15

Моделирование процесса теплоотдачи сверхпроводящих пленок в резистивном состоянии

© М.А. Васютин, Н.Д. Кузьмичев, Д.А. Шилкин

Мордовский государственный университет им. Н.П. Огарёва, 430005 Саранск, Россия e-mail: vasyutinm@mail.ru

Поступило в Редакцию 28 мая 2020 г. В окончательной редакции 12 сентября 2020 г. Принято к публикации 13 сентября 2020 г.

Проведен анализ теплопереноса в системе контакты-пленка-подложка в условиях, когда отвод тепла от образца в подложку недостаточен для обеспечения отсутствия перегрева образца. Для низких температур предложен метод увеличения теплоотвода от тонкопленочных образцов при пропускании через них электрического тока большой плотности. В качестве основного фактора усиления теплоотвода использовано свойство аномально высокой теплопроводности меди при температурах от 5 до 50 К. Численно решено уравнение теплопроводности для системы пленка-подложка при условии дополнительной теплоотдачи в потенциальные контакты. Показано, что контакты из бериллиевой бронзы могут обеспечивать эффективный теплоотвод от образцов сверхпроводящих пленок, находящихся в резистивном состоянии, в условиях сильного джоулевого тепловыделения.

Ключевые слова: вольт-амперные характеристики, сверхпроводящие пленки, теплопроводность, бериллиевая бронза, неоднородное уравнение теплопроводности, 3-я краевая задача.

DOI: 10.21883/JTF.2021.03.50534.183-20

Введение

При проведении экспериментов по исследованию вольт-амперных характеристик (ВАХ) и других параметров образцов, связанных с пропусканием через них сильного тока, необходимым является выполнение условия достаточного теплоотвода. Особенно важно это тогда, когда изучаются сверхпроводящие пленки в резистивном состоянии, переходящие в нормальное состояние при перегреве. Условно образцы пленок можно разделить на две группы: нанометрового размера (вискеры, узкие каналы и т.п.) и микрометрового (широкие пленки, ленты и др.). Если образцы первого типа используются обычно в качестве детекторов [1,2], и уменьшение размеров здесь напрямую связано с увеличением чувствительности, то вторая группа часто применяется в сильноточной технике, где и необходимо учитывать нагревание токонесущих элементов. Применение широких и относительно толстых пленок возможно в сверхпроводящих магнитах и накопителях энергии, которые исследуются сейчас в качестве альтернативы аккумуляторам [3–5].

При изучении токонесущих свойств тонких пленок для формирования контактов используют напыление, ультразвуковую сварку и другие методы, сильно влияющие на образец. Его повторное исследование в других экспериментах после этого невозможно. Магнитные измерения лишь косвенно позволяют определять транспортные характеристики [6]. Комплексное изучение сильноточных характеристик образца неразрушающими методами можно обеспечить прижимными контактами. В этом случае материал контактов должен обладать не только хорошей электропроводностью, но и высокими характеристиками упругих свойств. В настоящей работе исследуются контакты из бериллиевой бронзы (BeCu).

Физические свойства контактов. Оценка теплоотвода

Рассмотрим систему контакты-пленка-подложка--медная основа на примере сверхпроводящей пленки нитрида ниобия (NbN), напыленной на кварцевую подложку (рис. 1). Пленка нитрида ниобия обладает высоким удельным сопротивлением в нормальном состоянии. В качестве материала контактов используем бериллиевую бронзу толщиной 0.13 mm. Упругие свойства бериллиевой бронзы, в частности, предел усталости превосходят даже свойства пружинной стали, что вместе с высокой коррозионной стойкостью делает этот материал чрезвычайно подходящим для изготовления пружин и прижимных контактов [7]. Кроме этого, бериллиевая бронза обладает высокой электро- и теплопроводностью (содержит 98% меди), что особенно важно при проведении транспортных исследований.

Электропроводность бериллиевой бронзы составляет 30% от электропроводности меди [8], которая при температуре T = 14.5 К имеет значение $\sigma = 7.143 \cdot 10^9$ S/m) [8]. Теплопроводность бериллиевой бронзы определяется формулой Смита и Палмера для сплава [9]:

$$\lambda = 2.392 \cdot 10^{-8} \sigma T + 7.539. \tag{1}$$

Рис. 1. Схематическое расположение пленки с контактами, подложки и медной основы.

Тогда, подставляя электропроводность бериллиевой бронзы σ_{BeCu} в формулу (1), получим для ее теплопроводности — $\lambda_{BeCu} = 751$ W/(m·K).

При экспериментальном исследовании ВАХ пленки необходимо обеспечить хороший теплоотвод, чтобы ее нагрев не превышал нескольких десятых градуса. Для оценки повышения температуры ΔT пленки при пропускании через нее одиночного импульса, представляющего собой линейно увеличивающийся от времени ток, будем считать, что все выделившееся в ней тепло Q₁ поглощается потенциальными контактами. Масса контактов mBeCu более чем на два порядка превышает массу пленки (исследуемые образцы имели длину l = 9 mm, ширину b = 5 mm, толщину d = 400 nm, температура перехода пленок в сверхпроводящее состояние Т_с находилась в пределах 16.2-16.5 К, ширина перехода ~ 0.1 К.). Тогда $\Delta T = Q_1 / (m_{\text{BeCu}} c_{\text{BeCu}}),$ $Q_1 = (1/3)R(I_{\text{max}})^2 t_0$. Здесь $R = 2.5 \Omega$ — сопротивление пленки в нормальном состоянии, $I_{\text{max}} = 1.12 \text{ A}$ максимальное значение тока, t_0 — длительность импульса тока, $c_{\text{BeCu}} \approx 7.5 \text{ J/(kg·K)}$ — удельная теплоемкость ВеСи, близкая к теплоемкости меди при $T = 20 \,\mathrm{K}$ [8], $m_{\mathrm{BeCu}} = 40 \,\mathrm{mg}$. Для $t_0 = 25 \,\mu\mathrm{s}$ получим $\Delta T = 0.09 \,\mathrm{K}.$

Оценим отношение мощностей P_1/P_2 тепловыделения $P_1 = (1/3)R(I_{\text{max}})^2$ и теплопоглощения $P_2 = \lambda_{\text{BeCu}}(\partial T/\partial x)S$ ($S = 0.1 \text{ cm}^2$ — площадь потенциальных контактов, составляющая около 20% площади пленки), $\partial T/\partial x = 0.7 \text{ K/mm}$ — градиент температуры в потенциальных контактах при повышении температуры на ΔT при толщине контактов $\Delta x = 0.13$ mm. Тогда $P_1/P_2 \approx 0.2$. Высокая мощность теплопоглощения обусловлена увеличением теплопроводности меди более, чем на порядок при температурах от 5 до 50 K [8,9].

2. Моделирование процесса теплопереноса

Учитывая высокую теплопроводность контактов и еще более высокую теплопроводность медной основы, можно ограничиться анализом процесса нагрева пленки и подложки. Температуру контактов и медной основы будем считать постоянной и равной температуре, поддерживаемой в эксперименте.

Считая, что тепло равномерно распределяется по сечениям, параллельным поверхностям пленки и подложки, можно свести задачу к одномерному случаю. При этом изменение температуры будет происходить лишь по оси *x*.

Для нахождения распределения температуры в системе пленка-подложка при пропускании через пленку импульса тока используем неоднородное уравнение теплопроводности:

$$\frac{\partial T}{\partial t} = a^2 \frac{\partial^2 T}{\partial x^2} + f(x, t), \qquad (2)$$

где $a^2 = \lambda / c_p \rho = 4.3 \cdot 10^{-2} \, \mathrm{cm}^2 / \mathrm{s}$ — коэффициент температуропроводности подложки, $c_{\rm p} = 17 \, {\rm J/(kg \cdot K)}$ удельная теплоемкость подложки при 20 К [8], $\rho = 2200 \, \mathrm{kg/m^3}$ плотность подложки, $\lambda =$ $= 0.16 \, \text{W}/(\text{m} \cdot \text{K})$ теплопроводность кварцевой подложки при 20 К, Т — температура пленки, t — время, х — координата с началом на внешней от подложки плоскости пленки, направленная перпендикулярно в сторону подложки (рис. 1). $f(x, t) = P(x, t)/(c_{\text{NbN}} \cdot \rho_{\text{NbN}}),$ P(x, t) — объемная плотность мощности источника (пленки), $c_{\rm NbN} = 17 \, {\rm J/(kg \cdot K)}$ тепла удельная ____ теплоемкость пленки при $T = 13.5 \,\mathrm{K}$ (сумма решеточной и электронной теплоемкости), $\rho_{\rm NbN} =$ = 8400 kg/m³ — плотность пленки. Учитывая, что сила тока линейно возрастает за время t_0 от 0 до I_{max} , величина P(x, t) определяется законом Джоуля–Ленца:

$$P(x, t) = \rho j_0^2 t^2$$
, если $x \le d$ и $t \le t_0$.

Здесь $\rho \approx 440 \mu \Omega \cdot \text{сm}$ — удельное сопротивление пленки в нормальном состоянии, $j_0 = I_{\text{max}}/(dbt_0)$.

Уравнение теплопроводности (2) можно решать численно без нахождения явной функции. Начальным условием для нашей задачи будет T(x, 0) = 13.5 К. Левое граничное условие (верхняя граница пленки) — $\partial T(0, t)/\partial x = H[T(0, t) - 13.5$ К] (3-я краевая задача), правое граничное условие (нижняя граница подложки) — T(h+d, t) = 13.5 К (1-я краевая задача). Здесь h — толщина подложки ($h \gg d$), а H — параметр, равный отношению теплоотдачи к теплопроводности материала ($[H] = m^{-1}$). После неявной разностной аппроксимации уравнения (2) для решения полученной системы линейных уравнений с трехдиагональной матрицей применялся метод прогонки [10].

Параметр *H* был найден с помощью симметрии задачи. Для этого вначале находилось такое значение *H*, при котором максимум нагрева пленки приходился на ее середину ($x = 0.2 \,\mu$ m). В этом случае теплоотдача верхней и нижней поверхностей пленки будет одинаковой. Так как теплопроводности подложки и контактов известны, то можно оценить требуемую H, учитывая, что площадь контактов составляет 20% площади пленки. Было получено $H = 50 \,\mu$ m⁻¹. Для этого значения параметра решения уравнения (2) представлены на рис. 2. Из рисунка видно, что температура пленки быстрее всего нарастает на ее нижнем крае (граничащем с подложкой). После прекращения подачи тока температура быстро спадает в пленке и подложке. Максимальный нагрев пленки имеет значение $\Delta T \approx 0.2$ К.

На рис. 3 показана зависимость максимальной температуры локального нагрева $\Delta T_{\rm max}$ от *H*. Максимальный нагрев пленки мало меняется для *H*, большей $20\,\mu {\rm m}^{-1}$, не опускаясь ниже 0.17 К (при приближении к первой краевой задаче). Таким образом, расчетное значение *H* взято с большим запасом, что доказывает возможность использования применяемого метода экспериментального исследования ВАХ.

Уравнение (2) можно решить и аналитически. Его решение для полубесконечной прямой $(d \ll h)$ с теми же условиями имеет вид

$$T(x,t) = \int_0^t \int_0^d G(x,z,t-\tau)f(z,\tau)dzd\tau,$$

где $G(x, z, t - \tau)$ — функция Грина для 3-й краевой задачи [11]. Нахождение функции T(x, t) производилось также численно. Полученные зависимости были аналогичны изображенным на рис. 2. При этом максимальное повышение температуры имело значение около 0.2 K, что совпадает с вышеприведенным результатом численного решения уравнения (2).

Рис. 2. Результаты расчета нагрева пленки NbN в зависимости от времени для разных x, μ m: I = 0.01, 2 = 0.1, 3 = 0.4, 4 = 3.5, 5 = 8. На вставке приведены зависимости нагрева пленки от x для разных времен t, μ s: I = 100, 2 = 200, 3 = 250, 4 = 252, 5 = 256.

Рис. 3. Зависимость температуры максимального локального нагрева пленки NbN от параметра *H*. На вставке показаны ВАХ пленки NbN при T = 13.5 K в магнитном поле с индукцией B = 6 T для разных t_0 (1 - 250, $2 - 25 \mu$ s).

3. Эксперимент

ВАХ сверхпроводящих образцов нитрида ниобия измерялись четырехконтактным методом при температуре 13.5 К. Измерения проводились с помощью криомагнитной системы 8T CryoFree-404, позволяющей охлаждать образцы до 6 К в постоянном магнитном поле с индукцией до 8 Т. Поле было направлено перпендикулярно плоскости образцов. Температура измерялась с помощью датчика Cernox CX-1050 и контроллера LakeShore 335. Погрешность измерения температуры была меньше 0.01 К. Для формирования одиночного импульса через токовые контакты и регистрации отклика с потенциальных контактов использовались генератор АСК-4106 и осциллограф АСК-3107 с частотными полосами пропускания не ниже 100 MHz. Подробнее техника измерений и параметры пленок приведены в работе [12].

Для контроля перегрева образцов ток пропускался за разное время t_0 : от 25 до 250 μ s. При этом ВАХ образцов совпадали в пределах ошибки измерений (вставка на рис. 3). Важно отметить, что если для оценки нагрева пленки применять элементарный расчет без учета теплоотвода в потенциальные контакты и подложку, то получается неверный результат — рост температуры на десятки градусов.

4. Обсуждение

При моделировании процесса теплопереноса в системе пленка-подложка тепло, отводимое от пленки в потенциальные контакты, учитывалось значением параметра *H*, которое в данном случае определялось в том числе и толщиной пленки. Так как нагреванием контактов можно пренебречь, то моделирование распределения тепла в контактах является излишним.

Граничное условие при x = d в моделировании не учитывалось, так как коэффициент температуропроводности пленки близок по величине к коэффициенту температуропроводности подложки ($a^2 \approx 4 \cdot 10^{-2} \text{ cm}^2/\text{s}$). Уравнение теплопроводности содержит только один параметр — коэффициент температуропроводности.

Правое граничное условие (подложка-медная основа) является довольно "жестким", потому что медная основа, к которой крепилась подложка с пленкой, практически не нагревается в силу очень высокой теплопроводности меди при температуре эксперимента и массы, превышающей массу подложки на 3–4 порядка.

Заключение

Таким образом, в работе решено неоднородное уравнение теплопроводности для системы пленка-подложка с граничными условиями, учитывающими теплоотвод от пленки в контакты, подложку и медную основу (термостат). Показано, что применение контактов из бериллиевой бронзы позволяет проводить транспортные измерения с токами высокой плотности (10⁴-10⁵ A/cm²) без значительного нагрева образцов.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- F.W. Carter, T. Khaire, C. Chang, V. Novosad. Appl. Phys. Lett., 115 (9), 092602 (2019). https://doi.org/10.1063/1.5115276
- [2] Y. Ren, D. Zhang, K. Zhou, W. Miao, W. Zhang, S. Shi, V. Seleznev, I. Pentin, Y. Vakhtomin, K. Smirnov. AIP Advances. 9 (7), 075307 (2019). DOI: 10.1063/1.5090132
- [3] Y. Suzuki, N. Iguchi, K. Adachi, A. Ichiki, T. Hioki, C.-W. Hsu, R. Sato, S. Kumagai, M. Sasaki, J.-H. Noh, Y. Sakurahara, K. Okabe, O. Takai, H. Honma, H. Watanabe, H. Sakoda, H. Sasagawa, H. Doy, S. Zhou, H. Hori, S. Nishikawa, T. Nozaki, N. Sugimoto, T. Motohiro. J. Phys.: Conf. Series. 897 (Conf. 1), 012019 (2017). DOI:10.1088/1742-6596/897/1/012019
- [4] N. Sugimoto, N. Iguchi, Y. Kusano, T. Fukano, T. Hioki,
 A. Ichiki, T. Bessho, T. Motohiro. Supercond. Sci. Technol.,
 30 (1), 015014 (2016). DOI:10.1088/0953-2048/30/1/015014
- [5] N. Sugimoto, T. Motohiro. Vacuum, 93, 13 (2013). http://dx.doi.org/10.1016/j.vacuum.2012.12.002
- [6] Д.М. Гохфельд. ФТТ, 56 (12), 2298 (2014). https://journals.ioffe.ru/articles/viewPDF/41115
 [D.M. Gokhfeld. Phys. Sol. St., 56 (12), 2380 (2014). https://link.springer.com/article/10.1134/S1063783414120129]
- [7] Справочник конструктора точных приборов. Под ред. И.Я. Левина. (ОБОРОНГИЗ, М., 1953), с. 552.
- [8] Таблицы физических величин. Справочник. Под ред. акад. И.К. Кикоина. (Атомиздат, М., 1976), 1008 с.

- [10] Л.И. Турчак, П.В. Плотников. Основы численных методов (Физматлит, М., 2005), с. 230.
- [11] Б.М. Будак, А.А. Самарский, А.Н. Тихонов. Сборник задач по математической физики (Наука, М., 1972)
- [12] М.А. Васютин, Н.Д. Кузьмичев, Д.А. Шилкин. ФТТ, 58 (2), 231 (2016). https://journals.ioffe.ru/articles/viewPDF/42701
 [М.А. Vasyutin, N.D. Kuz'michev, D.A. Shilkin. Phys. Sol. St., 58 (2), 236 (2016). DOI: 10.1134/S1063783416020311]