Механизмы формирования контура полосы *v*₃ в спектрах поглощения и комбинационного рассеяния тетрафторметана в конденсированных фазах

© О.С. Голубкова, Т.С. Катаева, Д.Н. Щепкин, Т.Д. Коломийцова

Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия e-mail: Olga.Golubkova@spbu.ru

Поступила в редакцию 06.10.2020 г. В окончательной редакции 16.11.2020 г. Принято к публикации 18.11.2020 г.

> В рамках данного исследования методами спектроскопии поглощения и комбинационного рассеяния изучены механизмы формирования сложных контуров полос v_3 и $v_1 + v_3$ тетрафторметана (CF₄) в конденсированных низкотемпературных системах — жидкости, пластическом кристалле и низкотемпературном растворе в жидком Ar. В настоящей работе получен экспериментальный спектр комбинационного рассеяния CF₄ в жидкой фазе, с помощью которого определены параметры вращательного коллапса в условиях жидкости, а также получены количественные данные о контурах полос комбинационного рассеяния в фундаментальной области спектра. Основной целью исследования являлось определение вкладов различных механизмов, таких как резонансное диполь-дипольное взаимодействие, резонанс Ферми и заторможенное вращение, в формирование контуров рассматриваемых полос. Для решения поставленной задачи использовался математический аппарат спектральных моментов. В результате показано, что доминирующим механизмом в формировании этих контуров является резонансное диполь-дипольное взаимодействие, расчет влияния которого также представлен в работе.

> Ключевые слова: тетрафторметан, низкотемпературные молекулярные системы, резонансное дипольдипольное взаимодействие, LO–TO-расщепление.

DOI: 10.21883/OS.2021.03.50654.258-20

Введение

Появление сложных асимметричных контуров полос v_3 и $v_i + v_3$ в спектрах поглощения и комбинационного рассеяния (КР) тетрафторметана в конденсированных состояниях [1–4] связано с наличием большой производной функции дипольного момента молекулы по нормальной координате q_3 ($p_3' = 0.465$ D [1]). Форма этих полос может быть объяснена в рамках модели межмолекулярного резонансного диполь-дипольного (РДД) взаимодействия. Отметим, что в литературе существует альтернативное название этого взаимодействия — динамическое диполь-дипольное взаимодействие (transition dipole-transition dipole (TD-TD) interaction) [5,6].

Тетрафторметан (CF₄) имеет три конденсированные фазы: жидкость, β -кристалл (пластический кристалл) и α -кристалл. Фазовый переход α - β -кристалл происходит при температуре T = 76.23 K, фазовый переход β -кристалл-жидкость — при температуре T = 89.56 K [6].

КР-спектры CF₄ в жидкой и кристаллической фазах изучены в работах [5–7]. Авторы работы [6] произвели интерпретацию спектров КР CF₄ в фундаментальной области спектра во всех конденсированных фазах. В КРспектре α -кристаллического CF₄ авторы обнаружили расщепление полосы ν_3 на продольную оптическую (LO) и поперечную оптическую (TO) ветви, такое расщепление наблюдается на сильных полосах в спектрах молекулярных кристаллов с кубической решеткой. В этой же работе в КР-спектре CF_4 в жидкой фазе обнаружено, что экспериментальный контур полосы v_3 также асимметричен и сохраняет LO–TO-расщепление из-за оставшейся кристаллической структуры вблизи температуры плавления.

В работе [5] сложный контур полосы v_3 в КР-спектре CF₄ в жидкой фазе качественно описан в рамках модели однофононной плотности состояний (OPDS — опе phonon density of states); жидкость описана моделью твердых сфер, и координаты молекул определены методом Монте-Карло. Авторы [5] в своем расчете учитывали только межмолекулярное РДД взаимодействие, пренебрегая вкладом заторможенного вращения и резонанса Ферми в формирование контура. При этом расчетный контур качественно совпал с экспериментальным — рассчитанное LO—TO-расщепление того же порядка, что и в экспериментальном контуре.

Получение контура фундаментальной полосы поглощения v_3 методом спектроскопии пропускания — задача трудновыполнимая, поскольку для регистрации этой полосы требуется создание оптических слоев с толщиной порядка микрона. Альтернативным методом получения информации о контурах поглощения сильных полос является метод спектроскопии отражения [8,9]. Эта методика позволяет восстанавливать контуры экстинкции (ход показателя поглощения) сильных полос по спектрам отражения с использованием известных соотношений Крамерса-Кронига. В работе [8] представлен контур полосы экстинкции v_3 тетрафторметана в жидкой фазе при T = 90 K; этот контур также имеет асимметричный профиль, но LO-ветвь отсутствует в отличие от контура той же полосы в спектре КР жидкости тетрафторметана [6]. В то же время контур составной полосы $v_1 + v_3$ в спектре поглощения CF₄ в жидкой фазе имеет ярко выраженное LO–TO-расщепление, подобное расщеплению контура полосы v_3 в спектре КР. Отметим, что эффект отсутствия LO-ветви наблюдается в контурах экстинкции полос v_5 и v_{10} гексафторэтана (C₂F₆) во всех конденсированный фазах [9].

Подобное несоответствие друг другу контуров полос v₃ в спектрах поглощения и КР CF₄ в жидкой фазе стало причиной исследования механизмов формирования контуров полос v_3 и $v_1 + v_3$ в спектрах различных низкотемпературных конденсированных систем (низкотемпературный раствор CF4 в жидком Ar, CF4 в фазах жидкости и пластического кристалла) различными методами наблюдения (спектроскопия пропускания, отражения и КР света). Используя накопленные за многие годы экспериментальные данные о спектрах поглощения [2,8,10,11] и КР [6,7] тетрафторметана в жидкой и *β*-кристаллической фазах, возможно оценить вклад различных механизмов (РДД взаимодействие, ферми-резонанс и заторможенное молекулярное вращение) в формирование контуров полос v_3 и $v_1 + v_3$ с помощью математического аппарата спектральных моментов.

В настоящей работе зарегистрированы спектры КР CF_4 в жидкой фазе вблизи температуры плавления в связи с необходимостью получения количественных характеристик полос КР. Имеющиеся в литературе экспериментальные спектры датируются 1968 [12] и 1977 [6] годами и требуют уточнения, поскольку разрешение этих спектров составляет 4 сm⁻¹. Полученный в настоящей работе экспериментальный спектр зарегистрирован с разрешением в 1 сm⁻¹.

Эксперимент

Спектры КР СF₄ в жидкой фазе в спектральной области $350-1400 \text{ cm}^{-1}$ были зарегистрированы на фурье-спектрометре Nicolet 6700 с использованием приставки NXR FT-Raman, спектральное разрешение составляло 1 сm⁻¹. Образец возбуждался неодимовым лазером (Nd:YVO₄) с рабочей частотой $\nu = 9398 \text{ cm}^{-1}$ и значением пиковой мощности в 2.5 W. Функциональная схема используемого криостата подробно описана в работе [13]. Температура эксперимента составляла 93 K, контроль температуры производился с помощью термопары.

На рис. 1 представлен полученный спектр КР CF₄ в жидкой фазе; отдельно на рисунке выделена спектральная область колебания v_3 (1200–1350 cm⁻¹).

Интерпретация КР-спектра CF₄ в жидкой фазе представлена в табл. 1, наблюдается согласие значений

Рис. 1. Спектр КР СF₄ в жидкой фазе в области колебаний $\nu_3 \sim 2\nu_4$ (№ 1 в табл. 1), ν_1 , $2\nu_2$, ν_4 и ν_2 при температуре 93 (2) К. Обозначения на рисунке соответствуют обозначениям в табл. 1.

экспериментальных частот, полученных в настоящей работе, с литературными данными [6,7].

Обсуждение результатов

В настоящей работе произведен анализ контуров полос, соответствующих колебанию v_3 , в спектрах экстинкции и КР, а также контуров полос, соответствующих составному колебанию $v_1 + v_3$, в спектрах поглощения CF₄ в фазах жидкости и пластического кристалла.

В работе используется математический аппарат спектральных моментов: $M(0) = \int I(v)dv$ — нулевой спектральный момент, определяющий интенсивность полосы; $M(1) = \int vI(v)dv/M(0)$ — первый спектральный момент, определяющий центр тяжести полосы; $M(2) = \int [v - M(1)]^2 I(v)dv/M(0)$ — второй спектральный момент, являющийся интегральной характеристикой ширины полосы; интегрирование производится по полосе.

Все изученные контуры полос поглощения и КР CF₄ (рис. 2) соответствуют низкотемпературным системам с относительно малым средним расстоянием между молекулами — например, среднее расстояние между двумя контактными молекулами CF₄ в жидкой фазе составляет 4.63 Å [14] при температуре T = 93 K.

Обращает на себя внимание тот факт, что полосы v_3 и $v_1 + v_3$ молекулы CF₄ в спектрах конденсированных фаз (рис. 2, спектры 2-7) имеют асимметричные широкие контуры с выраженной "дыркой Эванса", что говорит о том, что они сформированы в основном неоднородным механизмом — дальнодействующим РДД взаимодействием [15]. "Дырка Эванса" находится на частоте невозбужденного резонансом Ферми колебания $2v_4^0$, ее положение практически не меняется при

No	Колебание	Силметрия	ν, cm^{-1}							
112	Колсоание	Симмстрия	Данная работа, <i>T</i> = 93 K	Литературные данные						
1	$ u_3 \sim 2\nu_4 $	F_2	1246 (TO)	1250 [7] (TO)						
			1322 (LO)	1320 [6]* (LO)						
2	$2v_2$	A_1	908	907.5 [7]						
3	ν_1	A_1	869	-						
4	$\overline{\nu}_4$	F_2	631	630 [7]						
5	ν_2	E	437	435 [7]						

Таблица 1. Интерпретация полученного в настоящей работе КР-спектра CF_4 в жидкой фазе при T = 93 K, сравнение с литературными данными [6,12]

Примечание. * В работе [6] на рисунке, представляющем экспериментальный КР-спектр жидкости, LO-ветвь отчетливо идентифицируется, но в тексте статьи авторы приводят только расчетное значение положения LO-ветви.

переходе из одной молекулярной системы в другую. Молекулярное вращение в такого рода низкотемпературных конденсированных системах с малыми межмолекулярными расстояниями не является достаточно быстрым для усреднения действия неоднородного механизма РДД взаимодействия [9,14–16].

На рис. 2 (спектр 1) представлен контур полосы v_3 в спектре поглощения низкотемпературного сильно разбавленного (1/100) раствора CF4 в жидком Ar; качественное сравнение этого спектра со спектрами CF4 (рис. 2, спектры 2-7) в конденсированных фазах позволяет проиллюстрировать влияние РДД взаимодействия на формирование контуров. Сильное разбавление инертным растворителем гарантирует большие расстояния между растворенными молекулами CF4, что минимизирует межмолекулярные взаимодействия. Таким образом, в формировании контура полосы v₃ в спектре низкотемпературного раствора участвуют два механизма внутримолекулярный резонанс Ферми и заторможенное вращение молекулы в условиях жидкого аргона. Экспериментальные значения первых и вторых спектральных моментов всех контуров, представленных на рис. 2, приведены в табл. 2.

Второй спектральный момент полосы (M(2)) можно представить как сумму вторых спектральных моментов, соответствующих вкладам различных независимых механизмов [4]. В рассматриваемых низкотемпературных молекулярных системах CF₄ вторые спектральные моменты полос v_3 и $v_1 + v_3$ определяются как сумма вторых спектральных моментов, определяемых вкладами РДД взаимодействия $(M(2)_{\text{RDD}})$, резонанса Ферми $(M(2)_{\text{RF}})$ и заторможенного вращения $(M(2)_{\text{rot}})$:

$$M(2) = M(2)_{\rm RDD} + M(2)_{\rm RF} + M(2)_{\rm rot}.$$
 (1)

Совместное действие этих трех независимых механизмов приводит к формированию сложных асимметричных контуров полос v_3 и $v_1 + v_3$.

Вклад заторможенного вращения в формирование контура полосы v₃ в спектрах поглощения и КР

Условие коллапса вращательного движения в молекулярной системе определяется соотношением

 $v_j/\sqrt{M(2)_{\rm rot}} \gg 1$ [17], где v_j — характерная частота возмущения вращательного движения, связанная со временем корреляции углового момента $\tau_j = (2\pi c v_j)^{-1}$; $M(2)_{\rm rot}$ — второй вращательный спектральный момент исследуемой колебательно-вращательной полосы при температуре эксперимента.

Для молекулы типа сферического волчка второй вращательный спектральный момент *i*-й полосы в спектре поглощения рассчитывается по формуле [17]

$$M(2)_{\rm rot}^{\rm IR} = 4BkT(1-\xi_i)^2,$$

в спектре КР — по формуле [18]

$$M(2)_{\rm rot}^{\rm Ram} = 4BkT[2 + (1 + \xi_i)^2],$$

где B — вращательная постоянная (для CF₄ $B = 0.1917 \text{ cm}^{-1}$ [13]); k — постоянная Больцмана (0.695 cm⁻¹/K); T — температура эксперимента (в настоящей работе T = 93 K); ξ_i — кориолисова постоянная *i*-го колебания (табл. 3). Рассчитанные значения вторых вращательных спектральных моментов $M(2)_{\text{rot}}$ нескольких полос в спектрах поглощения и КР CF₄ в условиях жидкости представлены в табл. 3.

Характерная частота вращательного возмущения v_j CF₄ в жидкой фазе может быть определена с помощью контура полосы v_2 в спектре KP, полученного в настоящей работе. Колебание v_2 не активно в спектре поглощения, следовательно, не участвует в РДД взаимодействии. В связи с этим ее контур в спектре KP определяется прежде всего вращательной релаксацией в условиях жидкости [6] при температуре 93 К. Из рис. 1 видно, что контур полосы, соответствующей колебанию v_2 , имеет симметричный вид и может быть описан контуром Лоренца с полушириной $2\Gamma_R = 6.5 \text{ cm}^{-1}$ (где Γ_R — полуширина контур на его полувысоте).

Используя рассчитанное значение второго спектрального момента полосы $\nu_2 M(2)_{\rm rot} = 146 \,{\rm cm}^{-2}$ (табл. 3) и значение вращательной полуширины этой полосы $2\Gamma_{\rm R} = 6.5 \,{\rm cm}^{-1}$ (табл. 3), можно определить характерную частоту вращательного возмущения и связанное с

Таблица 2. Значения первого и второго спектральных моментов полос v_3 и $v_1 + v_3$, полученные из спектров поглощения и КР низкотемпературных (н/т) систем CF₄. Погрешность измерения $M(2)_{Exp}$ составляет 10%

Спектр		КР		ИК									
Колебание		ν_3			ν_3	$\nu_1 + \nu_3$							
Система	Жидкость настощая работа	Жидкость [6]	Пластический кристалл [6]	Жидкость [8]	Пластический кристалл [11]	н/т раствор в Ar [2]	Жидкость [10]	Пластический кристалл [11]					
Т, К	93	83	77	90	77	93	90	77					
$M(1)_{\mathrm{Exp}},\mathrm{cm}^{-1}$	1273	1273	1271	1273	1260	1272.2	2173	2174					
$M(2)_{\rm Exp},{\rm cm}^{-2}$	1100	1200	1200	660	600	38	900	1000					

Примечание. Значения $M(2)_{Exp}$ определены с помощью обработки контуров полос, представленных в цитируемой литературе.

Таблица 3. Кориолисовы постоянные (ξ_i) колебаний v_i , рассчитанные вторые вращательные спектральные моменты полос в КР- и ИК спектрах при температуре 93 К, вращательные полуширины этих полос $2\Gamma_R$, а также экспериментальные значения полуширин ($\Delta v_{1/2}$) полос v_2 и v_4 в спектре КР, полученные в настоящей работе

Колебание			КР	ИК				
	ξ_i ,	Эксперимент	Расче	т	Расчет			
	[17]	$\Delta v_{1/2}, \mathrm{cm}^{-1}$	$M(2)_{\rm rot}^{\rm Ram}$, cm ⁻²	$2\Gamma_{\rm R},{\rm cm}^{-1}$	$M(2)_{\rm rot}^{\rm IR},{\rm cm}^{-2}$	$2\Gamma_{\rm R},{\rm cm}^{-1}$		
$\nu_2(E)$	0	6.5 (5)	146	6.5	—	—		
$v_4(F_2)$	-0.36	5.5 (5)	117	5.2	90	4		
$\nu_3(F_2)$	+0.86	—	270	12 (1)	3.0	0.1		
$2\nu_4(F_2)$	+0.36		190	8.5 (5)	17.7	0.8		

ней время корреляции углового момента $\tau_j = (2\pi c \nu_j)^{-1}$, воспользовавшись выражением [17]

$$2\Gamma_{\rm R} = 2M(2)_{\rm rot}/\nu_j.$$
 (2)

В соответствии с выражением (2) частота вращательного возмущения CF₄ составляет $v_j = 45 \text{ cm}^{-1}$, время корреляции углового момента $\tau_J = 1.2 \cdot 10^{-13} \text{ s}$ при температуре 93 К.

Теперь после определения частоты вращательного возмущения (v_j) и второго вращательного спектрального момента $(M(2)_{rot})$ полосы v_3 (табл. 3) возможно определить условия коллапса для колебания v_3 в ИК и КР-спектрах. Из табл. 2 видно, что условия вращательного коллапса для колебания v_3 в спектрах поглощения выполняются $(\sqrt{M(2)_{rot}^{IR}} = 1.73 \ll 45 = v_j \text{ cm}^{-1})$. Вращательная полуширина контура полосы v_3 , рассчитанная по формуле (2), составляет $2\Gamma_{\rm R} = 0.1 \text{ cm}^{-1}$. Значение второго вращательного спектрального момента полосы $v_3 M(2)_{\rm rot}^{\rm IR} = 3 \text{ cm}^{-2}$ пренебрежимо мало по сравнению со значением суммарного второго спектрального момента $M(2) = 1100 \text{ cm}^{-2}$ (табл. 2), это значит, что вкладом вращения в формирование контура полосы v_3 в ИК спектре жидкости можно пренебречь.

В спектрах КР для полосы v_3 выполнение условия коллапса находится на грани используемого приближения ($\sqrt{M(2)_{\text{rot}}^{\text{Ram}}} \approx 16 < 45 = v_j \text{ [cm}^{-1}\text{]}$), но тем не менее возможно определить вращательную полуширину

полосы $\nu_3 \ 2\Gamma_{\rm R} = 12 \,{\rm cm}^{-1}$ (табл. 3) в соответствии с выражением (2). Второй вращательный спектральный момент полосы $\nu_3 \ M(2)_{\rm rot}^{\rm Ram} = 270 \,{\rm cm}^{-2}$ вносит значительный вклад в суммарный второй спектральный момент $M(2) = 1100 \,{\rm cm}^{-2}$ (табл. 2), следовательно, учет вклада заторможенного вращения в формирование контура полосы ν_3 в КР-спектре жидкости необходим.

Вклад РДД взаимодействия и резонанса Ферми в формирование контура полосы v₃ в спектре КР

Возмущение V, связанное с РДД взаимодействием молекул в конденсированной системе, состоящей из N молекул, можно представить в виде суммы парных взаимодействий:

$$V = \frac{1}{hcR_0^3} \sum_{n \neq m}^{N} |P^{(n)}| |P^{(m)}| \left(\frac{R_0}{R_{nm}}\right)^3 f(\theta_{nm}), \qquad (3)$$

где n и m — индексы молекул; $|P^{(n)}|$ и $|P^{(m)}|$ нормы векторов дипольных моментов молекул, определяемых как $P = P'_{i}q_{i} + P'_{j}q_{j} + P''_{ij}q_{i}q_{j} + \dots,$ где q_i и q_j — нормальные безразмерные координаты; $f(\theta_{nm}) = (\mathbf{e}_n \mathbf{e}_m) - 3(\mathbf{e}_n \mathbf{e})(\mathbf{e}_m \mathbf{e})$ ориентационнозависимый фактор, определяемый ориентациями диполей, значения которых находятся в интервале [-2:2]; **e**_n и **e**_m — единичные векторы дипольных моментов взаимодействующих молекул в лабораторной системе координат, е ____ единичный вектор,

Рис. 2. Контуры полосы v_3 (1-3, 6, 7) и $v_1 + v_3$ (4, 5) СF₄ в спектрах низкотемпературных систем: (1) спектр поглощения раствора CF₄ в жидком Ar при T = 93 K [2]; (2) [8] и (4) [1] — спектры CF₄ в жидкой фазе при T = 90 K; (3) и (5) — спектры поглощения тонкой пленки CF₄ в фазе пластического кристалла при T = 77 K [11]; (6) — спектры KP CF₄ в жидкой фазе при T = 93 K (настоящая работа); (7) — спектр KP пластического кристаллического CF₄ при T = 84 K [6]. Все контуры нормированы на нулевой спектральный момент.

направленный вдоль оси, соединяющей центры масс молекул; R_{nm} — расстояние между центрами масс *n*-й и *m*-й молекул; R_0 — контактное расстояние, т.е. расстояние между двумя ближайшими молекулами.

Для расчета OPDS контура полосы v₃ в рамках модели РДД взаимодействия использовалась апробированная на многих молекулярных жидкостях программа расчета OPDS контуров полос, соответствующих составным колебаниям [19]. Под составным колебанием имеется ввиду колебание типа $v_k + v_i$, где v_k — недисперсионное колебание, v_i — сильное в дипольном поглощении колебание. Эта программа включает в себя несколько параметров РДД взаимодействия с возможностью их варьирования: ориентационно-независимый параметр РДД взаимодействия $a = (P'_i)^2 / hc R_0^3$; σ — параметр разброса молекулярных координат, описываемый функцией Гаусса; n — эффективное координационное число $n = n_c(1 - M/N)$, где n_c — число ближайших молекул в идеальном кристалле, N — количество молекул в системе, M — количество вакансий (дырок) в системе и χ_{ik} — параметр ангармоничности.

Для расчета OPDS контура полосы v3 CF4 использовались параметры расчета, заимствованные из работы [19], которые наиболее корректно описывают контур полосы $v_1 + v_3$ CF₄ в жидкой фазе: a = 5.5 cm⁻¹, $\sigma = 0.075$ и n = 10.5. Контур OPDS авторами определяется как контур широкой экситонной зоны, определяемый квадратами проекций собственных векторов на выбранный вектор. Выбранный вектор обозначается как "источник интенсивности". Собственные значения и собственные векторы являются результатом решения векового уравнения для этой молекулярной системы, где в качестве возмущения используется возмущение РДД взаимодействием. Эта программа рассчитывает контур экситонной зоны, образованный только взаимодействием РДД в жидкости с плотной упаковкой молекул. Отличие данного расчета от расчета, представленного в работе [19], заключается в том, что в настоящей работе при составлении векового уравнения учитывался резонанс Ферми между состояниями $v_3 \sim 2v_4$ (отстройка фермирезонанса составляет $\Delta_{\rm RF} = 12.6 \, {\rm cm}^{-1}$, матричный элемент взаимодействия $W_{\rm RF} = 5.1 \, {\rm cm}^{-1}$ [16]). Параметр ангармоничности естественным образом равен нулю в связи с тем, что ведется расчет контура фундаментальной полосы. Рассчитанный контур OPDS представлен на рис. 3 (спектр 1), на котором видна ярко выраженная "дырка Эванса".

Для учета влияния заторможенного вращения на контур полосы v_3 в спектре КР была произведена свертка OPDS контура полосы v_3 (рис. 3, спектр *I*), полученного в настоящей работе, с контуром Лоренца с вращательной шириной $2\Gamma_{\rm R} = 12 \,{\rm cm^{-1}}$ (табл. 3). Результат свертки представлен на рис. 3 (спектр *2*), из которого видно, что после свертки "дырка Эванса" размылась, и рассчитанный контур подобен экспериментальному контуру полосы v_3 в спектре КР (рис. 3, спектр *3*).

Целесообразно сравнить рассчитанный и экспериментальный контуры полосы v_3 в спектре КР, используя выражение (1) для вторых спектральных моментов. Второй спектральный момент полосы v_3 , рассчитанный по указанной выше программе в приближении OPDS, составляет $M(2)_{\text{OPDS}} = M(2)_{\text{RDD}} + M(2)_{\text{RF}} = 910 \text{ cm}^{-2}$. Вклад заторможенного вращения в расчетный контур оце-

Рис. 3. Контур полосы ν_3 молекулы CF4, рассчитанный в рамках модели OPDS (*I*); результат свертки контура (*I*) с контуром Лоренца с шириной $2\Gamma_{\rm R} = 12 \,{\rm cm}^{-1}$ (*2*); экспериментальный контур полосы ν_3 в спектрах КР жидкого CF4 при 93 K (*3*).

нен как $M(2)_{rot} = 270 \text{ сm}^{-2}$ (табл. 3). Таким образом, согласно выражению (1), рассчитанный суммарный второй спектральный момент полосы v_3 составляет $M(2)_{Calc} = 1180 \text{ сm}^{-2}$. Экспериментальное значение второго спектрального момента полосы v_3 в спектре КР составляет $M(2)_{Exp} = 1100 (100) \text{ cm}^{-2}$. Хорошее согласие значений экспериментального и рассчитанного вторых спектральных моментов полосы v_3 позволяет предположить, что мы учли все основные механизмы формирования контура полосы v_3 в спектре КР СF₄ в жидкой фазе.

Формирование контуров полос v_3 и $v_1 + v_3$ в спектре поглощения CF_4 в фазе жидкости и пластического кристалла

Выше показано, что вклад заторможенного вращения в формирование контура полосы поглощения v_3 CF₄ в жидкой фазе (T = 93 K) пренебрежимо мал, второй спектральный момент, обусловленный заторможенным вращением, составляет $M(2)_{\rm rot} \sim 3$ cm⁻²; вклад вращения в формирование контура этой же полосы в спектре поглощения пластического кристалла CF₄ (T = 77 K) составляет $M(2)_{\rm rot} \sim 1$ cm⁻². Как следствие, формирование этого контура осуществляется двумя механизмами — РДД взаимодействием и резонансом Ферми. Эти же механизмы формируют контур полосы поглощения $v_1 + v_3$. Экспериментальное значение второго спектрального момента полосы $v_1 + v_3$ составляет $M(2)_{\rm Exp} = 900$ cm⁻².

Расчет OPDS контура полосы v_3 дает значение второго спектрального момента этой полосы $M(2)_{Calc} = M(2)_{RDD} + M(2)_{RF} = 910 \text{ cm}^{-2}$, что находится в хорошем согласии с экспериментальной величиной второго спектрального момента полосы $v_1 + v_3$ $M(2)_{Exp} = 900 \text{ cm}^{-2}$.

В то же время из табл. 2 видно, что экспериментальные данные вторых спектральных моментов полосы v_3 СF₄ в жидкой и β-кристаллической фазах в ИК и КР-спектрах сильно отличаются друг от друга. Такое же расхождение наблюдается и для значений вторых моментов полосы поглощения $v_1 + v_3$ и v_3 в спектре поглощения. Этот эффект возникает из-за отсутствия LO-ветви в контуре фундаментальной полосы экстинкции (рис. 2, спектры 2 и 3) и может быть описан соотношением $M(2)_{\text{Fund}} = (2/3)M(2)_{\text{Comb}}$, где $M(2)_{\text{Fund}}$ второй спектральный момент фундаментальной полосы поглощения, $M(2)_{\text{Comb}}$ — второй спектральный момент соответствующей составной полосы. Подобный эффект описан в работе [9], посвященной восстановлению контуров полос экстинкции v5 и v10 C2F6 в жидкой и кристаллических фазах.

Контур составной полосы $v_1 + v_3$ в отличие от контура полосы v_3 в спектре поглощения имеет ярко выраженные LO- и TO-ветви. Появление LO-ветви в этом контуре связано со спецификой формирования контура полосы за счет РДД взаимодействия состояний, соответствующих одновременным колебательным переходам. Подробно этот вопрос рассмотрен в приложении.

Из экспериментальных данных, представленных в табл. 2, видно, что значение второго спектрального момента при переходе от спектра жидкости к спектру пластического кристалла остается практически неизменным в пределах погрешности. Для объяснения такого постоянства можно проследить влияние изменений параметров расчета OPDS контуров (параметр разброса молекулярных координат (σ) и эффективное координационное число (n)) на значение второго спектрального момента полосы v₃. Используем параметры из вышеприведенного расчета OPDS контура полосы v₃ в спектре жидкости: $\sigma = 0.075$ и n = 10.5; при заданных параметрах рассчитанный второй спектральный момент полосы составляет 910 ст⁻². Если применить данную модель к описанию пластического кристалла, т.е. убрать вакантные места и принять эффективное координационное число за n = 12 с сохранением параметра разброса молекулярных координат $\sigma = 0.075$, то соответствующий рассчитанный второй спектральный момент составит 1025 cm⁻². Рассчитанные величины вторых спектральных моментов находятся в согласии с их экспериментальными значениями.

Заключение

В настоящей работе были рассмотрены механизмы формирования контуров полос v₃ в спектрах поглощения и КР CF₄ в фазах жидкости и пластического кристалла.

Экспериментальный спектр КР, полученный в настоящей работе, позволил определить условия вращательного коллапса для жидкости тетрафторметана.

Показано, что в спектрах поглощения контуры полос v_3 и $v_1 + v_3$ формируются преимущественно двумя механизмами — межмолекулярным РДД взаимодействием и внутримолекулярным резонансом Ферми. Анализ полосы v_3 в спектрах КР показал необходимость учета вклада заторможенного вращения в формирование контура этой полосы.

Расчет контура полосы *v*₃ с использованием твердотельного подхода к описанию молекулярной жидкости дал хорошее согласие с экспериментальными данными.

Благодарности

Авторы выражают благодарность ресурсным центрам СПбГУ "Центр прикладной аэродинамики" и "Нанотехнологии" за помощь в создании жидкостного криостата, а также ресурсному центру СПбГУ "Геомодель" за предоставление оборудования для регистрации спектров, а также П.К. Сергееву за помощь в организации эксперимента.

Финансирование работы

Т.С. Катаева поддержана грантом РФФИ № 19-33-90073, О.С. Голубкова и Д.Н. Щепкин — грантом РФФИ № 0-03-00536.

Конфликт интересов

У авторов нет конфликта интересов.

Приложение

В приложении рассмотрена последовательность решения векового уравнения порядка $3N^2$, которое описывает РДД взаимодействие N молекул CF₄ в спектральной области составного колебания $v_1 + v_3$, где v_1 — неактивное в поглощении колебание, а v_3 — сильное в дипольном поглощении колебание.

Функция дипольного момента каждой молекулы может быть разложена ряд Тейлора по в безразмерным колебательным координ $P^{(n)} = P_i^{(n)'} q_i^{(n)} + P_j^{(n)'} q_j^{(n)} + P_{ij}^{(n)''} q_i^{(n)} q_j^{(n)} + \dots,$ координатам q: где нижние индексы обозначают номера нормальных колебаний; верхние индексы — номера молекул. Это разложение подразумевает убывание по параметру $P_{ii}^{\prime\prime}/P_i^{\prime}$.

Возмущение, связанное с РДД взаимодействием системы (см. выражение (3)), состоящей из *N* молекул в жидкости, можно представить в виде суммы парных взаимодействий:

$$V = \frac{1}{hcR_0^3} \sum_{n \neq m}^{N} \left[P_i^{(n)'} q_i^{(n)} + P_{ij}^{(n)''} q_i^{(n)} q_j^{(n)} \right]$$
$$\times \left[P_i^{(m)'} q_i^{(m)} + P_{ij}^{(m)''} q_i^{(m)} q_j^{(m)} \right] \left(\frac{R_0}{R_{nm}} \right)^3 f(\theta_{nm}).$$
(A1)

В нулевом приближении стационарной теории возмущений волновая функция всей молекулярной системы *L* представляется как произведение волновых функций всех молекул системы, $\Psi_L^0 = \prod_{i=1}^N \Psi_V^{(i)}$, зависящих каждая от своего набора колебательных квантовых чисел; $E_L^0 = \sum_{i=1}^N E_V^{(i)}$ — колебательная энергия системы молекул, полученная в приближении учета ангармоничности во втором порядке теории возмущений.

Для упрощения формулировок введем следующие обозначения: *c*-level (combinational vibration уровень, соответствующий level) составному $(\nu_1 + \nu_3)^{(n)}$ колебанию олной молекулы n: s-level (simultaneous vibration levels) — уровень, соответствующий одновременному колебательному переходу $(v_1)^{(n)} + (v_3)^{(m)}$ на паре молекул *n* и *m*. Соответствующие этим уровням переходы будем обозначать как c-transition и s-transition.

Рассмотрим вид векового уравнения для случая РДД взаимодействия фундаментальных невырожденных колебаний v_i в системе, состоящей из N молекул:

	1 2	3	N	1	2	3	 N
$(v)_{i}^{(1)}$	$\langle 1; 0;$	0;	0	$-\lambda$	$a_{12}f(\vartheta_{12})$	$a_{13}f(\vartheta_{13})$	 $a_{1N}(\vartheta_{1N})$
$(\nu_i)^{(2)}$	(0; 1;	0;	0	$a_{21}f(\vartheta_{21})$	$-\lambda$	$a_{23}f(\vartheta_{23})$	 $a_{2N}f(\vartheta_{2N})$
$(v_i)^{(3)}$	$\langle 0; 0;$	0;	0	$a_{31}f(\vartheta_{31})$	$a_{32}f(\vartheta_{32})$	$-\lambda$	 $a_{3N}f(\vartheta_{3N})$
		K					
$(v_i)^{(N)}$	$\langle 0; 0;$	0;	1	$a_{N1}f(\vartheta_{N1})$	$a_{N2}f(\vartheta_{N2})$	$a_{N3}f(\vartheta_{N3})$	 $-\lambda$

В этом уравнении матричный элемент взаимодействия определяется значениями параметров *a* и *f*.

Введем следующие упрощения.

1. В выражении для возмущения системы (A1) перекрестные произведения не учитываются. Возмущение разделено на 2 части, которые принципиально различаются по величине и коррелируют с уменьшением параметров разложения функции дипольного момента молекулы. Можно выделить два типа матричных элементов взаимодействия.

Матричный элемент взаимодействия

$$W = \frac{1}{hcR_0^3} \left(\frac{R_0}{R_{nm}}\right)^3 P_i^{(n)'} P_i^{(m)'} f(\theta_{nm}) = a \left(\frac{R_0}{R_{nm}}\right)^3 f(\theta_{nm})$$

соответствует двум типам взаимодействия: a)s-уровней $(\nu_1)^{(n)} + (\nu_3)^{(m)}$ и $(\nu_1)^{(n)} + (\nu_3)^{(l)}$, где $n \neq m \neq l$; b) c-уровня $(\nu_1 + \nu_3)^{(n)}$ и s-уровня $(\nu_1)^{(n)} + (\nu_3)^{(m)}$, где $n \neq m$ и n фиксировано.

Матричный элемент взаимодействия

$$w = \frac{1}{hcR_0^3} \left(\frac{R_0}{R_{nm}}\right)^3 P_{ij}^{(n)''} P_{ij}^{(m)''} f(\theta_{nm}) = b \left(\frac{R_0}{R_{nm}}\right)^3 f(\theta_{nm})$$

соответствует двум типам взаимодействия: a) *с*-уровней $(\nu_1 + \nu_3)^{(n)}$ и $(\nu_1 + \nu_3)^{(m)}$, где $n \neq m$; b) *s*-уровней $(\nu_1)^{(n)} + (\nu_3)^{(m)}$ и $(\nu_1)^{(m)} + (\nu_3)^{(n)}$, где $n \neq m$.

При составлении векового уравнения будем опускать индексы при параметре *a*, так как при данном рассмотрении принципиальным является только порядок его величины. Кроме того, опустим фактор $(R_0/R_{nm})^3 f(\theta_{nm})$ в вековом уравнении, поскольку он не влияет на порядок величины матричного элемента взаимодействия.

2. При решении векового уравнения мы пренебрегаем резонансом Ферми, поскольку он не влияет на уширение контура.

3. Колебание v_3 является трижды вырожденным, но для простоты будем рассматривать случай одномерного осциллятора (например, *x*-компонента дипольного момента) с соответствующим состоянием $\langle v_1 v_3 |$.

Учитывая изложенные выше упрощения, представим вековое уравнение в следующем виде: уравнение будет состоять из (N + 1) блоков; первый блок будет учитывать взаимодействие *с*-состояний между собой, следующие блоки будут учитывать взаимодействие *s*-состояний друг с другом:

Из векового уравнения (А2) видно, что первый блок уравнения соответствует взаимодействию с-состояний $(\nu_1 + \nu_3)^{(n)}$ друг с другом, где n = 1:N; этот блок имеет ту же структуру, что и в фундаментальной области спектра. Единственное отличие состоит в том, что взаимодействие происходит через малый параметр b. Второй спектральный момент определится как $M(2)_{\text{Comb}} = \sum_{i,k=1}^{N} b_{ik}^{2}$. В спектре поглощения такой контур будет в основном зависеть от вкладов вращения и эффектов ангармоничности. Однако в нашем случае наличие s-переходов в вековом уравнении приводит к расширению экситонной зоны из-за большого значения параметра а. Запишем то же вековое уравнение в другом порядке. Уравнение будет состоять из N блоков, и каждый блок будет включать в себя взаимодействие одного *с*-состояния $(v_1 + v_3)^{(n)}$ с (N - 1) *s*-состояниями $(\nu_1)^{(n)} + (\nu_3)^{(m)}$:

	1	2	3	N													
$(\nu_1 + \nu_3)^{(1)}$	(11;	00;	00;	00	$-\lambda$	b	b	b	а	а	а	а	0	0	0	0	
$(\nu_1 + \nu_3)^{(2)}$	$\langle 00$;11;	00;	00	b	$-\lambda$	<i>b</i>	b	0	0	0	0	0	0	0	0	
$(\nu_1 + \nu_3)^{(3)}$	(00;	00;	11;	00	b	b	-λ	b	0	0	0	0	0	0	0	0	
$(\nu_1 + \nu_3)^{(N)}$	(00;	00;	00;	01	b	b	<i>b</i>	λ	0	0	00	0	а	а	a	а	
$(\nu_1)^{(1)} + (\nu_3)^{(2)}$	(10;	01;	00;	00	а	0	0	0	$\Delta - \lambda$	а	а	а	0	0	0	0	
$(\nu_1)^{(1)} + (\nu_3)^{(3)}$	(10;	00;	01;	00	а	0	0	0	а	$\Delta - \lambda$	а	а	0	0	0	0	
$(\nu_1)^{(1)} + (\nu_3)^{(N)}$	(10;	00;	00;	01	а	0	0	0	а	а	а	$\Delta - \lambda$	b	0	0	0	= 0.
$(\nu_1)^{(2)} + (\nu_3)^{(1)}$	(01;	10;	00;	00	а	0	0	0	b	0	0	0	0	0	0	0	
$(\nu_1)^{(2)} + (\nu_3)^{(3)}$	(00;	10;	01;	00	0	а	0	0	0	0	0	0	0	0	0	0	
$(\nu_1)^{(2)} + (\nu_3)^{(N)}$	(00;	10;	00;	01	0	а	0	0	0	0	0	0	0	b	0	0	
$(\nu_1)^{(N)} + (\nu_3)^{(1)}$	(01;	00;	00;	10	0	0	0	а	0	0	0	b	$\Delta - \lambda$	а	a	0	
$(\nu_1)^{(N)} + (\nu_3)^{(2)}$	(00;	01;	00;	10	0	0	0	а	0	0	0	0	а	$\Delta - \lambda$	a	0	
$(\nu_1)^{(N)} + (\nu_3)^{(N-1)}$	(00;	00;	01;	10	0	0	0	а	0	0	00	0	а	а	a	$\Delta - \lambda$	(A2)

	1	2	3	(N-1)	Ν													
$(\nu_1 + \nu_3)^{(1)}$	(11;	00;	00;	00;	00	$-\lambda$	а	а	 а	0	b	0		0	0	0	0 b	
$(\nu_1)^{(1)} + (\nu_3)^{(2)}$	(10;	01;	00;	00;	00	а	$\Delta - \lambda$	а	 а	0	0	0		0	0	0	00	
$(\nu_1)^{(1)} + (\nu_3)^{(3)}$	(10;	00;	01;	00;	00	а	а	$\Delta - \lambda$	 а	0	0	0		0	0	0	00	
$(\nu_1)^{(1)} + (\nu_3)^{(N)}$	(10;	00;	00;	00;	01	а	а	а	 $\Delta - \lambda$	0	0	0	0	0	0	0	00	
$(\nu_1)^{(2)} + (\nu_3)^{(1)}$	(01;	10;	00;	00;	00	0	0	0	 0	$\Delta - \lambda$	а	а		а	0	0	00	
$(\nu_1 + \nu_3)^{(2)}$	$\langle 00;$	11;	00;	00;	00	b	0	0	 0	а	$-\lambda$	а		а				
$(\nu_1)^{(2)} + (\nu_3)^{(3)}$	$\langle 00;$	10;	01;	00;	00	0	0	0	 0	а	а	$\Delta - \lambda$		а	0	0	00	=0.
$(\nu_1)^{(2)} + (\nu_3)^{(N)}$	$\langle 00;$	10;	00;	00;	00	0	0	0	 0	а	а	а		$\Delta - \lambda$	0	0	00	
$(\nu_1)^{(N)} + (\nu_3)^{(1)}$	(01;	00;	00;	00;	10	0	0	0	 0	0	0	0		0	$\Delta - \lambda$	а	aa	
$(\nu_1)^{(N)} + (\nu_3)^{(2)}$	$\langle 00;$	01;	00;	00;	10	0	0	0	 0	0	0	0		0	а	$\Delta - \lambda$	aa	
$(\nu_1)^{(N)} + (\nu_3)^{(N-1)}$	$\langle 00;$	00;	00;	01;	10	0	0	0	 0	0	0	0		0	а	а	aa	
$(\nu_1 + \nu_3)^{(N)}$	$\langle 00;$	00;	00;	00;	11	b	0	0	 0	0	0	0		0	а	а	$a \ \dots \ -\lambda$	(A3)

Из уравнения (АЗ) видно, что взаимодействие внутри каждого диагонального подблока происходит через параметр а, что приводит к значению второго спектрального момента $M(2)_{\text{simult}} = \sum_{i,k=1}^{N} a_{ik}^2$.

Суммарный второй спектральный момент OPDS контура полосы $v_1 + v_3$ является суммой вторых спектральных моментов двух механизмов:

$$M(2)_{\text{OPDS}}(\nu_1 + \nu_3) = M(2)_{\text{comb}} + M(2)_{\text{simult}}$$
$$= \sum_{i,k=1}^N b_{ik}^2 + \sum_{i,k=1}^N a_{ik}^2 = \sum_{i,k=1}^N (b_{ik}^2 + a_{ik}^2).$$

Таким образом, характерная полуширина

OPDS-контур

| N

И

a
$$2\sqrt{M(2)_{\text{OPDS}}} = \sqrt{\sum_{i,k=1}^{N} (b_{ik}^2 + a_{ik}^2)}$$

определяется в основном взаимодействием s-состояний, т.е. одновременными переходами.

Список литературы

- [1] Коломийцова Т.Д., Федосеев В.Г., Щепкин Д.Н. // Опт. и спектр. 1995 Т. 79. С. 568; Kolomiitsova T.D., Fedoseev V.G., Shchepkin D.N. // Opt. Spectr. 1995 V. 79. P. 523.
- [2] Коломийцова Т.Д., Кондауров В.А., Щепкин Д.Н. // Опт. и спектр. 2001. Т. 91. № 2. С. 220; Коютійсьога Т.Д., Kondaurov V.A., Shchepkin D.N. // Opt. Spectrosc. 2001. V. 91. P. 203. doi 10.1134/1.1397840
- [3] Kolomiitsova T.D., Burtsev A.P., Fedoseev V.G., Shchepkin D.N. // Chem. Phys. 1998. V. 238. P. 315. doi 10.1016/S0301-0104(98)00230-4

- [4] Бурцев А.П., Бочаров В.Н., Коломийцова Т.Д., Щепкин Д.Н. // Опт. и спектр. 2006. Т. 100. № 3. C. 415; Burtsev A.P., Bocharov V.N., Kolomitsova T.D., Shchepkin D.N. // Opt. Spectrosc. 2006. V. 100. P. 372. doi 10.1134/s0030400x06030118
- [5] Yvinec M., Pick R.M. // J. Chem. Phys. 1979. V. 71. P. 3440. doi 10.1063/1.438732
- [6] Gilbert M., Drifford M. // J. Chem. Phys. 1977. V. 66. P. 3205. doi 10.1063/1.434295
- [7] Fournier R.P., Savoie R., Bessette F., Cabana A. // J. Chem. Phys. 1968. V. 49. P. 1159. doi 10.1063/1.1670204
- [8] Sergeev P.K., Shchepkin D.N., Kolomiitsova T.D., Bertsev V.V., Asfin R.E. // Appl. Spectrosc. 2015. V. 69. P. 507. doi 10.1366/14-07702
- [9] Kataeva T.S., Golubkova *O.S.*, Shchepkin D.N., Asfin R.E. // J. Mol. Struct. 2019. V. 1187. P. 1. doi 10.1016/j.molstruc.2019.03.050
- [10] Burtsev A.P., Kolomiitsova T.D., Shchepkin D.N. // V. Chem. Phys. Lett. 2003. 379. P. 495 doi 10.1016/j.cplett.2003.06.001
- [11] Dobrotvorskaia A.N., Gatilova A.V., Murzin P.D., Rudakova A.V., Shchepkin D.N., Tsyganenko A.A. // J. Photochem. Photobiol. A. Chem. 2018. V. 354. P. 4. doi 10.1016/j.jphotochem.2017.09.066
- [12] Fournier R.P., Savoie R., Bessette F., Cabana A. // J. Chem. Phys. 1968. V. 49. P. 1159. doi 10.1063/1.1670204
- [13] Golubkova 0.S., Shchepkin D.N., Bertsev V.V.Sergeev P.K. // J. Mol. Struct. 2015. V. 1091. P. 20. doi 10.1016/j.molstruc.2015.02.059
- [14] Cherevatova A.N., Bocharov V.N., Kolomiitsova T.D., Shchepkin D.N., Tokhadze K.G. // Low Temp. Phys. 2010. V. 36. P. 439. doi 10.1063/1.3432261
- [15] Булычев В.П., Коломийцова Т.Д., Щепкин Д.Н. // Опт. и спектр. 1994. Т. 76. С. 647; Bulychev V.P., Kolomütsova T.D., Shchepkin D.N. // Opt. Spectrosc. 1994. V. 76. P. 647.

- [16] Дубровская Е.В., Коломийцова Т.Д., Шурухина А.В., Щепкин Д.Н. // Опт. и спектр. 2016. Т. 120. № 2. С. 233; Dubrovskaya E.V., Kolomiitsova T.D., Shurukhina A.V., Shchepkin D.N. // Opt. Spectrosc. 2016. V. 120. Р. 223. doi 10.1134/s0030400x16020089
- [17] Кондауров В.А., Меликова С.М., Щепкин Д.Н. // Опт. и спектр. 1984. Т. 56. № 6. С. 1020; Kondaurov V.A., Melikova S.M., Shchepkin D.N. // Opt. Spectrosc. 1984. V. 56. Р. 626.
- [18] Gilbert M., Drifford M. // J. Chem. Phys. 1976. V. 65. P. 923. doi 10.1063/1.433161
- [19] Andrianov D.S., Cherevatova A.N., Kolomiitsova T.D., Shchepkin D.N. // Chem. Phys. 2009. V. 364. P. 69. doi 10.1016/j.chemphys.2009.08.013