#### 05,11

## Кристаллическая структура и магнитные характеристики твердых растворов Mn<sub>1-x</sub> Fe<sub>x</sub> NiGe

© Г.С. Римский<sup>1</sup>, К.И. Янушкевич<sup>1</sup>, Н.М. Белозорева<sup>2</sup>, Д.П. Козленко<sup>2</sup>, А.В. Руткаускас<sup>2</sup>

<sup>1</sup> Научно-практический центр НАН Беларуси по материаловедению,

Минск, Беларусь

<sup>2</sup> Объединенный институт ядерных исследований, Лаборатория нейтронной физики им. И.М. Франка,

Дубна, Россия

E-mail: grigorij.rimskij@mail.ru

Поступила в Редакцию 30 сентября 2020 г. В окончательной редакции 30 сентября 2020 г. Принята к публикации 20 октября 2020 г.

Синтезированы твердые растворы замещения  $Mn_{1-x}Fe_xNiGe$  (0.05  $\leq x \leq 1.00$ ). Методами дифракции рентгеновских лучей и нейтронов изучена кристаллическая структура в диапазоне температур 20–300 К. При T = 200 К обнаружено фазовое превращение из гексагональной структуры типа Ni<sub>2</sub>In в орторомбическую структуру (S.G. Pnma). Также исследованы магнитные свойства данных соединений в диапазоне температур 5–300 К и внешних магнитных полей до 10 Т. Обнаружено уменьшение температуры фазового превращения "магнитный порядок—магнитный беспорядок" от 272 до 132 К при увеличении концентрации x от 5 до 30 mol.%.

Ключевые слова: интерметаллиды, фазовые переходы, нейтронография, многофункциональные материалы.

DOI: 10.21883/FTT.2021.03.50593.208

#### 1. Введение

Сплавы на основе тройных соединений MnNiGe, MnCoGe, MnZnSb вследствие наличия в широком диапазоне температур магнитных и структурных фазовых превращений, обладают свойствами и эффектами, востребованными при разработке новых устройств микроэлектроники. Среди них такие, как гигантский магнитокалорический эффект, магнитосопротивление, магнитострикция, эффект памяти формы индуцированный магнитным полем [1-7]. Подбором элементов замещения, либо легирования в тройных сплавах MnNiGe, MnCoGe можно управлять свойствами, создавая новые состояния со спонтанной намагниченностью, формировать условия для изменений в магнитоупругих взаимодействиях [8-10]. С точки зрения фундаментальной науки сплавы и твердые растворы на основе MnNiGe являются интересными модельными объектами для определения величин статических и динамических искажений кристаллической структуры, поскольку в них реализуются фазовые превращения, как первого, так и второго рода. Цель работы — синтез твердых растворов  $Mn_{1-x}Fe_xNiGe$ , изучение особенностей кристаллической структуры, определение величин фундаментальных магнитных характеристик.

## 2. Синтез образцов и методы эксперимента

Поликристаллических образцы твердых растворов  $Mn_{1-x}Fe_xNiGe~(0.05 \le x \le 1.00)$  синтезированы методом твердофазных реакций. Шихта с необходимым

соотношением порошков исходных элементов в вакуумированных кварцевых ампулах разогревалась до температуры 1323 К. Полученные спеки подвергались гомогенизирующему отжигу при 1223 К с последующей закалкой. Для проведения исследований синтезированы составы Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe с шагом по концентрации 5 и 10 mol%. Первичная аттестация кристаллической структуры и фазового состава образцов после каждого этапа синтеза осуществлялась при комнатной температуре методом дифракции рентгеновских лучей в Си К<sub>а</sub>-излучении. Кристаллическая структура твердых растворов Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe при 20, 100, 200, 250, 265, 270, 300 К исследована методом дифракции нейтронов. Измерения выполнены на дифрактометре ДН-12 (импульсный реактор ИБР-2, ЛНФ ОИЯИ) [11]. Время получения дифракционного спектра составляло 60 min. Углы рассеяния  $2\theta = 90^{\circ}$  и  $2\theta = 45.5^{\circ}$ , разрешение по межплоскостному расстоянию  $\Delta d/d = 0.022$  и 0.018 (для  $\lambda = 2$  Å) соответственно. Результаты нейтронного эксперимента обрабатывались методом Ритвельда с использованием программы FullProf [12].

Температурные зеависимости удельной намагниченности  $\sigma = f(T)$  и обратной величины магнитной восприимчивости  $1/\chi = f(T)$  изучены в магнитном поле с индукцией B = 0.86 Тесла пондеромоторным методом [13] в диапазоне температур ~ 80-800 К. Полевые зависимости удельной намагниченности  $\sigma = f(B)$  исследованы на вибрационном магнитометре (VSM) фирмы Cryogenic Limited в магнитных полях до 10 T при температурах 5, 77 и 300 К.

Для определения изотермического изменения энтропии в области фазовых превращений проведены измерения намагниченности в статических полях до 10 Т.



Рис. 1. Рентгенограммы порошков твердых растворов Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe, полученные после завершения синтеза.

#### Результаты эксперимента и обсуждение

# 3.1. Кристаллическая структура твердых растворов Mn<sub>1−x</sub> Fe<sub>x</sub>NiGe (0.05 ≤ x ≤ 1.00) в интервале температур 20−300 K

На рис. 1 представлены рентгенограммы порошков твердых растворов  $Mn_{1-x}Fe_xNiGe$  полученные при 300 К в диапазоне углов  $20 \le 2\Theta \le 95^\circ$  после завершения всех этапов синтеза методом твердофазных реакций в вакуумированных кварцевых ампулах.

Установлено, что при температуре 300 К образцы  $Mn_{1-x}Fe_xNiGe$  (0.05  $\leq x \leq 1.00$ ) обладают гексагональной кристаллографической структурой типа Ni<sub>2</sub>In (B8<sub>2</sub>) пространственной группы  $P6_3/mmc$ . Имеет место достаточно плавное изменение угловых положений дифракционных рефлексов и перераспределения их интенсивностей в интервале концентраций  $0.05 \leq x \leq 1.00$ , характерное для твердых растворов при катионном замещении. Концентрационные зависимости параметров *a*, *c*, их соотношения c/a и объема элементарной ячейки *V* твердых растворов  $Mn_{1-x}Fe_xNiGe$  представлены на рис.2.

Численные значения величин, характеризующих размеры гексагональных элементарных кристаллических ячеек a и c, соотношения осей c/a, величин объемов элементарных ячеек V и рентгеновская плотность  $\rho_{\text{рен}}$  порошков твердых растворов  $\text{Mn}_{1-x}\text{Fe}_x\text{NiGe}$  при  $T \sim 300$  K, приведены в табл. 1.

Ход зависимостей a = f(x), c = f(x), V = f(x) рис. 2 демонстрируют, что изменение параметров элементарных кристаллических ячеек при  $\sim 300$  K с изменением концентрации x содержания Fe в синтезированных образцах согласуется с правилом Вегарда для непрерывного ряда твердых растворов. Уменьшение параметров a и с при катионном замещении, вероятнее всего, является следствием различия величин ионных радиусов двух-



**Рис. 2.** Концентрационные зависимости изменения параметров a = f(x), c = f(x), c/a = f(x), V = f(x) гексагональной элементарной кристаллической ячейки твердых растворов  $Mn_{1-x}Fe_x$ NiGe.

395

валентных катионов марганца  $(0.91{-}0.80)\,{\rm \AA}$  и железа  $(0.82{-}0.74)\,{\rm \AA}$  [14].

#### 3.2. Результаты нейтронодифракционных исследований

Нейтронные спектры, полученные для твердого раствора состава  $Mn_{0.95}Fe_{0.05}NiGe$  при температурах 20, 100, 200, 250, 265, 270, 300 К представлены на рис. 3 и 4. Подтверждены результаты рентгеновских исследований, что при комнатной температуре состав  $Mn_{0.95}Fe_{0.05}NiGe$  обладает гексагональной структурой (пр. гр  $P6_3/mmc$ , тип Ni<sub>2</sub>In), в решетке которой координаты положений Mn и Fe 2*a* (0,0,0), для Ni и Ge 2*d* (1/3,2/3,3/4) и 2*c* (1/3,2/3,1/4) соответственно. Установлено, что данный тип кристаллического упорядочения сохраня-



**Рис. 3.** Нейтронные спектры при угле рассеяния  $2\theta = 45.5^{\circ}$ .



**Рис. 4.** Фрагменты нейтронных спектров Mn<sub>0.95</sub>Fe<sub>0.05</sub>NiGe, обработанные по методу Ритвельда.

| x    | <i>a</i> , nm | <i>c</i> , nm | c/a  | $V, 10^{-2} \text{ nm}^3$ | $ ho_{ m peht}$ , (g/sm <sup>3</sup> ) |
|------|---------------|---------------|------|---------------------------|----------------------------------------|
| 0.05 | 0.4081        | 0.5391        | 1.32 | 7.78                      | 7.95                                   |
| 0.10 | 0.4078        | 0.5362        | 1.31 | 7.72                      | 8.01                                   |
| 0.15 | 0.4076        | 0.5337        | 1.31 | 7.68                      | 8.06                                   |
| 0.20 | 0.4071        | 0.5309        | 1.30 | 7.62                      | 8.12                                   |
| 0.25 | 0.4072        | 0.5297        | 1.30 | 7.61                      | 8.14                                   |
| 0.30 | 0.4065        | 0.5274        | 1.30 | 7.55                      | 8.21                                   |
| 0.40 | 0.4074        | 0.5257        | 1.29 | 7.56                      | 8.22                                   |
| 0.50 | 0.4074        | 0.5219        | 1.28 | 7.50                      | 8.27                                   |
| 0.60 | 0.4065        | 0.5195        | 1.28 | 7.43                      | 8.35                                   |
| 0.70 | 0.4063        | 0.5164        | 1.27 | 7.38                      | 8.41                                   |
| 0.80 | 0.4039        | 0.5129        | 1.27 | 7.25                      | 8.57                                   |
| 0.90 | 0.4041        | 0.5105        | 1.26 | 7.22                      | 8.60                                   |
| 1.00 | 0.4025        | 0.5085        | 1.26 | 7.13                      | 8.71                                   |

**Таблица 1.** Численные значения a и c, соотношение c/a, величин объемов элементарных ячеек V и рентгеновская плотность  $\rho_{\text{рен}}$  порошков  $\text{Mn}_{1-x}\text{Fe}_x\text{NiGe}$ 

**Таблица 2.** Численные значения параметров a, b, c и величины объемов элементарных ячеек V образца твердого раствора  $Mn_{0.95}Fe_{0.05}NiGe$ 

| Температура | a, nm               | b, nm               | c, nm               | $V, 10^{-2} \text{ nm}^3$ |
|-------------|---------------------|---------------------|---------------------|---------------------------|
| 300         | 0.40752             | 0.40752             | 0.5381              | 7.7387                    |
| 270         | 0.40752             | 0.40752             | 0.53767             | 7.733                     |
| 265         | 0.40760             | 0.40760             | 0.53733             | 7.7311                    |
| 250         | 0.4079              | 0.4079              | 0.53814             | 7.731                     |
| 200         | 0.59872             | 0.4730 <sub>8</sub> | 0.7051 <sub>8</sub> | 15.7519                   |
| 100         | 0.5989 <sub>0</sub> | 0.37233             | 0.70549             | 15.7316                   |
| 20          | 0.59889             | 0.37217             | 0.70542             | 15.7232                   |

ется в диапазоне температур  $250 \le T \le 300$  К. Новых дифракционных рефлексов или вкладов в интегральную интенсивность структурных пиков не обнаружено. Этот результат нейтронного эксперимента позволяет утверждать. что в интервале температур  $250 \le T \le 300$  К в твердом растворе  $Mn_{0.95}$ Fe<sub>0.05</sub>NiGe отсутствует дальний магнитный порядок.

При 200 К выявлен структурный фазовый переход (рис. 5) из гексагональной сингонии в орторомбическую структуры (пр. гр. *Pnma*).

Получено удовлетворительное совпадение расчетов с данных эксперимента. При обработке нейтронных спектров рис. 4 определены ны параметры элементарной ячейки при различных температурах (табл. 2). Также в



Рис. 5. Температурные зависимости параметров элементарной ячейки (a) и объема (b).



**Рис. 6.** Температурные зависимости удельной намагниченности образцов  $Mn_{1-x}Fe_x$  NiGe при нагреве в магнитном поле 0.86 Т.

| x    | $\sigma_{80\mathrm{K}},\mathrm{A}\cdot\mathrm{m}^2\cdot\mathrm{kg}^{-1}$ | <i>T</i> <sub><i>C</i></sub> , K | $\mu_{80\mathrm{K}},\mu_{\mathrm{b}}$ |
|------|--------------------------------------------------------------------------|----------------------------------|---------------------------------------|
| 0.05 | 13.69                                                                    | 272                              | 0.46                                  |
| 0.10 | 34.53                                                                    | 183                              | 1.15                                  |
| 0.15 | 36.07                                                                    | 153                              | 1.20                                  |
| 0.20 | 30.55                                                                    | 148                              | 1.02                                  |
| 0.25 | 20.38                                                                    | 143                              | 0.68                                  |
| 0.30 | 13.90                                                                    | 137                              | 0.46                                  |
| 0.40 | 9.45                                                                     | -                                | 0.32                                  |
| 0.50 | 7.98                                                                     | Ι                                | 0.27                                  |
| 0.60 | 7.85                                                                     | -                                | 0.26                                  |
| 0.70 | 9.01                                                                     | _                                | 0.30                                  |
| 0.80 | 5.18                                                                     | _                                | 0.17                                  |
| 0.90 | 17.01                                                                    | _                                | 0.57                                  |
| 1.00 | 7.49                                                                     | —                                | 0.25                                  |

**Таблица 3.** Значения удельной намагниченности при 80 К, температуры Кюри и величины средних магнитных моментов Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe

**Таблица 4.** Удельная остаточная намагниченность  $(\sigma_r)$  и коэрцитивная сила  $(B_c)$  образцов  $Mn_{1-x}Fe_x$  NiGe при температурах 5 и 77 К

| x    | $T = 5 \mathrm{K}$                                               |           | $T = 77 \mathrm{K}$                                |           |  |
|------|------------------------------------------------------------------|-----------|----------------------------------------------------|-----------|--|
|      | $\sigma_r, \mathbf{A} \cdot \mathbf{m}^2 \cdot \mathbf{kg}^{-1}$ | $B_c$ , T | $\sigma_s$ , A · m <sup>2</sup> · kg <sup>-1</sup> | $B_c$ , T |  |
| 0.05 | 0.61                                                             | 0.033     | 0.37                                               | 0.019     |  |
| 0.10 | 1.62                                                             | 0.031     | 0.65                                               | 0.013     |  |
| 0.15 | 7.52                                                             | 0.026     | —                                                  | -         |  |
| 0.20 | 12.04                                                            | 0.047     | —                                                  | -         |  |
| 0.25 | 12.84                                                            | 0.075     | _                                                  | _         |  |
| 0.30 | 10.35                                                            | 0.16      | _                                                  | -         |  |
| 0.40 | 5.45                                                             | 0.12      | —                                                  | -         |  |
| 0.50 | 4.25                                                             | 0.113     | —                                                  | -         |  |
| 0.60 | 2.23                                                             | 0.022     | _                                                  | _         |  |
| 0.70 | 4.12                                                             | 0.12      | _                                                  | _         |  |
| 0.80 | 0.57                                                             | 0.007     | _                                                  | _         |  |
| 0.90 | 3.41                                                             | 0.028     | —                                                  | _         |  |
| 1.00 | 4.35                                                             | 0.45      | _                                                  | _         |  |

области температур ниже 200 К наблюдалось появление слабых пиков при  $d \sim 4$  и 5 Å (рис. 3), которые могут указывать на формирование антиферромагнитных кластеров в слабоферромагнитной матрице основной фазы.

Главный результат нейтронного эксперимента — обнаружение при 200 К структурного фазового превращения от гексагональной сингонии к орторомбической в твердом растворе состава Mn<sub>0.95</sub>Fe<sub>0.05</sub>NiGe.

### 3.3. Магнитные характеристики твердых растворов Mn<sub>1-x</sub> Fe<sub>x</sub>NiGe

Температурные зависимости удельной намагниченности представлены на рис. 6.

Катионное замещение в системе  $Mn_{1-x}Fe_x$ NiGe уже при 10% замещения марганца на железо приводит к деградации антиферромагнитного упорядочения. Зависимости  $\sigma = f(T)$  некоторых составов указывают на сохранение значительной доли антиферромагнитной составляющей при температурах T < 150 К. При концентрациях x > 0.10 твердые растворы проявляют наличие некомпенсированного магнитного момента с удельной намагниченностью от ~ 8.0 до ~ 36 A · m<sup>2</sup> · kg<sup>-1</sup> при T = 80 К. В табл. З приведены значения магнитных моментов твердых растворов, рассчитанные из величин удельных намагниченностей при 80 К, с использованием соотношения (1):

$$\mu = \frac{\sigma M}{N_A} \mu_{\rm b},\tag{1}$$

где  $\sigma$  — значение удельной намагниченности при температуре T, M — молярная масса,  $\mu_{\rm E}$  — величина магнетон Бора,  $N_{\rm A}$  – постоянная Авогадро. Величины температур фазового превращения "магнитный порядок—магнитный беспорядок" в твердых растворов



**Рис. 7.** Полевые зависимости удельной намагниченности образцов  $Mn_{1-x}$  Fe<sub>x</sub>NiGe при температурах 5 K.

системы  $Mn_{1-x}Fe_xNiGe$  определены с использованием зависимости квадрата удельной намагниченности  $\sigma^2 = f(T)$ .



**Рис. 8.** Полевые зависимости удельной намагниченности образцов  $Mn_{1-x}Fe_xNiGe$  от величины индукции магнитного поля  $\sigma(B)$  при температурах 77 К.



**Рис. 9.** Полевые зависимости  $\sigma(B)$  удельной намагниченности Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe (0.80  $\leq x \leq 1.00$ ) при температурах 300 K.

На рис. 7, 8 и 9 приведены полевые зависимости удельной намагниченности твердых растворов  $Mn_{1-x}Fe_xNiGe$  в интервале концентраций  $0.05 \le x \le 0.80$  при температурах 5, 77 и 300 К соответственно.

Определены удельная остаточная намагниченность ( $\sigma_r$ ) и коэрцитивная сила. Полученные значения системы  $Mn_{1-x}Fe_xNiGe$  при 5 и 77 К приведены в табл. 4.

Результат эксперимента, демонстрирующий что при температурах 5 и 77 К намагниченность не выходит на насыщение в магнитном поле с индукцией B = 10 Т, за исключением твердого раствора с концентрацией x = 10%, что позволяет говорить о большой вероятности кластерной природе магнетизма в твердых растворах  $Mn_{1-x}Fe_xNiGe$ . При температуре 5 К в образцах наблюдается индуцированный полем метамагнитный фазовый переход в первичной ветви.

#### 4. Заключение

Методом реакций в твердой фазе синтезированы составы  $Mn_{1-x}Fe_xNiGe$  в интервале концентраций  $0.05 \le x \le 1.00$ . Рентгеноструктурные исследования показали, что образцы однофазны при комнатной температуре. Установлено, что увеличение концентрации железа в твердых растворах приводит к уменьшению размеров элементарной кристаллической ячейки. Выявлено, что температура фазового превращения "магнитный порядок—магнитный беспорядок" исследованных образцов уменьшается при увеличении концентрации x замещения ионов Mn на Fe от 272 K для  $Mn_{0.95}Fe_{0.05}NiGe$  до 132 K для твердого раствора  $Mn_{0.70}Fe_{0.30}NiGe$ .

В твердом растворе состава  $Mn_{0.95}Fe_{0.05}NiGe$  при ~ 200 К обнаружен структурный фазовый переход из гексагональной сингонии в орторомбическую. Результаты эксперимента позволяют сделать вывод о кластерной природе наличия удельной намагниченности в твердых растворах  $Mn_{1-x}Fe_x$ NiGe.

#### Конфликт интересов

У авторов статьи нет конфликта интересов.

#### Список литературы

- C.-H. Zhang, D.-H. Wang, J. Chen, T.-Z. Wang, G.-X. Xie, C. Zhu. Chin. Phys. B 20, 9, 097501 (2011).
- [2] G. Daniel-Perez, J.L.S. Llamazares, A. Quintana-Nedelcos, P. Alvarez-Alonso, R. Varga, V. Chernenko. J. Appl. Phys. 115, 17, 17A920 (2014).
- [3] I. Dincer, E. Yuzuak, G. Durak, Y. Elerman. J. Alloys Comp. 588, 332 (2014).
- [4] R.R. Wu, L.F. Bao, F.X. Hu, J. Wang, X.Q. Zheng, Y. Liu, J.R. Sun, B.G. Shen. J. Appl. Phys. 115, 17, 17A911 (2014).
- [5] C.L. Zhang, J. Chen, T.Z. Wang, G.X. Xie, C. Zhu, D.H. Wang. Solid State Commun. 151, 19, 1359 (2011).
- [6] T. Samanta, I. Dubenko, A. Quetz, S. Temple, S. Stadler, N. Ali. Appl. Phys. Lett. 100, 5, 052404 (2012).

- [7] S.C. Ma, D. Hou, C.W. Shih, J.F. Wang, Y.I. Lee, W.C. Chang. J. Alloys Comp. 610, 15 (2014).
- [8] E. Liu, W. Wang, L. Feng, W. Zhu, G. Li. Nature Commun. 3, 873 (2012).
- [9] A. Barcza, Z. Gercsi, H. Michor, K. Suzuki, W. Kockelmann, K.S. Knight, K.G. Sandeman. Phys. Rev. B 87, 6, 064410 (2013).
- [10] E.K. Liu, H.G. Zhang, G.Z. Xu, X.M. Zhang, R.S. Ma, W.H. Wang. Appl. Phys. Lett. 102, 122405 (2013).
- [11] V.L. Aksenov, A.M. Balagurov, V.P. Glazkov, D.P. Kozlenko, I.V. Naumov, B.N. Savenko, D.V. Sheptyakov, V.A. Somenkov, A.P. Bulkin, V.A. Kudryashev, V.A. Trounov. Physica B 265, 258 (1999).
- [12] J. Rodríguez-Carvajal. Physica B 192, 55 (1993).
- [13] В.И. Чечерников. Магнитные измерения. Изд-во МГУ. М. (1969). 386 с.
- [14] Т. Пенкаля. Очерки кристаллохимии. Изд-во "Химия", Л. (1974). 496 с.

Редактор Д.В. Жуманов