_{\rm libr}$) связаны соотношением

$$v_{
m libr} = (c\pi \varphi)^{-1} (Q_{
m libr}/2I)^{1/2}$$

-										
N₂	Положение	Интен-	Барьер	Энергия	$(E_{\rm coh}/2I)^{1/2}$,	$E_{\rm coh}/Q_{ m libr}$	Стати-	$T_g, K,$	$U_{\alpha}, \cdot 10^{-19}$ J,	$U_{\beta} = Q_{\rm libr}S,$
по-	максимума	сивность	$Q_{ m libr}=7.1 imes$	когезии	10 ¹⁰		стиче-	по дан-	по дан-	$10^{-19} \mathrm{J}$
ли-	$v_{\rm max}, {\rm cm}^{-1}$	k_{\max} ,	$10^{20}I_{\rm libr}(v_{\rm max})^2$,	$E_{\rm coh}$,	(kJ/		ский	ным	ным	
ме-		cm^{-1}	$10^{-19} \mathrm{J}$	$10^{-19} \mathrm{J}$	$/kgm^2)^{1/2}$		сегмент	DSC	DSC	
pa							S	из [13]	из [13]	
							(число			
							моно-			
							меров)			
1	72.0	1.4	0.152	0.60	7.4	3.0	8.0	372	1.64	1.3
2	63.0	1.2	0.160	0.73	7.2	3.5	8.0	396	1.74	1.3
3	61.0	1.9	0.150	0.71	7.1	3.7	8.0	386	1.70	1.2
4	60.0	1.8	0.175	0.80	6.9	3.7	8.0	409	1.80	1.4
5	58.0	1.1	0.170	0.72	6.5	3.4	8.0	392	1.73	1.4
6	50.5	5.5	0.130	0.73	6.3	4.3	11.0	405	1.76	1.4
7	51.0	6.0	0.150	0.72	5.9	3.8	8.0	394	1.73	1.2
8	49.4	5.1	0.177	0.83	5.9	3.8	9.0	410	1.80	1.6
9	55.3	4.2	0.220	0.91	6.2	3.5	8.0	420	1.85	1.8
10	45.1	4.6	0.187	0.84	5.2	3.6	9.0	410	1.80	1.7
11	43.8	3.7	0.184	1.00	5.6	4.5	10.0	426	1.87	1.8
12	41.5	56	0.166	0.97	54	48	11.0	422	1.86	1.8

Таблица 2. Взаимосвязь параметров Poley-type absorption и параметров локальной сегментальной подвижности в ПС и его модификациях. Номера полимеров соответствуют номерам в табл. 1

Рис. 3. Зависимость интенсивности полосы "Poley-type absorption" (a) и ее частоты в максимуме (b) от величин молекулярных параметров полимеров. Нумерация точек та же, что в табл. 2.

Отметим, что модель Бро-Дармона для полярных жидкостей дает хорошее согласие с экспериментом, а потенциальные барьеры либрации, рассчитанные с использованием этой модели, близки к тем, которые получены другими способами [23]. Расчет $Q_{\rm libr}$ производился в двух вариантах: в предположении о либрации боковой группы и при рассмотрении в качестве либратора мономерного звена как целого. При расчете условно принимался шаровой ван-дер-ваальсовый объем либратора, и момент инерции определялся по формуле $I = 0.4MR^2$, где M — молекулярный вес и R — радиус боковой

группы. Угол либрации φ принимался равным 12.5° на основе теоретических моделей и расчетов, которые указывают на наличие в макромолекулах ограниченных крутильных колебаний атомных групп с амплитудой от 10° до 15° [20].

Результаты расчета барьеров либрации боковых групп в макромолекулах ПС и его модификациях $Q_{\rm libr}$ приведены в табл. 2 (столбец 4), где они сравниваются с взятыми из [13] энергиями когезии $E_{\rm coh}$ (столбец 5) боковых групп этих же полимеров. Примечательная близость $Q_{\rm libr}$ к $E_{\rm coh}/3$; она указывает на межмолекулярную природу барьера либрации. Вклад в $Q_{\rm libr}$ от барьера внутреннего вращения $Q_{\rm C-C}$ существенно меньше. Небольшой вклад в $Q_{\rm libr}$ от барьера внутреннего вращения $Q_{\rm C-C}$ не является неожиданным. Оценки этого барьера, основанные на уравнении [24]

$$Q(\phi) = 0.5Q_{\rm C-C}(1 - \cos 3\phi),$$

показывают, что при $Q_{C-C} \approx 12 \text{ kJ/mol}$ и $\phi = 15^{\circ}$ он равняется всего ~ 2 kJ/mol, что в большинстве случаев значительно меньше, чем Q_{libr} . Этим, очевидно, объясняется и примерное совпадение положения пика либрационного поглощения в ИК спектрах полимеров и низкомолекулярных жидкостей, близких по химической структуре к соответствующим мономерным звеньям, например ПС и C₆H₆ или поли-4-хлорстирол и C₆H₅Cl (рис. 2, *a* и 2, *f*).

Соотношение $Q_{\rm libr} \approx E_{\rm coh}/3$ оказывается справедливым и для простых жидкостей, а величина E_{coh}/3 отвечает межмолекулярному потенциальному барьеру смещения молекулярных единиц в конденсированной системе относительно соседей [25]. Этот вид подвижности, впервые охарактеризованный Рейдом и Эвансом [26] как универсальный у-процесс в жидкости, является предшественником переориентационного движения молекул, т. е. β-релаксации. В этом смысле β-процесс, ближайший к α-переходу, является следствием влияния флуктуации непосредственного окружения либрирующей молекулярной единицы, обеспечивающей ее переориентацию при переходе из одной потенциальной ямы в другую. Для полимеров этот релаксационный процесс представляет собой элементарный акт локальной (конформационной) подвижности макромолекулы.

Как видно из табл. 2, потенциальные барьеры для либрации в мономерных звеньях, рассчитанные в настоящей работе с использованием соотношения $v_{\text{libr}} = (c\pi \phi)^{-1}$ $(Q_{\rm libr}/2I)^{1/2}$, существенно (в 8–11 раз) меньше значений барьеров для элементарных актов сегментального движения (U_{α}) , рассчитанных в работе [11] исходя из температур стеклования (Tg) ПС и его модификаций (табл. 2, столбцы 4,9 и 10). В работе [11] изменения температур стеклования (и, следовательно, изменение барьеров сегментальной подвижности) в случае модификаций бензольного кольца заместителями было связано с изменением массы М (стерические условия подвижности) и с изменениями внутри- и межмолекулярных взаимодействий, которые были охарактеризованы УФ спектрами и дипольными моментами (µ) модифицированных бензольных колец. Учет взаимосвязи этих факторов (стерического и "электронного") позволил объяснить, почему при одинаковой массе образцов 8 и 9 (табл. 1 и 2) у этих полимеров разные температуры стеклования и барьеры для сегментального движения: их мономерные единицы имеют различные дипольные моменты. В то же время образцы 8 и 10 с разной молекулярной массой бензольного кольца имеют одинаковую температуру стеклования, поскольку у них сходные по величине дипольные моменты мономерных единиц (табл. 1, столбец 7).

Однако вполне очевидно, что необходимо учесть и полимерную специфику сегментальной подвижности, заключающуюся в коррелированности движения соседних диполей при фиксированных валентных углах и заторможенности внутреннего вращения в звеньях макромолекулы. Иными словами, локальные условия сегментарного движения (и его потенциальный барьер) определяются не только параметрами мономерных единиц (размер, масса, дипольный момент, оптическая анизотропия и т.д.), но и средним взаимным расположением последних, которое зависит от гибкости макромолекулы [24,27]. То есть если в низкомолекулярных жидкостях подвижностью, отвечающую за *β*-релаксацию, является вращательно-диффузионное смещение молекул, то в полимерах это переориентационное движение участка цепи, который является статистически независимым от ориентации соседних участков цепи. Такой статистический сегмент, характеризующий термодинамическую гибкость полимерной цепи, в случае ПС включает 7-8 мономерных звеньев [23], а для замещенных ПС, согласно расчетам [27], он равен 7-11 мономерным единицам. Найденные в литературе [13,14] или рассчитанные по методике [27] значения статистических сегментов (S) изученных в этой работе замещенных ПС приведены в табл. 2, колонка 8.

Зная размер статистического сегмента (S) исследованных полимеров, мы можем оценить высоту барьера для локального сегментарного движения, используя зависимость

$$U_{eta} = (0.3 \pm 0.05)E_{\rm coh} + B,$$

полученную в [23] для β -процесса. При относительно небольшом значении параметра $B \approx 10 \pm 5$ kJ/mol, соответствующего барьеру внутреннего вращение вокруг С–С-связи в гибкоцепных полимерах, и используя приближенное равенство $E_{\rm coh} \approx 3Q_{\rm libr}$, мы имеем формулу, по которой эти барьеры вычислялись в настоящей работе:

$$U_{\beta} = Q_{\text{libr}}S.$$

Как видно из табл. 2 (столбцы 10 и 11), рассчитанные на основании полученных данных энергии активации β -релаксации в ПС и ее модификациях (колонка 11) сопоставимы с барьерами для элементарных актов сегментального движения в тех же замещенных полистиролах, оцененными в работе [11] по их температурам стеклования (колонка 10).

Полученные результаты подтверждают механизм, предложенный в [23] для β -релаксации, состоящий в поворотном (за счет накопления крутильно-колебательных смещений монозвеньев относительно друг друга) движении корреляционного участка цепи, близкого по величине к статистическому сегменту, с преодолением преимущественно когезионных (межмолекулярных)

барьеров и при участии однобарьерного *транс-гош*перехода. Такой акт движения аналогичен акту сегментальной релаксации в расплаве полимера и может реализоваться в твердом полимере в качестве элементарного акта кооперативных конформационных перестроек в β -процессе. При вырождении кооперативной природы подвижности на высоких частотах ($\nu \ge 10^7$ до 10^8 Hz) оба процесса объединяются в одиночный $\alpha\beta$ -процесс с энергией активации U_β [28].

Выявленная в настоящей работе близость барьеров коррелированного либрационного движения (U_{β}) и барьеров локальной сегментальной подвижности (U_{α}) , определенных по T_g методом ДСК, подтверждает, что активационный барьер конформационной подвижности в полимерной цепи мало изменяется в широком интервале температур $T > T_{\beta}$ лишь в силу изменения межцепочечных взаимодействий, оставаясь близким к U_{β} .

Заключение

В настоящей работе измерены и проанализированы ИК спектры ПС и его модификаций, полученных путем замещения метильными группами и/или атомами хлора и брома атомов водорода в бензольных кольцах боковых групп макромолекул. Все эти спектры имеют аномально широкую асимметричную полосу поглощения с положением максимума в диапазоне от 40 до $80 \,\mathrm{cm^{-1}}$ в зависимости от природы заместителя. Эта полоса поглощения может быть отнесена к поглощению, связанному с либрацией (вращательными колебаниями) фенольных колец, т.е. к поглощению по механизму Поли.

Взаимосвязь между спектральными параметрами поглощения Поли и молекулярными характеристиками исследованных полимеров позволяет непосредственно анализировать роль молекулярной структуры и межмолекулярных взаимодействий в полимерной динамике. Высоты потенциальных барьеров для либрации фенольных колец в макромолекулах ПС и его модификаций $Q_{\rm libr}$, оцененные на основе анализа этого поглощения, найдены близкими к барьерам активации низкотемпературной механической δ-релаксации в этих полимерах. Сравнение этих барьеров с активационными барьерами локального сегментального движения, определенными методом DSC для тех же ПС, показало, что во всех случаях имеет место равенство $U_{\beta} \approx Q_{\text{libr}} S \ (S - длина статистического$ сегмента), подтверждая, что *β*-процесс, как элементарный акт сегментального движения в полимерах, связан с корреляционным либрационным движение участка цепи, статистически независящем от соседних участков. В этом смысле универсальный б-процесс, характеризуемый здесь поглощением по механизму Поли в ИК спектрах, является высокочастотным предшественником (и дополнением) β -процесса.

В целом результаты, представленные выше, показывают, что терагерцовая ИК спектроскопия позволяет конкретизировать молекулярные механизмы вторичных релаксаций в полимерах и установить взаимосвязь этих процессов с молекулярными характеристиками полимеров, такими как структура мономерной единицы, энергия когезии, потенциальный барьер для внутреннего вращения и термодинамическая жесткость полимерной цепи.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] *Ngai K.L.* Relaxation and Diffusion in Complex Systems. NY.: Springer, 2011. 823 p.
- [2] Готлиб Ю.Я., Тощевиков В.П // Высокомол. соед. 2001. Т. 43. № 10. С. 1844.
- [3] Parrot E.P.J., Zeitler J.A. // Appl. Spectrosc. 2015. V. 69. N 1.
 P. 1. doi 10.1366/14-070
- [4] Kohler M., Lunkenheimer P., Goncharov Y., When R., Loidl A. // J. Non-Cryst. Solids. 2010. V. 356. N 11. P. 529. doi 10.1016/j.jnoncrysol.2009.07.029
- [5] Giraud G., Wynne K. // J. Chem. Phys. 2003. V. 119. N 22.
 P. 11753. doi 10.1063/1.1623747
- [6] Wietzke S., Jansen C., Reuter M., Jung T., Kraft D., Chatterje S., Fischer B.M., Koch M. // J. Mol. Structure. 2011.
 V. 1006. N 1-2. P. 41. doi 10.16/j.molstruc.2011.0.036
- [7] Рыжов В.А., Беришейн В.А. // ФТТ. 2008. Т. 50. № 10.
 С. 1901; Ryzhov V.A., Bershtein V.A. // Phys. Solid State.
 2008. V. 50. N 10. P. 1985. doi 10.1134/S1063783408100326
- [8] Bershtein V.A., Ryzhov V.A. // Adv. Polym. Sci. 1994. V. 114.
 P. 43. doi 10.1007/BFb0008694
- [9] Hunt N.T., Jaye A., Hellman A., Meech S.R. // J. Phys. Chem.
 B. 2004. V. 108. N 1. P. 100. doi 10.21/jp035624g
- [10] Larkin I. // Trans. Faraday Soc. II. 1973. V. 69. P. 1278. doi 10.1039/F29736901278
- [11] Слуцкер А.И., Васильева К.В., Егоров В.М., Докукина А.Ф. // Высокомол. соед. 2002. Т. 44. № 12. С. 2103; Slutsker A.I., Vasil'eva K.V., Egorov V.M., Dokukina A.F. // Polym. Sci. Ser. A. 2002. V. 44. N 12. P. 1255.
- [12] Докукина А.Ф., Котон М.М. // Высокомол. соед. 1959. Т. 1. № 8. С. 1129.
- [13] Van Crevelen D.W. Properties of Polymers: Their Correlation with Chemical Structure: Their Numerical Estimation and Prediction from Additive Group Combinations. 3rd ed. Amsterdam and London: Elsevier, 1990. 414 р.; Ван Кревелен Д.В. Свойства и химическое строение полимеров. М: Химия, 1976. 414 с.
- [14] Polymer Handbook. 3rd ed. / Ed. by Brandrup J., Immergut E.H. NY.: Wiley-Interscience, 1989. 1904 p.
- [15] Krimm S. // Adv. Polym. Sci. 1960. V. 2. P. 51.
- [16] Varsanyi G. Vibrational Spectra of Benzene Derivatives. NY.: Academic Press, 1969. 43 p.
- [17] Jasse B., Monnerie L.J. // Phys. D: Appl. Phys. 1975. V. 8. N 7. P. 863.
- [18] Kim J.J., McLeish J., Hyde A.J., Bailey R.T. // Chem. Phys. Lett. 1973. V. 22. N 3. P. 503. doi 10.1016/0009-2614(73)87017-4
- [19] Johary G.P. // J. Non-Cryst. Solids. 2002. V. 307–310. N 9.
 P. 114. doi 10.1016/50022-3093(02)01449-7

- [20] Volkenstein M.V. Conformational Statistics of Polymer Chains. NY. Interscience, 1963. 562 р.; Волькенштейн М.В. Конформационная статистика цепей. М.: Изд. АН СССР, 1959. 466 с.
- [21] Потапов А.А. // Опт. и спектр. 1996. Т. 81. № 3. С. 420; *Ротароv А.А. //* Орт. Spectrosc. 1996. V. 81. N 3. С. 379.
- [22] Coffey W.T., Johary G.P., Kalmykov Ya.P., Titov S.V. // J. Phys. Condens. Matter. 2003. V. 15. N 19.
 P. 152961. doi 10.1088/0953-8984/15/19/301; Brot C., Darmon I. // Molec. Phys. 1971. V. 21. N 5. P. 785. doi 10.1080/00268977100101941
- [23] Берштейн В.А., Егоров В.М. Дифференциальная сканирующая калориметрия в физико-химии полимеров. Л.: Химия, 1990. 255 с.; Bershtein V.A., Egorov V.M. Differential Scanning Calorimetry of Polymers. Chichester: Ellis Horwood, 1992. 255 р.
- [24] Бирштейн Т.М., Птицин О.Б. Конформация макромолекул. М.: Наука, 1984. 391 с.
- [25] Глесстон С., Лейдлер К., Эйринг Г. М.Теория абсолютных скоростей реакций. М.: ИЛ, 1948. 584 с.; Glasstone S., Laidler K.J., Eyring H. The Theory of Rate Processes. NY: McGraw-Hill Book Co., Inc., 1941. 611 р.
- [26] Reid C.J., Evans M.W. // J. Chem. Phys. 1982. V. 76. N 5.
 P. 2576. doi 10.1063/1.443235
- [27] Аскадский А.А., Матвеев Ю.И. Химическое строение и физические свойства полимеров. М.: Химия, 1983. 248 с.
- [28] Beiner M., Huth H., Schreder K.J. // Non-Cryst. Solids. 2001.
 V. 279. N 2. P. 126. doi 10.1016/50022-3093(00)00409-9