Improvement in Electrical and 2DEG Properties of Al_{0.26}Ga_{0.74}N|GaN|Si HEMTs

© F. Jabli^{1,2}, S. Dhouibi^{3,5}, M. Gassoumi^{2,4,¶}

¹ Laboratory of Micro-Optoelectroniques et Nanostructures, University of Monastir, 5019, Monastir, Tunisia
² Department of Physics, College of Sciences, Qassim University, 51452, Buryadh, Saudi Arabia
³ Department of Physics, College of Science and Arts Al-Mithnab, Qassim University, Al-Mithnab 51931, Saudi Arabia
⁴ Research unit of advanced materials and nanotechnology, University of Kairouan, PO Box 471, 1200 Kasserine, Tunisia
⁵ Laboratory of physics of condensed Matter and Nanosciences, University of Monastir, 5019 Monastir, Tunisia
⁹ E-mail : malek.gassoumi@univ-lille1.fr

Received August 9, 2020 Revised August 9, 2020 Accepted for publication October 8, 2020

Improving material quality is essential for obtaining a high-power device. Surface trapping effects have been present in all HEMT devices, and have significantly impacted the problem of drain-current collapse. In this paper, performance of intentionally non-doped AlGaN|GaN|Si (HEMTs) before and after passivation with SiO₂|SiN is investigated. Capacitance?voltage at various temperatures (C-V-T), a drain current–voltage at various gate voltages $(I_{ds}-V_{ds}-V_{gs})$, the gate leakage current with various temperatures $(I_{gs}-V_{gs}-T)$, and the maximum extrinsic transconductance Gmax are measured; all of these measurements show the impact of SiO₂|SiN passivation on the performances of AlGaN|GaN|Si HEMTs.

Keywords: AlGaN|GaN|Si HEMTs, passivation by SiO₂|SiN, C?V?T, Ids?Vds?Vgs, Igs?Vgs?T, Gmax.

Full text of the paper will appear in journal SEMICONDUCTORS.