## 07

# Механическое упрочнение наноструктурированных кристаллов Ва<sub>0.9</sub>R<sub>0.1</sub>F<sub>2.1</sub> (*R* — редкоземельные элементы): размерный эффект

© Н.И. Сорокин

Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

E-mail: nsorokin1@yandex.ru

Поступила в Редакцию 11 июля 2020 г. В окончательной редакции 5 октября 2020 г. Принята к публикации 6 октября 2020 г.

> Изучено влияние сильных нарушений стехиометрии в структурном типе флюорита (CaF<sub>2</sub>) на микротвердость кристаллов  $Ba_{0.9}R_{0.1}F_{2.1}$  (R — редкоземельные элементы La–Lu). Механическое упрочнение гетеровалентных твердых растворов  $Ba_{0.9}R_{0.1}F_{2.1}$  по сравнению с матрицей  $BaF_2$  обусловлено образованием наноразмерных кластеров точечных дефектов [ $Ba_8R_6F_{69}$ ], замещающих структурные фрагменты [ $Ba_{14}F_{64}$ ] (блочный тип изоморфизма). Обнаружено, что с уменьшением размера кластеров от [ $Ba_8La_6F_{69}$ ] к [ $Ba_8Lu_6F_{69}$ ] величина микротвердости наноструктурированных кристаллов  $Ba_{0.9}R_{0.1}F_{2.1}$  возрастает на 73%.

> Ключевые слова: фториды, структура флюорита, нестехиометрия, твердые растворы, кластеры дефектов, микротвердость.

DOI: 10.21883/FTT.2021.02.50486.150

## 1. Введение

Нестехиометрические фазы  $M_{1-x}R_xF_{2+x}$  (0 <  $x \le 0.5$ ) со структурой типа флюорита (CaF<sub>2</sub>) образуются во всех бинарных системах MF2-RF3 (М — щелочноземельные элементы Ca, Sr, Ba, R — редкоземельные элементы (РЗЭ) La–Lu, Y). Флюоритовые фазы  $M_{1-x}R_xF_{2+x}$ представляют собой гетеровалентные твердые растворы с переменным числом атомов в элементарной ячейке. Монокристаллы твердых растворов  $M_{1-x}R_xF_{2+x}$ , выращенные из расплава методами направленной кристаллизации, относятся к классу наноструктурированных материалов [1]. В структуре этих твердых растворов образуются наноразмерные кластеры точечных дефектов, которые статистически замещают фрагменты исходной флюоритовой матрицы (реализуется блочный тип изоморфных замещений [2]). Кластеры аккумулируют примесные катионы РЗЭ, междоузельные ионы фтора, компенсирующие разницу в зарядах редкоземельных и матричных катионов, и вакансии фтора для преодоления коротких расстояний металл-фтор.

Механические свойства кристаллов  $M_{1-x}R_xF_{2+x}$  зависят от степени отклонения от стехиометрии и дефектной структуры. Они относятся к их важным эксплуатационным характеристикам и могут ограничивать практические применения этих фторидных материалов. Поэтому исследование связи сильных нарушений стехиометрии в структурном типе CaF<sub>2</sub> с механическими свойствами монокристаллов  $M_{1-x}R_xF_{2+x}$  является актуальной задачей.

Модифицирование механических свойств твердых растворов  $M_{1-x}R_xF_{2+x}$  путем нарушений стехиометрии и формирования нанометровых кластеров точечных дефектов имеет позитивный эффект. Однако вы-

полненные механофизические исследования кристаллов  $M_{1-x}R_xF_{2+x}$  не носят системного характера. К настоящему моменту времени проведены измерения микротвердости монокристаллов небольшого числа флюоритовых фаз в семействах твердых растворов Ca<sub>1-x</sub>R<sub>x</sub>F<sub>2+x</sub> [2,3], Sr<sub>1-x</sub>R<sub>x</sub>F<sub>2+x</sub> [4] и Ba<sub>1-x</sub>R<sub>x</sub>F<sub>2+x</sub> [2,5,6].

В качестве объектов для поиска корреляции "механические свойства-дефектная структура" нами выбран изоконцентрационный ряд твердых растворов  $Ba_{0.9}R_{0.1}F_{2.1}$  с "примесной" концентрацией  $10 \pm 1 \text{ mol.}\%$  $RF_3$  (R = La-Lu). Монокристаллы  $Ba_{0.9}R_{0.1}F_{2.1}$  были выращены в идентичных ростовых условиях [2,5]. Согласно структурным исследованиям [7–15], кристаллы  $Ba_{0.9}R_{0.1}F_{2.1}$  содержат один тип кластеров точечных дефектов — кластеры [ $Ba_8R_6F_{69}$ ].

Целью работы является исследование взаимосвязи между величиной микротвердости монокристаллов и размером кластеров дефектов во флюоритовых фазах  $Ba_{0.9}R_{0.1}F_{2.1}$ .

# 2. Корреляция между микротвердостью и размером кластеров точечных дефектов в кристаллах Ba<sub>0.9</sub>R<sub>0.1</sub>F<sub>2.1</sub>

Рост кристаллов и исследования микротвердости  $H_{\mu}$  (по Виккерсу) твердых растворов Ва<sub>0.9</sub> $R_{0.1}$ F<sub>2.1</sub> выполнены в Институте кристаллографии РАН, результаты этих исследований представлены в [2,5]. При изменении R по ряду РЗЭ La-Pr-Sm-Gd-Tb-Tm-Lu наблюдается монотонный рост микротвердости твердых растворов Ва<sub>0.9</sub> $R_{0.1}$ F<sub>2.1</sub> от  $H_{\mu} = 1.6 \pm 0.1$  GPa для Ва<sub>0.9</sub>La<sub>0.1</sub>F<sub>2.1</sub> до

 $(V_{cl} - V_{mat})/V_{mat}$ , % Кластеры  $V_{cl}, \mathrm{\AA}$ 781 -6.4 $[Ba_8La_6F_{69}]$ [Ba<sub>8</sub>Ce<sub>6</sub>F<sub>69</sub>] -7.3773  $[Ba_8Pr_6F_{69}]$ 769 -7.8Ba<sub>8</sub>Nd<sub>6</sub>F<sub>69</sub> 764 -8.4 $[Ba_8Sm_6F_{69}]$ 743 -10.9 $[Ba_8Gd_6F_{69}]$ 735 -11.9Ba<sub>8</sub>Tb<sub>6</sub>F<sub>69</sub> 727 -12.8 $[Ba_8Dy_6F_{69}]$ 725 -13.1Ba<sub>8</sub>Ho<sub>6</sub>F<sub>69</sub> 720 -13.7 $[Ba_8Y_6F_{69}]$ 716 -14.1714 -14.4 $[Ba_8Er_6F_{69}]$ 711 -14.7 $[Ba_8Tm_6F_{69}]$ 702 -15.8[Ba<sub>8</sub>Yb<sub>6</sub>F<sub>69</sub>] 698 -16.3 $[Ba_8Lu_6F_{69}]$ 

Объем  $V_{cl}$  редкоземельных кластеров  $[{\rm Ba}_8R_6{\rm F}_{69}]$  в твердых растворах  ${\rm Ba}_{1-x}R_x{\rm F}_{2+x}~(V_{mat}=834\,{\rm \AA})$ 

 $H_{\mu} = 2.8 \pm 0.1$  GPa для  $Ba_{0.9}Lu_{0.1}F_{2.1}$  (на 73%). Кристаллы флюоритовой матрицы  $BaF_2$  имеют микротвердость  $\sim 0.8$  GPa [2,6] и обладают совершенной спайностью по кристаллографической плоскости [111], которая исчезает в твердых растворах. В результате твердость кристаллов  $Ba_{0.9}Lu_{0.1}F_{2.1}$  превышает соответствующую характеристику флюоритовой матрицы  $BaF_2$  в 3.6 раза.

Структурные исследования кристаллов нестехиометрических фаз  $Ba_{1-x}R_xF_{2+x}$  (R = La, Ce, Pr, Nd, Ho, Er, Tm, Yb;  $0.1 \le x \le 0.5$ ) [7–14] и упорядоченных фаз (сверхструктуры)  $Ba_3R_4F_{17}$  (R = Yb, Y) [15] указывают на образование во флюоритовых кристаллах  $Ba_{0.9}R_{0.1}F_{2.1}$  однотипных кластеров [ $Ba_8R_6F_{69}$ ]. Только в конце лантаноидного ряда в кристаллах  $Ba_{1-x}R_xF_{2+x}$  (R = Yb, Lu) при x = 0.2-0.25 образуется новый тип кластеров дефектов [ $R_8Ba_6F_{71}$ ] [16].

Кластеры [Ва<sub>8</sub> $R_6$ F<sub>69</sub>] содержат следующие заряженные точечные дефекты: шесть катионов РЗЭ в позициях 4*a* пр. гр.  $Fm\bar{3}m$ , расположенных по октаэдру; двенадцать междоузельных ионов фтора в позициях 48*i*, расположенных по кубоктаэдру F<sub>12</sub>; восемь вакансий фтора в позициях 8*c*, расположенных по кубу, и один междоузельный ион фтора, расположенный в позиции 4*b* в центре фторного кубоктаэдра F<sub>12</sub>. Кластеры [Ва<sub>8</sub> $R_6$ F<sub>69</sub>] замещают структурные фрагменты [Ва<sub>14</sub>F<sub>64</sub>] в матрице ВаF<sub>2</sub>:

$$[Ba_{14}F_{64}]^{36-} \to [Ba_8R_6F_{69}]^{35-} + F_i^-, \qquad (1)$$

где  $F_i^-$  — междоузельный ион фтора, находящийся вне кластера. Предполагают [17,18], что именно эти междоузельные ионы  $F_i^-$ , занимающие позиции 4b в незанятых кубах  $F_8$  флюоритовой структуры твердого раствора, являются подвижными носителями заряда.

Объем  $V_{cl}$  кластеров  $[Ba_8R_6F_{69}]$  можно рассчитать двумя способами. В первом способе учитываем, что объем  $V_{crys}$  структурного фрагмента твердых растворов  $Ba_{0.9}R_{0.1}F_{2.1}$ , содержащего 14 катионов, состоит из объема  $V_{mat}$  матричного фрагмента  $[Ba_{14}F_{64}]$  и объема  $V_{cl}$  редкоземельного фрагмента [Ba<sub>8</sub> $R_6F_{69}$ ] с учетом их весовых множителей в структуре [1]:

$$V_{crys} = 0.9V_{mat} + 0.1V_{cl}.$$
 (2)

Элементарная ячейка флюоритовой структуры содержит четыре формульные единицы, поэтому объемы флюоритовых фрагментов  $V_{crys}$  и  $V_{mat}$  могут быть вычислены по формулам:

$$V_{crys} = 14a^3/4, \qquad V_{mat} = 14a_0^3/4,$$
 (3)

где а и  $a_0$  — параметры решетки кристаллов Ва<sub>0.9</sub> $R_{0.1}$  $F_{2.1}$  и Ва $F_2$  соответственно. Объем  $V_{cl}$  кластеров [Ва<sub>8</sub> $R_6$  $F_{69}$ ] определяем из уравнений (2) и (3), используя значения параметров элементарной ячейки кристаллов Ва<sub>0.9</sub> $R_{0.1}$  $F_{2.1}$  и Ва $F_2$ , взятые из работы [19].

Во втором способе учитываем, что элементарная ячейка упорядоченных фаз  $Ba_4R_3F_{17}$  содержит три кластера  $[Ba_8R_6F_{69}]$ . Объем элементарных ячеек упорядоченных фаз  $Ba_4R_3F_{17}$  определяем из имеющихся данных [2,15] по их параметрам решеток.

Объемы кластеров [Ва<sub>8</sub> $R_6F_{69}$ ] в твердых растворах Ва<sub>1-x</sub> $R_xF_{2+x}$ , рассчитанные первым и вторым способами, хорошо совпадают между собой и приведены в таблице. Видно, что при переходе в ряду от La к Lu значения  $V_{cl}$  уменьшаются от 781 до 698 Å<sup>3</sup> (на 11%). Объем матричного кластера [Ва<sub>14</sub> $F_{64}$ ] равен 834 Å<sup>3</sup> и значительно превосходит объем кластеров.

На рис. 1 показана зависимость микротвердости от объема флюоритового фрагмента  $V_{mat}$  в ряду кристаллов CaF<sub>2</sub>-SrF<sub>2</sub>-BaF<sub>2</sub>. Можно видеть, что увеличение микротвердости  $H_{\mu}$  коррелирует с уменьшением объема  $V_{mat}$  для кристаллов  $MF_2$ . BaF<sub>2</sub> обладает наименьшей величиной микротвердости и соответственно наибольшим объемом флюоритового фрагмента [Ba<sub>14</sub>F<sub>64</sub>].



**Рис. 1.** Корреляция между величиной микротвердости и объемом матричного фрагмента  $[M_{14}F_{64}]$  для кристаллов  $MF_2$  (M = Ca, Sr, Ba).

На рис. 2 приведена зависимость микротвердости кристаллов Ва<sub>0.9</sub>*R*<sub>0.1</sub>*F*<sub>2.1</sub> от объема кластеров [Ва<sub>8</sub>*R*<sub>6</sub>*F*<sub>69</sub>]. На этом рисунке также нанесены значения микротвердости кристалла BaF<sub>2</sub> и объема фрагмента [Ba<sub>14</sub>F<sub>64</sub>]. Видно, что при переходе от матричного кристалла BaF<sub>2</sub> к твердым растворам Ва<sub>0.9</sub>R<sub>0.1</sub>F<sub>2.1</sub> (РЗЭ изменяются в направлении от La к Lu) увеличение микротвердости коррелирует с уменьшением объема структурных фрагментов  $[Ba_{14}F_{64}]$  и  $[Ba_8R_6F_{69}]$  в соответствие с линейным уравнением (коэффициент корреляции равен 0.959):

$$H_{\mu} = H_0 + k_V V_{cl},\tag{4}$$

где постоянные  $H_0 = 12.6 \text{ GPa}, k_V = 1.4 \cdot 10^{-2} \text{ GPa}/\text{Å}^3$ , значения  $H_{\mu}$  и  $V_{cl}$  приводятся в GPa и Å<sup>3</sup> соответственно.

Упрочнение кристаллов в изоконцентрированном ряду твердых растворов Ва<sub>0.9</sub>R<sub>0.1</sub>F<sub>2.1</sub> можно характеризовать параметром несоответствия [20] по размерам кластеров и флюоритового фрагмента f<sub>V</sub> =  $= |V_{cl} - V_{mat}|/V_{mat}$ . Значения параметра  $f_V$  приведены в таблице. На рис. 3 показана линейная корреляция между величиной микротвердости [2,5] и фактором  $f_V$ для кристаллов Ba<sub>0.9</sub>R<sub>0.1</sub>F<sub>2.1</sub> (коэффициент корреляции равен 0.954):

$$H_{\mu} = H_0 + k_f f_V, \tag{5}$$

где постоянные  $H_0 = 0.78 \,\text{GPa}$  для кристалла  $\text{BaF}_2$ ,  $k_f = 0.124 \,\text{GPa}/\%$ , значения  $H_\mu$  и  $f_V$  приводятся в GPa и % соответственно.

Таким образом, из уравнений (4) и (5) следует, что уменьшение размера кластеров приводит к упрочнению материала (размерный эффект), аналогично уменьшению размера кристаллических зерен в поликристаллических материалах [21]. Важным преимуществом наноструктурированных монокристаллов  $Ba_{1-x}R_xF_{2+x}$  по



Рис. 2. Корреляция между величиной микротвердости [2,5] и объемами кластеров [Ba<sub>8</sub>R<sub>6</sub>F<sub>69</sub>] и матричного фрагмента [Ba<sub>14</sub>F<sub>64</sub>] для кристаллов Ba<sub>0.9</sub>*R*<sub>0.1</sub>F<sub>2.1</sub> и BaF<sub>2</sub>.



сравнению с "традиционными" нанокерамическими фторидными материалами (основным методом получения которых служит прессование изолированных наночастиц, предварительно полученных конденсацией из газовой фазы, осаждением из растворов или разложением прекурсоров [22]) является исключение технологического процесса компактирования нанопорошков.

#### Заключение 3.

2.5

Обнаружена взаимосвязь между величиной микротвердости и объемом кластеров точечных дефектов  $[Ba_8R_6F_{69}]$  для семейства флюоритовых монокристаллов  $Ba_{0.9}R_{0.1}F_{2.1}$ . При изменении по ряду РЗЭ от La к Lu повышение микротвердости наноструктурированных кристаллов Ва<sub>0.9</sub> R<sub>0.1</sub> F<sub>2.1</sub> обусловлено уменьшением размера образующихся структурных кластеров  $[Ba_8R_6F_{69}]$ , замещающих матричные фрагменты [Ba<sub>14</sub>F<sub>64</sub>]. Положительный размерный эффект возрастания твердости является следствием "композитного" строения этих нестехиометрических кристаллов. Роль дисперсной "второй фазы" играют кластеры точечных дефектов, имеющие нанометровые размеры и обогащенные по содержанию РЗЭ.

## Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

### Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

20

Lu

## Список литературы

- Б.П. Соболев, А.М. Голубев, П. Эрреро. Кристаллография 48, 148 (2003).
- [2] B.P. Sobolev. The rare earth trifluorides. Institute of Crystallography, Moscow; Institut d'Estudis Catalans, Barcelona (2000–2001). 980 p.
- [3] Z.I. Zhmurova, E.A. Krivandina, B.P. Sobolev, M.O. Marychev, E.V. Chuprunov. 5th Int. Crystal Growth and Heat & Mass Transfer. Proc. Obninsk 2, 478 (2003).
- [4] М.Ю. Грязнов, С.В. Шотин, В.Н. Чувильдеев, М.О. Марычев, Е.А. Сульянова, С.Н. Сульянов, Б.П. Соболев. Кристаллография 56, 1169 (2011).
- [5] М.О. Марычев, Е.В. Чупрунов, Е.А. Кривандина, З.И. Жмурова, Б.П. Соболев. Вестн. Нижегородского унта. Сер. ФТТ 1, 4, 111 (2001).
- [6] А.М. Аронова, Г.В. Бережкова, В.Б. Александров, П.П. Федоров, Б.П. Соболев. Физическая кристаллография. Наука, М. (1992). С. 151.
- [7] В.Б. Александров, Л.П. Отрощенко, Л.Е. Фыкин, В.А. Сарин, В.И. Симонов, Б.П. Соболев. Кристаллография 29, 381 (1984).
- [8] А.М. Голубев, Б.П. Соболев, В.И. Симонов. Кристаллография 30, 314 (1985).
- [9] В.Б. Александров, Л.П. Отрощенко, Л.Е. Фыкин, Н.Н. Быданов, Б.П. Соболев. Кристаллография 34, 1497 (1989).
- [10] A.M. Golubev, A.K. Ivanov-Shits, V.I. Simonov, B.P. Sobolev, N.I. Sorokin, P.P. Fedorov. Solid State Ionics 37, 115 (1990).
- [11] Л.Ф. Малахова, Е.А. Журова, Б.А. Максимов, Б.П. Соболев, В.И. Симонов. Кристаллография 42, 270 (1997).
- [12] Б.А. Максимов, Ю.Б. Губина, Е.Л. Белоконева, В.Н. Молчанов, Н.Б. Григорьева, А.Г. Вигдорчик, Е.А. Кривандина, Б.П. Соболев. Кристаллография 47, 417 (2002).
- [13] А.М. Голубев, Л.П. Отрощенко, В.Н. Молчанов, Б.П. Соболев. Кристаллография 53, 1023 (2008).
- [14] А.М. Голубев, Л.П. Отрощенко, В.Н. Молчанов, Л.Е. Фыкин, Б.П. Соболев. Кристаллография 54, 456 (2009).
- [15] Б.А. Максимов, Х. Соланс, А.П. Дудка, Е.А. Генкина, М. Бадриа-Фонт, И.И. Бучинская, А.А. Лошманов, А.М. Голубев, В.И. Симонов, М. Фонт-Альтаба, Б.П. Соболев. Кристаллография **41**, 51 (1996).
- [16] Б.П. Соболев, А.М. Голубев, Л.П. Отрощенко, В.Н. Молчанов, Р.М. Закалюкин, Е.А. Рыжова, П. Эрреро. Кристаллография 48, 1012 (2003).
- [17] Н.И. Сорокин, А.М. Голубев, Б.П. Соболев. Кристаллография 59, 275 (2014).
- [18] B.P. Sobolev, N.I. Sorokin, N.B. Bolotina. Photonic & Electronic Properties of Fluoride Materials / Eds. A. Tressaud, K. Poeppelmeier. Elsevier, Amsterdam. (2016) P. 465.
- [19] П.П. Федоров, Б.П. Соболев. Кристаллография **37**, 1210 (1992).
- [20] М.И. Гольдштейн, В.С. Литвинов, Б.М. Бронфин. Металлофизика высокопрочных сплавов. Металлургия, М. (1986). 312 с.
- [21] А.И. Гусев. Наноматериалы, наноструктуры, нанотехнологии. Физматлит, М. (2005) 416 с.
- [22] С.В. Кузнецов, В.В. Осико, Е.А. Ткаченко, П.П. Федоров. Успехи химии 75, 1193 (2006).

Редактор Е.Ю. Флегонтова

Физика твердого тела, 2021, том 63, вып. 2