06

Условия получения высокомодульных нанокомпозитов полимер/углеродные нанотрубки

© Г.В. Козлов, И.В. Долбин

Кабардино-Балкарский государственный университет им. Х.М. Бербекова, 360004 Нальчик, Россия e-mail: i_dolbin@mail.ru

Поступило в Редакцию 8 апреля 2020 г. В окончательной редакции 20 сентября 2020 г. Принято к публикации 21 сентября 2020 г.

> Рассмотрены физические основы реализации высокомодульных и высокопрочных нанокомпозитов полимер/углеродные нанотрубки с механическими характеристиками, сравнимыми с таковыми для стали. Определены два основных фактора, позволяющих создание таких нанокомпозитов — структура нанонаполнителя в полимерной матрице и достаточно высокое содержание нанонаполнителя. Фрактальная размерность указанной структуры должна быть близкой к размерности окружающего евклидова пространства, т.е. трем. Показано, что дополнительная вытяжка нанокомпозита дает два положительных эффекта: снижение волнистости углеродных нанотрубок и повышение модуля упругости полимерной матрицы вследствие ориентации ее макромолекул.

> Ключевые слова: высокомодульный нанокомпозит, углеродные нанотрубки, модуль упругости, структура, фрактальный анализ.

DOI: 10.21883/JTF.2021.03.50521.121-20

Введение

С момента своего появления в 1991 г. углеродные нанотрубки (УНТ) считались очень перспективным нанонаполнителем для создания полимерных нанокомпозитов в силу своих базовых характеристик: высокого продольного модуля упругости, сильной анизотропии и большой удельной поверхности [1]. Однако на практике потенциально высокие показатели нанокомпозитов полимер/УНТ реализуются редко, что в основном связано с рядом технологических факторов, основным из которых является агрегация исходных нанотрубок и их небольшое (< 5 mass. %) содержание. Кроме того, сильное отрицательное влияние на свойства конечных нанокомпозитов оказывает волнистость (непрямолинейность) УНТ [2]. Это обстоятельство предопределило разработку ряда технологических методов, позволяющих получение хорошо ориентированных волокон или листов УНТ и, в конечном итоге, высокомодульных и высокопрочных нанокомпозитов полимер/УНТ [2-4]. Так, авторы [2] получили нанокомпозиты бисмалеимид/УНТ (БМИ/УНТ) с объемным содержанием нанонаполнителя $\phi_n = 0.46$, которые имеют модуль упругости 293 GPa и прочность 3.8 GPa, что сравнимо с показателями промышленных металлов, в частности, стали. Если учесть низкую плотность полученных таким образом нанокомпозитов (1250 kg/m³) по сравнению с металлами, то становится очевидным потенциал их применения в аэрокосмической промышленности, судо- и автомобилестроении и т.п.

Однако эти несомненные технологические достижения не получили должного теоретического обоснования, необходимого для моделирования, прогнозирования и определения предельных характеристик рассматриваемых нанокомпозитов. Если такие обоснования и приводились, то только на качественном уровне. Так, авторы [4] предложили пять фундаментальных критериев, реализация которых позволяет получить нанокомпозиты полимер/УНТ высокого качества:

1) высокая степень анизотропии нанонаполнителя;

- 2) ориентация УНТ;
- 3) большое содержание нанонаполнителя;

4) высокая межфазная площадь (гомогенная дисперсия нанонаполнителя в полимерной матрице);

5) эффективный перенос механического напряжения между компонентами нанокомпозита.

Более детальный анализ этих положений показывает, что не все они являются независимыми. Например, между критериями 4 и 5 имеется очевидная взаимосвязь [5]. Кроме того, этот анализ не включает аналитического физического аппарата, позволяющего получить количественное соотношение указанных показателей. Поэтому целью настоящей работы является теоретический анализ структуры и свойств нанокомпозитов БМИ/УНТ, полученных специальными методами изготовления и имеющих исключительно высокие механические характеристики, в рамках общей для всех классов полимерных нанокомпозитов фрактальной модели [6].

1. Методика эксперимента

В настоящей работе выполнен анализ результатов, полученных авторами [2]. Основным фактором используемой технологии получения нанокомпозитов БМИ/УНТ является распрямление обладающих определенной степенью волнистости УНТ перед внедрением их в полимерную матрицу. Для этой цели использованы ориентированные листы УНТ, полученных методом химического осаждения паров. Они состояли из многослойных (4–6 слоев) УНТ диаметром 7–9 nm. В процессе изготовления листа УНТ он перемещался горизонтально и вытягивался при деформации вытяжки λ , определяемой следующим образом [2]:

$$\lambda = \frac{L - L_0}{L_0} \cdot 100[\%],$$
 (1)

где *L* и *L*₀ — длина листа УНТ после и до вытяжки.

Затем вытянутый лист УНТ наматывался на вращающуюся цилиндрическую катушку из политетрафторэтилена.

В качестве матричного полимера использован бисмалеимид (БМИ) с удлиненным имидом высокого качества производства фирмы Designer Molecules Inc. (США). Раствор БМИ в толуоле с концентрацией 1.0 g/l наносился распылителем от слоя к слою по мере намотки листа УНТ на катушку [2].

Испытания на растяжение выполнены на образцах в форме двухсторонней лопатки длиной 40 mm, шириной 20 mm и толщиной 0.02–0.04 mm. В этих испытаниях использована базовая длина образца 20 mm при скорости смещения ползуна 1.0 mm/min. Для испытаний применяли прибор Micro Autograph MST-I производства фирмы Shimadzu Co. (Япония) с ячейкой нагрузки 100 N [2].

2. Результаты и их обсуждение

В настоящее время известно [7,8], что свойства полимерных нанокомпозитов определяются структурой нанонаполнителя в полимерной матрице. Авторы [6] предложили следующее уравнение для описания механических свойств полимерных нанокомпозитов:

$$\frac{E_n}{E_m} = 1 + 17D_f^2 \varphi_n,\tag{2}$$

где E_n и E_m — модули упругости нанокомпозита и матричного полимера соответственно (отношение E_n/E_m принято называть степенью усиления нанокомпозита), D_f — фрактальная размерность нанонаполнителя в полимерной матрице, характеризующая его структуру, φ_n — объемное содержание нанонаполнителя.

Для рассматриваемых нанокомпозитов БМИ/УНТ $E_m = 4$ GPa, $\varphi_n = 0.46$ [2]. Уравнение (2) позволяет оценить величину D_f по известным значениям E_n/E_m и φ_n . Авторы [2] использовали три типа нанокомпозитов БМИ/УНТ, для которых деформация вытяжки листов УНТ составляла 0, 10 и 12% (см. уравнение (1)). В таблице приведены величины E_n и D_f для трех указанных величин λ . Как следует из этих данных, распрямление УНТ, обусловленное их вытяжкой, приводит к увеличению как E_n , так и D_f , причем при $\lambda = 12\%$ величина

Структурные и механические характеристики нанокомпозитов БМИ/УНТ

λ,%	φ_n	E_n , GPa	D_f	Enan, GPa	D_f^{CNT}	$R_{\rm CNT}, \mu {\rm m}$
0	0.46	120	1.93	253	1.68	6.1
10	0.46	220	2.63	470	2.88	2191
12	0.46	293	3.0	612	2.93	225 560

 D_f достигает своего предельного значения $D_f = d = 3$, где d — размерность евклидова пространства, в котором рассматривается фрактал. Это означает, что дальнейшая вытяжка с $\lambda > 12\%$ не имеет смысла, поскольку она не может привести к повышению D_f и, следовательно, E_n/E_m , но может быть причиной разрушения отдельных нанотрубок в листе УНТ (рис. 1).

Модуль упругости нанонаполнителя в полимерной матрице E_{nan} можно определить согласно следующему уравнению [6]:

$$E_{nan} = 17D_f^2 E_m. \tag{3}$$

Рассчитанные согласно этому уравнению значения E_{nan} , также приведенные в таблице, позволяют сделать два вывода. Во-первых, при $\lambda = 12\%$ или $D_f = 3$ величина $E_{nan} = 612$ GPa, что близко к номинальному модулю индивидуальной углеродной нанотрубки, изготовленной методом химического осаждения паров, равному ~ 500 GPa [9].

Следует отметить, что величина номинального модуля упругости ЕСЛТ для нанотрубок, полученных методом химического осаждения паров, колеблется в очень широком диапазоне и зависит от используемых реагентов, геометрии нанотрубок, их дефектности и т.п. Кроме того, измерение E_{CNT} для каждого конкретного случая — процедура сложная, трудоемкая и требующая специального оборудования. Поэтому, как правило, для целей сравнения пользуются литературными данными. Мы поступили так же. В данном конкретном случае важно приблизительное соответствие величин Enan и E_{CNT}, поскольку значения E_{CNT} в работе [2] не приведены и нет гарантии, что они, допустим, не лежат в диапазоне 600-700 GPa. Тем не менее случаи превышения величинами эффективного модуля упругости *Е_{пап}* номинального модуля упругости *Е*_{СNT} встречались и ранее (1.5 и 1.0 GPa соответственно) [9], но объяснить этот эффект авторы не смогли. Частичный ответ на этот вопрос дает уравнение (3). Если каким-либо способом можно получить матричный полимер с модулем упругости $E_m = 10$ GPa, то при $D_f = 3$ мы получим $E_{nan} = 1530 \,\text{GPa}$, что в 1.5 раза больше наиболее высоких цитируемых в литературе номинальных значений $E_{\rm CNT} = 1000 \, {\rm GPa.} \, {\rm B}$ принципе такая схема возможна, например, ориентацией полимерной матрицы или созданием гибридных нанокомпозитов.

Сказанное выше означает, что потенциально высокий модуль упругости отдельной УНТ полностью реализуется в рассматриваемых нанокомпозитах при условии

Рис. 1. Схематическая иллюстрация концепции распрямления УНТ [2].

Рис. 2. Сравнение полученных экспериментально E_n и рассчитанных, согласно правилу смесей (уравнение (5)) E_n^T , величин модуля упругости для нанокомпозитов БМИ/УНТ.

 $\lambda = 12\%$. Кроме того, уравнение (3) демонстрирует зависимость модуля упругости нанонаполнителя E_{nan} от жесткости окружающей среды, т.е. полимерной матрицы. Это правило является общим для полимерных нанокомпозитов всех классов и в случае стеклообразной полимерной матрицы описывается следующим простым соотношением [10]:

$$E_{nan} = 22E_m^2. \tag{4}$$

Оценка, согласно уравнению (4), дает $E_{nan} = 352$ GPa, что достаточно хорошо согласуется с оценкой по уравнению (3) (см. таблицу).

Проверку корректности рассчитанных, согласно уравнению (3), величин E_{nan} можно выполнить с помощью правила смесей в его простейшей изначальной форме [10]:

$$E_n^T = E_{nan}\varphi_n + E_m(1-\varphi_n).$$
(5)

Результаты расчета теоретических значений модуля упругости нанокомпозитов БМИ/УНТ приведены на рис. 2, откуда следует их превосходное соответствие экспериментальным данным. Такое соответствие демонстрирует, что вопреки многочисленным сомнениям в корректности применения правила смесей для описания свойств нанокомпозитов [11] это правило справедливо, если в нем используются реальные, а не номинальные значения модуля упругости нанонаполнителя E_{nan} . Далее рассмотрим поведение отдельных углеродных нанотрубок в их агрегатах для рассматриваемых нанокомпозитов. Предполагая, что кластер УНТ с размерностью D_f формируется взаимодействием отдельных нанотрубок с полимерной матрицей, для определения размерности этих нанотрубок D_f^{CNT} можно использовать следующую формулу [12]:

$$D_{f} = \frac{3\left(2D_{f}^{m} - D_{f}^{\text{CNT}}\right)}{3 + 2\left(D_{f}^{m} - D_{f}^{\text{CNT}}\right)},$$
(6)

где D_f^m — размерность макромолекулярного клубка матричного полимера, принятая для БМИ равной 1.87 [13].

Уравнение (6) было получено в рамках аппроксимации Флори применительно к механизму агрегации кластер-кластер [12]. Поскольку в рассматриваемом случае речь идет о взаимодействии кластеров (макромолекулярных клубков полимерной матрицы и кластеров УНТ), такая модель применима для описания результата их взаимодействия.

Величины D_f^{CNT} приведены в таблице, откуда следует их быстрый рост по мере увеличения деформации вытяжки λ . Волнистость УНТ можно охарактеризовать их радиусом кривизны R_{CNT} , определяемым согласно уравнению [14]:

$$R_{\rm CNT} = 3.4(\varphi_n)^{-1/(d - D_f^{\rm CNI})},\tag{7}$$

где $R_{\rm CNT}$ дается в μ m.

Приведенные в таблице величины RCNT показали очень быстрый рост по мере увеличения λ , что означает их сильное распрямление, и при $\lambda = 10$ и 12% УНТ в агрегате практически прямолинейны, что подтверждает вывод, сделанный по этому вопросу в работе [2].

Заключение

Таким образом, в настоящей работе предложена структурная (фрактальная) модель, позволяющая корректно описать степень усиления высокомодульных нанокомпозитов полимер/УНТ. Эта модель универсальна для основных классов полимерных нанокомпозитов и предполагает два основных фактора, определяющих степень усиления указанных наноматериалов: структурное состояние нанонаполнителя в полимерной матрице, характеризуемое его фрактальной размерностью, и содержание нанонаполнителя. Модуль упругости агрегатов нанонаполнителя зависит также от жесткости окружающей их среды, т.е. модуля упругости полимерной матрицы. Правило смесей в его простейшей изначальной форме дает корректное описание степени усиления нанокомпозитов при условии использования реальных, а не номинальных величин входящих в него характеристик.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M. Moniruzzaman, K.I. Winey. Macromolecules, **39** (16), 5194 (2006). DOI: 10.1021/ma060733p
- [2] X. Wang, Z.Z. Yong, Q.W. Li, P.D. Bradford, W. Liu, D.S. Tucker, W. Cai, H. Wang, F.G. Yuan, Y.T. Zhu. Mater. Res. Lett., 1 (1), 19 (2013). DOI: 10.1080/21663831.2012.685586
- Q.F. Cheng, J.P. Wang, J.J. Wen, C.H. Liu, K.L. Jiang, Q.Q. Li, S.S. Fan. Carbon, 48 (2), 260 (2010).
 DOI: 10.1016/j.carbon.2009.09.014
- [4] K. Kobashi, H. Nishino, T. Yamada, D.N. Futaba, M. Yumura, K. Hata. Carbon, 49 (23), 5090 (2011).
 DOI: 1016/j.carbon.2011.07.028
- [5] Х.Ш. Яхьяева, Г.М. Магомедов, Г.В. Козлов. Структура и адгезионные явления в полимерных системах (Перо, М., 2016)
- [6] Г.В. Козлов, П.Г. Ризванова, И.В. Долбин, Г.М. Магомедов.
 Известия вузов. Физика, 62 (1), 112 (2019). [G.V. Kozlov,
 P.G. Rizvanova, I.V. Dolbin, G.M. Magomedov. Rus. Phys. J.,
 62 (1), 127 (2019). DOI: 10.1007/s11182-019-01692-1]
- [7] D.W. Schaefer, J. Zhao, H. Dowty, M. Alexander, E.B. Orler. Soft Matter, 4 (10), 2071 (2008). DOI: 10.1039/b805314f
- [8] Л.Б. Атлуханова, Г.В. Козлов, И.В. Долбин. Материаловедение, 7, 19 (2019).
 - DOI: 10.31044/1684-579x-2019-0-7-19-22
- [9] D. Blond, V. Barron, M. Ruether, K.P. Ryan, V. Nicolosi, W.J. Blau, J.N. Coleman. Adv. Funct. Mater., 16 (15), 1608 (2006). DOI: 10.1002/adfm.200500855
- [10] Г.В. Козлов, И.В. Долбин. G.V. Нано- и микросистемная техника, 20 (8), 471 (2018).
 - DOI: 10.17587/nmst.20.466-474
- [11] H. Miyagawa, L.T. Drzal. Polymer, 45 (21), 5163 (2004).
 DOI: 10.1016/j.polymer.2004.05.036
- [12] H.G.E. Hentschel, J.M. Deutch. Phys. Rev. A, 29 (3), 1609 (1984). DOI: 10.1103/PhysRevA.29.1609
- [13] G.V. Kozlov, I.V. Dolbin, G.E. Zaikov. *The Fractal Physical Chemistry of Polymer Solutions and Melts* (Apple Academic Press, Toronto, New Jersey, 2014).
- [14] А.К. Микитаев, Г.В. Козлов. ДАН, 462 (1), 41 (2015).
 [А.К. Mikitaev, G.V. Kozlov. Dokl. Phys., 60 (5), 203 (2015).
 DOI: 10.1134/S102833581505002X]