05,12

Magnetism in Zigzag and Armchair CuO Nanoribbons: Ab-Initio Analysis

© T.P. Yadav^{1,2,3}, A. Srivastava^{2,¶}, G.C. Kaphle¹

 ¹ Central Department of Physics, Tribhuvan University, Kirtipur, Kathamandu, Nepal
² Advance Materials Research Group, CNT Lab, Atal Bihari Vajpayee — Indian Institute of Information Technology and Management, Gwalior, India
³ Central Campus of Science and Technology, Mid-Western University, Surkhet, Nepal
[¶] E-mail: profanurag@gmail.com

Received: October 10, 2020 Revised: October 10, 2020 Accepted: October 16, 2020

The present work reports the magnetism analysis of zigzag and armchair forms of CuO nanoribbons by using density functional theory (DFT) based on *ab-initio* approach. The structural stability has been confirmed through the binding energy calculation. The electronic and magnetic properties have been analyzed as a function of varied width of CuO nanoribbons, interesting information for variety of applications. The metallic and ferromagnetic behaviors of CuO nanoribbons are observed, whereas its bulk counterpart shows a p-type semiconducting and antiferromagnetic nature. The computed magnetic moments for the zigzag and armchair forms of CuO nanoribbon are in the ranges of $0.19-0.61 \,\mu_{\rm B}$ and $0.24-0.97 \,\mu_{\rm B}$, respectively. The computed spin polarizations confirms the half or full metallic ferromagnetic nature of these nanoribbons.

Keywords: CuO, nanoribbon, DFT + U, magnetic moment, ferromagnetism, spin polarization, band structure.