# 06,11

# Структура, зеренное строение и диэлектрические свойства керамик твердых растворов YCu<sub>x</sub>Mn<sub>1-x</sub>O<sub>3</sub>

© А.В. Назаренко<sup>1</sup>, А.В. Павленко<sup>1,2</sup>, К.Г. Абдулвахидов<sup>2</sup>

<sup>1</sup> Федеральный исследовательский центр Южный научный центр РАН, Ростов-на-Дону, Россия <sup>2</sup> Южный федеральный университет, Ростов-на-Дону, Россия E-mail: avnazarenko1@gmail.com

Поступила в Редакцию 23 октября 2020 г. В окончательной редакции 23 октября 2020 г. Принята к публикации 23 октября 2020 г.

> Методом твердофазных реакций с последующим спеканием по обычной керамической технологии были изготовлены керамики твердых растворов системы  $YCu_x Mn_{1-x}O_3$  с x = 0.05, 0.10, 0.15. Проведены исследования их структуры, микроструктуры и диэлектрических свойств, включающие измерение температурночастотных зависимостей относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь и удельной электропроводности. Установлено, что в керамиках формируется преимущественно гексагональная фаза, при этом их зеренная структура неоднородная, а синтез происходил с образованием жидких фаз эвтектического происхождения. Показано, что аномальное поведение диэлектрических характеристик при  $T = 30-200^{\circ}$ C во всех керамиках связано с проявлением эффектов межслоевой поляризации, а при  $T = 222^{\circ}$ C (x = 0.05),  $234^{\circ}$ C (x = 0.10) и  $247^{\circ}$ C (x = 0.15) — с "изоструктурным" переходом, являющимся промежуточным между сегнетоэлектрической и параэлектрической фазами.

> Ключевые слова: мультиферроик, манганит иттрия, твердый раствор, диэлектрическая проницаемость, микроструктура.

DOI: 10.21883/FTT.2021.03.50594.229

## 1. Введение

В настоящее время мультиферроикам уделяют особое внимание из-за большого потенциала их применения в современных технологических отраслях. Это связано с взаимодействием между различными подсистемами в таких структурах [1], главным образом — сегнетоэлектрической (СЭ) и магнитной [2]. Редкоземельные манганиты ReMnO<sub>3</sub> (Re — редкоземельный элемент) являются типичными представителями данной группы материалов и в зависимости от ионного радиуса Reпри комнатной температуре могут образовываться как с орторомбической (Orth) структурой (Re — от La до Dy), так и с гексагональной (Hex) (Re — от Ho до Lu), что связывается с толеранс-фактором Гольдшмидта [3]:

$$t = \frac{r_A + r_O}{\sqrt{2}(r_B + r_O)}.\tag{1}$$

Близким по структуре и свойствам к ReMnO<sub>3</sub> является манганит иттрия (YMnO<sub>3</sub>). Он занимает особую позицию среди манганитов, что обусловлено возможностью его изготовления в стабильной при комнатной температуре как в Orth-фазе, так и в Hex-фазе [4,5]. Синтезируется он при достаточно высоких температурах ( $T_{синт} \sim 1300$  K). При комнатной температуре он является сегнетоэлектриком (СЭ) с пространственной группой симметрии  $P6_3cm$ , в котором поляризация является следствием малых смещений в подрешетке

иттрия [6]. Переход в параэлектрическую фазу протекает при  $T_C \approx 900 \,\mathrm{K}$ , а антиферромагнитное (АФМ) упорядочение возникает ниже температуры  $T_{\rm N} \approx 80 \, {\rm K}$  [7,8]. Перовскитная Orth-фаза (пространственная группа симметрии Рпта [9]), образующаяся при высоких давлениях и температурах, не является устойчивой повторный отжиг без приложения давления переводит к образованию Нех-фазы [10]. Однако в твердых растворах (TP) на основе YMnO3 орторомбическая фаза достаточно устойчива, хотя и формируется часто "в паре" с гексагональной [11]. Одной из причин этого является возможность катионов марганца переходить, например, в состояние Mn<sup>4+</sup>, которое соответствует наименьшему ионному радиусу марганца [12], за счет чего толеранс-фактор (1) возрастает. Это связанно с низкими температурами превращений в "цепочке"  $Mn^{(4+)}O_2$   $(873\,K) \rightarrow Mn^{(3+)}_2O_3 \ (1173\,K) \rightarrow Mn^{(2+)+(3+)}_3O_4 \ (1573\,K),$ которые могут быть еще более низкими в многоэлементных композициях и осуществляться как при синтезе, так и при спекании материала. Это может привести к возникновению в данных структурах ферримагнитных свойств, как это имеет место, например, в манганитах висмута-лантана [13]. Как показал анализ литературы, внедрение более чем 20% меди в YMnO<sub>3</sub> приводит к образованию перовскитной фазы, при меньших же концентрациях преобладает Нех-фаза с примесями [14]. Целью настоящей работы является исследование структуры, микроструктуры и диэлектрических свойств в

| Параметр                            | YMnO <sub>3</sub> [16] | YCu <sub>0.05</sub> Mn <sub>0.95</sub> O <sub>3</sub> | YCu <sub>0.10</sub> Mn <sub>0.90</sub> O <sub>3</sub> | YCu <sub>0.15</sub> Mn <sub>0.85</sub> O <sub>3</sub> |
|-------------------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| <i>a</i> , <i>b</i> , Å             | 6.139(0)               | 6.145(7)                                              | 6.141(7)                                              | 6.139(8)                                              |
| <i>c</i> , Å                        | 11.410(0)              | 11.385(7)                                             | 11.376(7)                                             | 11.373(9)                                             |
| Orth-фаза                           | -                      | +                                                     | +                                                     | —                                                     |
| $V, \text{Å}^3 \ (Z = 6)$           | 61.90                  | 62.07                                                 | 61.94                                                 | 61.89                                                 |
| $\rho x_{-ray}$ , g/cm <sup>3</sup> | -                      | 5.132                                                 | 5.143                                                 | 5.147                                                 |
| Y1-01                               | 2.279(8)               | 2.283(2)                                              | 2.315(8)                                              | 2.278(5)                                              |
| Y1-O2                               | 2.342(4)               | 2.342(3)                                              | 2.321(6)                                              | 2.341(5)                                              |
| Y1-O3                               | 2.332(2)               | 2.321(5)                                              | 2.258(3)                                              | 2.323(7)                                              |
| Y2-O1                               | 2.255(9)               | 2.265(0)                                              | 2.295(3)                                              | 2.257(3)                                              |
| Y2-O2                               | 2.323(5)               | 2.312(5)                                              | 2.266(8)                                              | 2.318(6)                                              |
| Y2-O4                               | 2.449(7)               | 2.466(1)                                              | 2.550(7)                                              | 2.447(7)                                              |
| Mn-O1                               | 1.838(2)               | 1.832(1)                                              | 1.819(3)                                              | 1.831(3)                                              |
| Mn-O2                               | 1.867(9)               | 1.866(2)                                              | 1.876(1)                                              | 1.863(2)                                              |
| Mn-O3                               | 2.061(0)               | 2.063(4)                                              | 2.063(7)                                              | 2.061(3)                                              |
| Mn-O4                               | 2.055(8)               | 2.057(7)                                              | 2.055(6)                                              | 2.055(9)                                              |
| Mn/Cu-O3-Mn                         | 118.009(7)             | 117.992(6)                                            | 117.840(2)                                            | 118.007(9)                                            |
| Mn/Cu-O4-Mn                         | 119.388(2)             | 119.437(9)                                            | 119.502(7)                                            | 119.414(4)                                            |

Структурные параметры системы ТР YCu<sub>x</sub>Mn<sub>1-x</sub>O<sub>3</sub> при комнатной температуре

интервале температур  $30-400^{\circ}$ С керамик твердых растворов  $YCu_xMn_{1-x}O_3$  с x = 5-15%).

# 2. Методы получения и исследования

При синтезе керамик твердых растворов  $YCu_xMn_{1-x}O_3$  (x = 0.05, 0.10 и 0.15) использовались простые оксиды  $Y_2O_3$ , CuO и  $Mn_2O_3$  качеством не ниже "ч.д.а.". Стехиометрические смеси образцов перемешивались в этиловом спирте в течение 1 h, после чего брикетировались в диски диаметром 5 mm. Стадия синтеза проводилась поэтапно при температурах  $T_1 = 850^{\circ}$ C ( $\tau_1 = 3$  h) и  $T_2 = 1160^{\circ}$ C ( $\tau_1 = 2$  h). Дальнейшее спекание проводилось с использованием традиционной керамической технологии.

Для исследования фазового состава и кристаллической структуры объектов использовался метод рентгеноструктурного анализа с использованием дифрактометра Bruker D2 PHASER. Изучение зеренного строения керамик проводилось на 3D-сканирующем лазерном микроскопе Keyence VK-9700.

Температурные зависимости относительной диэлектрической проницаемости  $\varepsilon'/\varepsilon_0$ , и тангенса угла диэлектрических потерь, tg  $\delta$ , в диапазоне частот  $f = 10^2 - 10^5$  Hz и удельного электрического сопротивления — образцов при T = 300 - 700 K получали с помощью измерительного стенда на базе LCR-метра HIOKI 35-50 с использованием методики № ГСССД МЭ 184–2011. Для проведения измерений на поверхность керамики наносилась паста аuromal 38 (DODUCO GmBH). Относительная диэлектрическая проницаемость ( $\varepsilon/\varepsilon_0$ ) определялась из соотношения  $C = \varepsilon \varepsilon_0 S/h$ , где C — емкость структуры, h толщина слоя сегнетоэлектрика, S — площадь электрода,  $\varepsilon_0 = 8.854 \cdot 10^{-12}$  F/m — электрическая постоянная.

# 3. Результаты и обсуждение

В изготовленных керамических образцах, по данным РФА и РСА, частично представленных нами ранее в [15], формируется преимущественно гексагональная фаза. В ТР с концентрацией Си ниже 15% кроме Нехфазы имеется небольшие примеси, а также перовскитная фаза, количество которой снижается с увеличением концентрации меди (рис. 1). Тенденция в изменении параметров гексагональной ячейки объектов (таблица) с



**Рис. 1.** Рентгенограммы системы ТР  $YCu_x Mn_{1-x}O_3$  при комнатной температуре. Стрелки — Orth-фаза, (\*) — примесь  $YMn_2O_5$ .

ростом концентрации меди свидетельствует о частичном ее вхождении в базовую структуру. Изменение длин связи и углов позволяет заключить, что уменьшение объема происходит не только за счет изменения линейных размеров ячейки, но и ее формы. При этом можно проследить аномальный характер концентрационного изменения геометрии элементарной ячейки. При общем снижении объема/параметров наблюдается особенность в TP с x = 0, 10. Это возможно говорит о различной конфигурации валентных состояний марганца.

После спекания при температуре  $T_2 = 1160^{\circ}$ С керамики YCu<sub>0.05</sub>Mn<sub>0.95</sub>O<sub>3</sub> и YCu<sub>0.10</sub>Mn<sub>0.90</sub>O<sub>3</sub> обладали меньшей плотностью, чем YCu<sub>0.15</sub>Mn<sub>0.85</sub>O<sub>3</sub>, что можно было хорошо наблюдать даже при их визуальном осмотре. Это так же проявилось при изучении поверхности механических сколов керамик системы ТР УСи<sub>х</sub> Mn<sub>1-x</sub>O<sub>3</sub> методами оптической микроскопии, представленные на рис. 2-4. Характер механического скола, прошедшего как по самим зернам, так и по их границам, позволил нам во всех случаях достаточно хорошо проанализировать форму и габитусы кристаллитов, а также межкристаллитное пространство. Видно, что зеренная структура керамик достаточно неоднородна, при этом как размеры зерен, так и их форма достаточно сильно варьируются. Это может быть обусловлено, в том числе, и выявленным выше сложным фазовым составов керамик. В целом, выделяются 3 отличающихся группы зерен: I — крупные конгломераты мелкозернистых кристаллитов размером 8-15 µm, II — кристаллиты правильной формы, близкой к параллелепипед-образной, размером 2-5 µm, III — кристаллиты с округлой формой размером  $5-10\,\mu m$  (рис. 2, 3). Ввиду фиксирования межкристаллитных прослоек толщиной от 0.5 до 2 µm, "обволакивающих" кристаллиты, с преобладающим содержанием меди [15], формирование зерен типа III, может быть следствием частичного изменения характера спекания керамик в рамках обычной керамической технологии: от твердофазного к спеканию с участием жидкой фазы (ЖФ) (рис. 4). Учитывая, что в случае твердофазных реакций [17] практически всегда по технологическим причинам не весь объем исходных реагентов участвует в синтезе и, как следствие, остаются непрореагировавшие сырьевые компоненты, очевидно присутствие в шихтах определенного количества, не вошедшего в структуру CuO, с которым может быть связано образование ЖФ [18]. Анализ фазовой диаграммы системы Cu-O показывает, что в случае частичной потери кислорода, которая неизбежна в рамках ОКТ при температуре спекания, температура плавления оксида CuO1-6 может снижаться до 1090°С. Учитывая же возможность образования ЖФ с участием ионов меди в результате образования эвтектических смесей, нельзя исключить возможность еще большего снижения температуры [19], что мы фиксируем вероятнее всего.

На рис. 5 приведены зависимости  $\varepsilon'/\varepsilon_0(T)$  и tg  $\delta(T)$  керамик ТР YCu<sub>x</sub>Mn<sub>1-x</sub>O<sub>3</sub> с x = 0.05, 0.10 и 0.15 в рассматриваемом температурно-частотном диапазоне.



**Рис. 2.** Микроструктура участка поперечного скола состава  $YCu_{0.05}Mn_{0.95}O_3$ .



**Рис. 3.** Микроструктура состава участка поперечного скола  $YCu_{0.10}Mn_{0.90}O_3$ .



**Рис. 4.** Микроструктура состава участка поперечного скола  $YCu_{0.15}Mn_{0.85}O_3$ .

При комнатной температуре керамики характеризовались невысокими значениями относительной диэлектрической проницаемости (40–80) и высокими значениями тангенса угла диэлектрических потерь (до 5), что является следствием высокой сквозной электропроводности керамик ( $\gamma_{st} \sim 10^{-6} (\Omega \cdot m)^{-1}$ ), дающей прямой вклад  $\gamma_{st}/(\varepsilon_0 \omega)$  в значение tg  $\delta$  [20]. На кривых  $\varepsilon'/\varepsilon_0(T)$  во всех случаях по мере роста температуры при  $T = 25-120^{\circ}$ С формировались максимумы при  $T_m$ , положение которых при увеличении f с 10<sup>3</sup> Hz до 10<sup>5</sup> Hz смещалось в высокотемпературную область: для YCu<sub>0.05</sub>Mn<sub>0.95</sub>O<sub>3</sub> — с 4°C до 75°C, для YCu<sub>0.10</sub>Mn<sub>0.90</sub>O<sub>3</sub> — с 38°C до 86°C



Рис. 5. Зависимости  $\varepsilon'/\varepsilon_0(T)$  и tg  $\delta(T)$  в интервале  $T = 30-350^{\circ}$ С и  $f = 10^2-10^5$  Hz для TP керамик YCu<sub>0.05</sub>Mn<sub>0.95</sub>O<sub>3</sub> (a, b), YCu<sub>0.10</sub>Mn<sub>0.90</sub>O<sub>3</sub> (c, d) и YCu<sub>0.15</sub>Mn<sub>0.85</sub>O<sub>3</sub> (e, f).

и для YCu<sub>0.15</sub>Mn<sub>0.85</sub>O<sub>3</sub> — с 40°C до 102°C. При более высоких температурах значения  $\varepsilon'/\varepsilon_0$  монотонно возрастали. На зависимостях tg  $\delta(T)$ , в свою очередь, аномалии в этой области идентифицировались достаточно слабо и главным образом при наибольших частотах в виде "горбов" или точек перегиба, что обусловлено отмеченным ранее вкладом в диэлектрический отклик сквозной электропроводности объектов, возрастающей по мере роста температуры (рис. 6). Зависимость  $T_m(f)$  в анализируемом частотном диапазоне для всех керамик описывалась соотношением Аррениуса (рис. 6)

$$f = f_0 \exp(E_{\rm act}/(kt_{\rm m})), \qquad (2)$$

где  $f_0$  — частота попыток преодоления потенциального барьера  $E_{\rm act}, k$  — постоянная Больцмана.

15



**Рис. 6.** Зависимость  $\ln(f)$  от 1/T керамик  $YCu_xMn_{1-x}O_3$  с x = 0.05, 0.10 и 0.15. Прямые линии — результат расчета согласно соотношению Аррениуса (2).

Зависимости удельной электропроводности исследуемых керамик от температуры, построенные в координатах Аррениуса приведены на рис. 7. Видно, что во всех случаях в интервале температур 25–400°С зависимость  $\ln(\gamma)(1/T)$  носит фрагментарно линейный характер (для YCu<sub>0.05</sub>Mn<sub>0.95</sub>O<sub>3</sub> 25–247°С — I и 247–400°С — II; для YCu<sub>0.10</sub>Mn<sub>0.90</sub>O<sub>3</sub> 25–234°С — I и 234–400°С — II; для YCu<sub>0.15</sub>Mn<sub>0.85</sub>O<sub>3</sub> 30–222°С — I и 222–400°С — II), что свидетельствует о термоактивационных механизмах электропроводности материалов в анализируемом диапазоне температур. Рассчитанные значения энергии активации позволяют связать проводимость главным образом с кислородными вакансиями [20]. Высокая электропроводность приводит к тому, что даже в слабых электрических полях в материале происходит накопление зарядов на различного рода границах раздела, отличающиеся диэлектрическими свойствами (проводимостью и диэлектрической проницаемостью) [20]. Их наличие установлено нами, частично, при анализе микроструктуры керамик (см. рис. 2), а также обусловлено существованием, учитывая симметрию объектов, спонтанной поляризации, в экранировке которой участвуют свободные заряды материала. Все это как раз-таки и способствует проявлению эффектов межслоевой поляризации (максвелл-вагнеровская поляризация) и сопутствующей ей диэлектрической релаксации, что мы и фиксировали на зависимостях  $\varepsilon'/\varepsilon_0(T)$  и tg  $\delta(T)$ . Близость рассчитанных значений Eact для всех керамик и сопоставимый температурный диапазон, где мы фиксируем соответствующие релаксационные максимумы, свидетельствует о едином механизме, дающим основной вклад в диэлектрический отклик для всех исследуемых керамиках.

С увеличением концентрации Cu, температура излома на кривых  $\ln(\gamma)$  от 1/T, свидетельствующая об изменении энергии активации электропроводности материала, смещалась в высокотемпературную область с 495 до 520 К. Учитывая данные работы [7,21,22], это может быть связано с "изоструктурной" фазовой перестройкой, которая может происходить за счет смещений и поворотов Mn-содержащих бипирамид. Такое фазовое превращение является промежуточным между сегнетоэлектрической и параэлектрической фазами.

# 4. Выводы

1. Изготовлены ТР системы  $YCu_xMn_{1-x}O_3$  с x = 0.05, 0.10, 0.15 по обычной керамической технологии. Синтез происходил с образованием жидких фаз эвтектического



Рис. 7. Зависимости  $\ln(\gamma)$  от 1/T в интервале температур 25–400°С для ТР керамик YCu<sub>x</sub>Mn<sub>1-x</sub>O<sub>3</sub> с x = 0.05, 0.10 и 0.15.

происхождения, признаки присутствия которых были выявлены при анализе микроструктуры материалов. Зерненое строение керамик является неоднородным, размер и форма кристаллитов разнообразны и варьируются широких пределах.

2. По данным РСА и РФА установлено, что с увеличением концентрации меди происходит снижение параметров ячейки, что говорит об образовании твердых растворов замещения. Обнаружено, что на фоне общего снижения объема существует аномальное поведение в длинах связи и валентных углах при x = 0.10. Это возможно говорит о различной конфигурации валентных состояний марганца в ТР YCu<sub>x</sub>Mn<sub>1-x</sub>O<sub>3</sub>.

3. При анализе диэлектрических характеристик объектов выявлены аномалии на зависимостях  $\varepsilon'/\varepsilon_0(f, T)$  и tg  $\delta(f, T)$  при температурах  $T = 30 - 200^{\circ}$ С, обусловленные проявлением эффектов межслоевой поляризации из-за высокой электропроводности керамик, и на ln( $\gamma$ ) от (1/T) при  $T = 222^{\circ}$ С (YCu<sub>0.05</sub>Mn<sub>0.95</sub>O<sub>3</sub>), 234°С (YCu<sub>0.10</sub>Mn<sub>0.90</sub>O<sub>3</sub>) и 247°С (YCu<sub>0.15</sub>Mn<sub>0.85</sub>O<sub>3</sub>), связанные с "изоструктурным" переходом, являющимся промежуточным между сегнетоэлектрической и параэлектрической фазами.

4. Полученные результаты целесообразно использовать при синтезе и разработке материалов на основе YMnO<sub>3</sub>.

### Финансирование работы

Работа осуществлялась в рамках государственного задания ЮНЦ РАН № госрегистрации проекта 01201354247 на оборудовании ЦКП ЮНЦ РАН (№ 501994).

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

# Список литературы

- [1] N.A. Spaldin, M. Fiebig. Science 309, 391 (2005).
- [2] M. Fiebig. J. Phys. D38, R123 (2005).
- [3] V.M. Goldschmidt. Geochemisca veterlun. Norske Videnkap, Oslo (1927).
- [4] K. Uusi-Esko, J. Malm, N. Imamura, H. Yamauchi, M. Karppinen. Mater. Chem. Phys. 112, 1029 (2008).
- [5] A. Filippetti, N.A. Hill. Phys. Rev. B 65, 195, 120 (2002).
- [6] B.B. Van Aken, T.T.M. Palstra, A. Filippetti, N.A. Spaldin. Nature Mater. 3, 164 (2004).
- [7] T. Lonkai, D.G. Tomuta, U. Amann, J. Ihringer, R.W.A. Hendrix, D.M. Tobbens, J.A. Mydosh. Phys. Rev. B 69, 13, 134108 (2004).
- [8] Z.J. Huang, Y. Cao, Y.Y. Sun, Y.Y. Xue, C.W. Chu. Phys. Rev. B 56, 4, 2623 (1997).
- [9] H.C. Gupta, P. Ashdhir. Physica B: Condens. Matter **262**, I-2, 1 (1999).
- [10] S.A. Prokudina, Y.S. Rubinchik, M.M. Pavlyuchenko. Inorgan. Mater. 12, 598 (1976).

- [11] C. Moure, J. Tartaj, A. Moure, O. Pena. Boletin de la Sociedad Espanola de Ceramica y Vidrio 48, 199 (2009).
- [12] Г.Б. Бокий. Кристаллохимия. Наука, М. (1971). 400 с.
- [13] А.В. Павленко, А.В. Турик, Л.А. Резниченко, Ю.С. Кошкидько. ФТТ **56**, *6*, 1093 (2014).
- [14] C. Moure, D. Gutierrez, O. Pena, P. Duran. J. Solid State Chem. 163, 377 (2002).
- [15] A.V. Nazarenko, K.G. Abdulvakhidov, A.V. Pavlenko. Sci. South Rus. 15, 4, 12 (2019).
- [16] A.G. Razumnaya, A.V. Nazarenko, A.G. Rudskaya, M.F. Kupriyanov. Nano-Microsystems Technol. 8, 21 (2013).
- [17] Ю.Д. Третьяков. Химия нестехиометрических окислов. МГУ, М. (1974). 364 с.
- [18] Х.А. Садыков, И.А. Вербенко, Л.А. Резниченко, А.Г. Абубакаров, Л.А. Шилкина. Экология промышленного производства 2, 44 (2013).
- [19] Л.А. Резниченко, О.Н. Разумовская, Л.А. Шилкина, В.А. Алешин. В сб.: VП Междунар. семинар по физике сегнетоэлектриков-полупроводников. МП "Книга", Ростов н/Д (1996). Вып. 6. С. 149–151.
- [20] А.С. Богатин, А.В. Турик. Процессы релаксационной поляризации в диэлектриках с большой сквозной проводимостью. Феникс, Ростов н/Д (2013). 256 с.
- [21] M. Tomczyk, P.M. Vilarinho, A. Moreira, A. Almeida. J. App. Phys. **110**, 064116 (2011).
- [22] C.J. Fennie, K.M. Rabe. Phys. Rev. B 72, 100103 (2005).

Редактор Т.Н. Василевская