от Динамическая поляризуемость отрицательного иона водорода

© А.С. Корнев, В.Е. Чернов, Б.А. Зон

Воронежский государственный университет, 394018 Воронеж, Россия e-mail: a-kornev@yandex.ru

Поступила в редакцию 02.09.2020 г. В окончательной редакции 02.09.2020 г. Принята к публикации 28.09.2020 г.

> Проведены расчеты динамической поляризуемости отрицательного иона водорода в корреляционносогласованном базисе с высокой диффузностью. Полученные результаты оказались близкими к результатам, полученным методом суммирования по псевдосостояниям. Показано также, что расчеты методом функционала плотности не позволяют получить высокой точности. Это связано с большими размерами отрицательных ионов по сравнению как с положительными ионами, так и с нейтральными атомами (молекулами).

> Ключевые слова: отрицательный ион водорода, динамическая поляризуемость, корреляционно-согласованный базис, диффузность квантовых орбиталей.

DOI: 10.21883/OS.2021.01.50434.224-20

Введение

Отрицательные ионы в газах и плазме как атомные, так и молекулярные, активно изучаются экспериментально и теоретически уже много десятилетий. Такой интерес к отрицательным ионам связан с их многочисленными применениями в науке и технологиях [1]. При этом простейший ион H⁻ играет особую роль, являясь, с одной стороны, тестовой системой для анализа теоретических методов описания более сложных систем, а с другой стороны — ввиду его важной роли в формировании звездных спектров, в том числе и спектра Солнца.

Динамическая поляризуемость отрицательных ионов является одной из их важнейших характеристик, определяющих сечения рассеяния фотонов [2], резонансное рассеяние электронов на нейтральных атомах в поле лазерного излучения [3,4], поляризационное тормозное излучение (ПТИ) [5-7], а также оказывает значительное влияние на процессы многофотонного фоторазрушения отрицательных ионов [8–11]. Относительно ПТИ можно отметить следующее. В теории тормозного излучения (ТИ) в кулоновском поле, развитой в нерелятивистском случае Зоммерфельдом [12], а в релятивистском случае Бете-Гайтлером [13] и Заутером [14], знак заряда мишени не влияет на сечение ТИ. Однако ввиду того, что отрицательные ионы являются достаточно "рыхлыми" по сравнению с положительными, сечения ТИ для положительных и отрицательных ионов оказываются существенно различными. Впервые это было продемонстрировано на примере иона Н⁻ в работе [15]. Соответствующие результаты нашли применение для описания некоторых процессов в хромосфере Солнца [16–19].

Расчеты динамической поляризуемости иона Н⁻ проводились в нескольких работах [20–22]. В недав-

ней работе [22] использовался метод суммирования по псевдосостояниям, а волновые функции вычислялись вариационным методом со случайными нелинейными параметрами. В данной работе используются пакет NWChem квантово-химических вычислений и корреляционно-согласованные базисы с высокой диффузностью. Подробно метод вычислений описан в следующем разделе. В разд. 2 приведены результаты вычислений и их сравнение с результатами других работ. В Заключении кратко сформулированы результаты работы.

1. Метод вычислений

В нашей работе [23] было проведено сравнение динамических поляризуемостей нейтральных двухатомных молекул H₂, BF и NO, вычисленных в рамках метода квантового дефекта с помощью редуцированно-замещенной функции Грина [24,25], с результатами квантовохимических расчетов с базисным набором aug-cc-pV5Z.

Напомним, что aug-cc-pVXZ — корреляционносогласованный базисный набор качества X, обеспеченного поляризационными функциями (X = D(2), T(3), Q(4), 5, 6) и дополненного диффузными функциями. Увеличение X, необходимое для расчета поляризуемости, увеличивает объем оперативной памяти и время расчета факториально. Эти базисы расширены диффузными функциями для того, чтобы сделать поведение гауссовых функций на расстояниях $\sim a_{\rm B}$ более реалистичным, а именно приблизить их асимптотический вид к слэтеровскому. В базисах aug-cc-pVXZ к атомным орбиталям каждого типа (s, p, d, ...) добавлено по одной диффузной функции.

Базисные наборы aug-cc-pVXZ включены по умолчанию практически во все пакеты для квантово-

<i>ω</i> , a.u.	[20]	Модельные потенциалы [21]			[22]	CCSD/x-aug-cc-pV6Z		
,		V_1	V_2	V_3		x = 2	x = 3	x = 4
$\omega_{\rm thr}$, a.u.	0.027751					0.027675	0.027676	0.027676
0.000	206.39 ± 2.45	204.934	209.672	213.363	206.377	161.705	206.103	206.674
0.001	206.48 ± 2.46	205.436	210.222	213.691	206.457	161.732	206.180	206.755
0.002	206.73 ± 2.48	206.291	210.964	214.116	206.699	161.812	206.412	206.998
0.003	207.15 ± 2.50	207.185	211.825	214.788	207.104	161.947	206.799	207.405
0.004	207.74 ± 2.54	208.134	212.802	215.842	207.675	162.137	207.346	207.978
0.005	208.51 ± 2.59	209.172	213.896	216.668	208.416	162.381	208.054	208.723
0.006	208.47 ± 2.65	210.255	215.106	217.624	209.332	162.680	208.928	209.643
0.007	210.62 ± 2.74	211.442	216.420	219.377	210.431	163.035	209.975	210.748
0.008	211.98 ± 2.84	212.820	217.859	220.887	211.721	163.447	211.199	212.044
0.009	213.53 ± 2.97	214.453	219.403	222.380	213.212	163.917	212.610	213.543
0.010	215.34 ± 3.10	216.202	221.134	224.638	214.917	164.445	214.219	215.257
0.011	217.40 ± 3.28	218.134	223.332	226.524	216.851	165.033	216.035	217.201
0.012	219.73 ± 3.49	220.670	225.876	228.989	219.031	165.683	218.072	219.394
0.013	222.36 ± 3.75	223.624	228.367	231.592	221.480	166.395	220.345	221.857
0.014	225.34 ± 4.07	226.699	231.053	234.716	224.222	167.171	222.873	224.617
0.015	228.69 ± 4.46	229.881	234.335	237.823	227.288	168.013	225.677	227.705
0.016	232.51 ± 4.96	233.349	238.271	241.465	230.717	168.923	228.780	231.159
0.017	236.84 ± 5.59	237.110	242.747	246.814	234.555	169.903	232.213	235.029
0.018	241.81 ± 6.41	241.616	247.580	251.750	238.859	170.956	236.007	239.371
0.019	247.55 ± 7.49	247.043	253.519	257.757	243.702	172.085	240.203	244.263
0.020	254.27 ± 8.96	252.786	260.986	264.488	249.176	173.291	244.848	249.799
0.021	262.30 ± 11.03	259.174	268.353	270.675	255.405	174.579	249.996	255.957
0.022	272.13 ± 14.06	266.917	276.079	278.989	262.555	175.951	255.716	263.193
0.023	284.66 ± 18.73	276.056	284.772	288.335	270.859	177.412	262.086	271.602
0.024	301.83 ± 26.71	286.734	295.466	300.574	280.664	178.965	269.206	281.522
0.025	327.37 ± 41.30				292.522	180.616	277.195	293.459
0.026	375.11 ± 75.66				307.429	182.367	286.204	308.220
0.027	527.88 ± 211.49				327.638	184.226	296.420	327.184

Таблица 1. Значения динамической поляризуемости $\alpha(\omega)$ (в а.u., a_B^3) аниона H⁻, вычисленные в программе NWChem методом CCSD/x-aug-cc-pV6Z, в сравнении с данными, полученными другими методами. Табличное значение энергии сродства $E_A = 0.0277165$ а.u. [36]

химических вычислений; эти наборы обеспечивают хорошую точность расчетов молекулярных структур [26–29].

Для расчетов динамических поляризуемостей *ab initio* в [23] использовался многоконфигурационный метод связанных кластеров CCSD(T), учитывающий двойные и (неитеративно) тройные возбуждения. Данный метод показал свою эффективность в расчетах спектроскопических параметров молекул: поверхностей потенциальной энергии и дипольных моментов [30,31], а также статических поляризуемостей [32–35].

Для расчетов методом функционала плотности в работе [23] использовался функционал mPW1PBE, который обеспечил хорошее согласие с результатами вычислений *ab initio*. При этом время расчета сократилось примерно в 100 раз, что позволило использовать для вычислений настольный PC.

В случае отрицательных ионов базисные наборы требуют существенной модификации. Дело в том, что анион, например H⁻, является слабосвязанной системой.

Энергия сродства в основном состоянии $E_A = 0.75 \text{ eV}$ приблизительно в 20 раз меньше потенциала ионизации нейтрального атома водорода. Поэтому его радиус примерно в 4.5 раза превышает радиус атома водорода. На таких расстояниях вид гауссовых базисных функций существенно отличается от слэтеровских и искажает результаты расчета даже при наличии стандартного набора диффузных функций.

Возможным решением проблемы является использование расширенных корреляционно-согласованных базисных наборов с высокой диффузностью, например, x-aug-cc-pVXZ [37]. В таких базисных наборах каждая атомная орбиталь дополнена х диффузными функциями (x = 1 (aug), 2 (d-aug), 3 (t-aug), 4 (q-aug)). Чем меньше энергия сродства, тем больше диффузных экспонент необходимо задействовать (т.е. увеличивать х). При этом существенно замедляется сходимость итераций метода связанных кластеров, что особенно заметно вблизи порога фотоотрыва.

Таблица 2. Значения динамической поляризуемости $\alpha(\omega)$ (в а.ч., a_B^3) аниона H⁻, вычисленные в программах Gaussian методом функционала плотности (mPW1PBE) и NWChem методом CCSD. Указаны параметры базисных наборов x-aug-cc-pVXZ. Табличное значение энергии сродства $E_A = 0.0277165$ а.ч. [36]

<i>ω</i> , a.u.		CCSD		
	$\mathbf{x} = 1$	$\mathbf{x} = 1$	x = 2	x = 2
	X = 5	X = 6	X = 6	X = 6
ω_{thr} , a.u.	0.0230	0.0231	0.0235	0.027675
0.000	45.6727	52.1984	143.680	161.705
0.001	45.6737	52.1998	143.700	161.732
0.002	45.6769	52.2042	143.761	161.812
0.003	45.6821	52.2114	143.864	161.947
0.004	45.6895	52.2215	144.007	162.137
0.005	45.6990	52.2346	144.191	162.381
0.006	45.7105	52.2505	144.418	162.680
0.007	45.7242	52.2693	144.686	163.035
0.008	45.7401	52.2911	144.997	163.447
0.009	45.7580	52.3158	145.352	163.917
0.010	45.7781	52.3434	145.750	164.445
0.011	45.8003	52.3739	146.193	165.033
0.012	45.8246	52.4075	146.681	165.683
0.013	45.8511	52.4439	147.216	166.395
0.014	45.8797	52.4834	147.798	167.171
0.015	45.9105	52.5258	148.428	168.013
0.016	45.9435	52.5712	149.109	168.923
0.017	45.9786	52.6197	149.841	169.903
0.018	46.0159	52.6712	150.626	170.956
0.019	46.0555	52.7257	151.465	172.085
0.020	46.0972	52.7834	152.360	173.291
0.021	46.1412	52.8441	153.313	174.579
0.022	46.1874	52.9079	154.327	175.951
0.023	46.2358	52.9748	155.403	177.412
0.024				178.965
0.025				180.616
0.026				182.367
0.027				184.226

2. Результаты вычислений

В табл. 1 приведены результаты расчета динамической поляризуемости аниона H^- , вычисленные *ab initio* с использованием пакета NWChem. Применялся метод связанных кластеров CCSD (в анионе H^- возможны лишь 2-электронные возбуждения [38–41]) в комбинации с базисными наборами x-aug-cc-pV6Z. Пакет NWChem по умолчанию содержит лишь базисные наборы aug-cc-pVXZ (x = 1), но позволяет сравнительно легко подключать расширения с x = 2, 3, 4. Исследовался весь диапазон частот, вплоть до порога 1-фотонного фотоотрыва. Предполагалось отсутствие дипольно-резонансных возбужденных состояний у аниона H^- . Обратим внимание на острую чувствительность динамической поляризуемо-

сти к выбору числа диффузных функций x по сравнению с энергией сродства, которая при X ≥ 5 практически не зависит от X.

В работе [20] были найдены границы интервала динамических поляризуемостей, получаемых с использованием известных на тот период методов. Они указаны в табл. 1 для сравнения. В работе [21] динамические поляризуемости найдены в одноэлектронном приближении с некоторыми модельными потенциалами $V_{1,2,3}$ путем численного интегрирования неоднородных дифференциальных уравнений (метод Далгарно–Льюиса [42]). В табл. 1 даны лишь те результаты работы [21], которые находятся в границах интервалов [20]. Приведены также результаты недавней работы [22]. Как видно, полученные нами результаты весьма близки к результатам, полученным авторами работы [22].

Пакет NWChem позволяет вычислять динамические поляризуемости только методом связанных кластеров. В пакете Gaussian данный метод не реализован. В то же время метод функционала плотности можно использовать в программе Gaussian, но нельзя в NWChem. В этом смысле эти две программы дополняют друг друга. Однако в пакете Gaussian модификация базисных наборов разрушает сходимость, так как используемые встроенные базисные наборы отличаются от имеющихся в открытом доступе. В программе NWChem используются абсолютно стандартные базисные наборы и их расширения из открытых источников. Поэтому проведение расчетов методом функционала плотности с базисными наборами t-aug-cc-pVXZ не представляется возможным. Результаты расчета динамических поляризуемостей методом функционала плотности приведены в табл. 2. Анализ данных из табл. 1 и 2 позволяет говорить о решающей роли параметра диффузности корреляционно-согласованного базисного набора в расчетах динамической поляризуемости анио-HOB.

Заключение

Проведенные расчеты динамической поляризуемости отрицательного иона водорода в корреляционносогласованном базисе с высокой диффузностью дают результаты, весьма близкие к результатам, полученным авторами работы [22] методом суммирования по псевдосостояниям. В то же время расчеты методом функционала плотности не позволяют получить высокой точности. Причина этого связана с большими размерами отрицательных ионов по сравнению как с положительными ионами, так и с нейтральными атомами (молекулами). Таким образом, можно говорить о весьма важной роли параметра диффузности корреляционно-согласованного базисного набора в расчетах динамической поляризуемости отрицательных ионов.

Благодарности

Авторы благодарят Воронежский госуниверситет за предоставленный высокопроизводительный компьютерный центр параллельных вычислений для проведения расчетов.

Финансирование работы

Работа выполнена при финансовой поддержке Российского научного фонда (грант 19-12-00095) в части CCSDрасчетов, а также при поддержке Министерства науки и высшего образования РФ (проект FZGU-2020-0035) в части расчетов методом функционала плотности.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Meccu Г. Отрицательные ионы. М.: Мир, 1979. 756 с; Massey H.S.W. Negative Ions. Cambridge: Cambridge Univ. Press, 2011. 756 p.
- [2] King F.W. // Can. J. Phys. 1975. V. 53. N 22. P. 2502. doi 10.1139/p75-303-10.1139/p75-303
- Berson I.J. // J. Phys. B: At. Mol. Opt. Phys. 1975. V. 8. N 18.
 P. 3078. doi 10.1088/0022-3700/8/18/025
- [4] Зон Б.А. // ЖЭТФ. 1976. Т. 46. № 4. С. 875-877.
- [5] Поляризационное тормозное излучение частиц и атомов. Под ред. Цытовича В.Н., Буймистрова В.М. М.: Наука, 1987. 335 с.; Polarization Bremsstrahlung / Ed. by Tsytovich V.N., Oiringel I.M. NY.: Springer, 1992. Xxvi + 370 p.
- [6] Astapenko V. Polarization bremsstrahlung on atoms, plasmas, nanostructures and solids. Berlin-Heidelberg: Springer, 2013.
 V. 72 of Springer Series on Atomic, Optical, and Plasma Physics. xii + 376 p
- [7] Korol A.V., Solovyov A.V. Polarization bremsstrahlung. N Y: Springer, 2014. V. 80 of Springer Series on Atomic Optical and Plasma Physics. xi+275 p.
- [8] Головинский П.А. // Опт. и спектр. 1983. Т. 55. № 6. С. 1078; Golovinskii P.A. // Opt. Spectrosc. 1983. V. 55. N 6. Р. 655.
- [9] Головинский П.А., Киян И.Ю. // Опт. и спектр. 1985. Т. 59.
 № 5. С. 988; Golovinskii P.A., Kiyan I.Y. // Opt. Spectrosc. 1985. V. 59. N 5. P. 593.
- [10] Головинский П.А. // Опт. и спектр. 1998. Т. 84. № 5. С. 723; Golovinskii Р.А. // Opt. Spectrosc. 1998. V. 84. N 5. P. 723
- [11] Chernov V.E., Kiyan I.Y., Helm H., Zon B.A. // Phys. Rev. A. 2005. V. 71. N 3. P. 033410. doi 10.1103/PhysRevA.71.033410
- [12] Зоммерфельд А. Строение атома и спектры. М.: ГИТТЛ, 1956. Т. 2. 694 с.; Sommerfeld A. Atombau und Spektrallinien. Braunschweig: Friedr. Vieweg und Sohn, 1939. II Band. xi + 819 p.
- Bethe H., Heitler W. // Proc. R. Soc. London, Ser. A. 1934.
 V. 146. P. 83. doi 10.1098/rspa.1934.0140
- [14] Sauter F // Ann. Phys. 1931. Bd. 401. H. 2. S. 217. doi 10.1002/andp.19314010205

- [15] Головинский П.А., Зон Б.А. // ЖТФ. 1980. Т. 50. С. 1847; Golovinskii P.A., Zon B.A. // Sov. Phys. — Tech. Phys. 1980. V. 25. N 9. P. 1076.
- [16] De la Luz V, Lara A., Raulin J.-P. // Astrophys. J. 2011.
 V. 737. N 1. P. 1. doi 10.1088/0004-637X/737/1/1
- [17] De la Luz V., Raulin J.-P., Lara A. // Astrophys. J. 2013.
 V. 762. N 2. P. 84. doi org/10.1088/0004-637X/762/2/84
- [18] De la Luz V., Chavez M., Bertone E., Gimenez de Castro G. // Sol. Phys. 2014. V. 289. P. 2879. doi 10.1007/s11207-014-0511-0
- [19] De la Luz V. // Astrophys. J. 2016. V. 825. N 2. P. 138. doi 10.3847/0004-637X/825/2/138
- [20] Glover R.M., Weinhold F. // J. Chem. Phys. 1976. V. 65. N 11.
 P. 4913. doi 10.1063/1.432967
- [21] Головинский П.А., Зон Б.А. // Опт. и спектр. 1978. Т. 45.
 С. 854; Golovinskii P.A., Zon B.A. // Opt. Spectrosc. 1978.
 V. 45. P. 854.
- [22] Kar S., Wang Y.-S., Wang Y., Ho Y.K. // Int. J. Quantum Chem. 2018. V. 118. N 7. P. e25515. doi 10.1002/qua.25515
- [23] Kornev A.S., Suvorov K.I., Chernov V.E., Zon B.A. // Chem. Phys. Lett. 2018. V. 711. P. 42. doi 10.1016/j.cplett.2018.09.005
- [24] Cherno V.E., Dorofeev D.L., Kretinin I.Y., Zon B.A. // Phys. Rev. A. 2005. V. 71. N 2. P. 022505. doi 10.1103/PhysRevA.71.022505
- [25] Зон Б.А., Кретинин И.Ю., Чернов В.Е. // Опт. и спектр. 2006. Т. 101. В. 4. С. 533; Zon B.A., Kretinin I.Yu., Chernov V.E. // Opt. Spectrosc. 2006. V. 101. N 4. P.501. doi 10.1134/S0030400X06100018
- [26] Valiev R.R., Berezhnoy A.A., Sidorenko A.D., Merzlikin B.S., Cherepanov V.N. // Planet. Space Sci. 2017. V. 145. P. 38. doi 10.1016/j.pss.2017.07.011
- [27] Kalugina Y., Sunchugashev D., Cherepanov V. // Chem. Phys. Lett. 2018. V. 692. P. 184. doi 10.1016/j.cplett.2017.12.026
- [28] Valiev R.R., Berezhnoy A.A., Gritsenko I.S., Merzlikin B.S., Cherepanov V.N., Kurten T., Wöhler C. // Astron. Astrophys. 2020. V. 633. P. A39. doi 10.1051/0004-6361/201936230
- [29] Terashkevich V.A., Pazyuk E.A., Stolyarov A.V., Wiebe D.S. // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 234. P. 139–146. doi 10.1016/j.jqsrt.2019.06.017
- [30] Зайцевский А.В., Скрипников Л.В., Кудрин А.В., Олейниченко А.В., Элиав Э., Столяров А.В. // Опт. и спектр. 2018. Т. 124. № 4. С. 435; Zaitsevskii A.V., Skripnikov L.V., Kudrin A.V., Oleinichenko A.V., Eliav E., Stolyarov A.V. // Opt. Spectrosc. 2018. V. 124. N 4. P. 451. doi 10.21883/OS.2018.04.45739.268-17
- [31] Коновалова Е.А., Демидов Ю.А., Столяров А.В. // Опт. и спектр. 2018. Т. 125. № 4. С. 451; Konovalova Е.А., Demidov Yu.A., Stolyarov A.V. // Opt. Spectrosc. 2018. V. 125. N 4. P. 470. doi 10.21883/OS.2018.10.46693.98-18
- [32] Maroulis G. // J. Chem. Phys. 1998. V. 108. N 13. P. 5432. doi 10.1063/1.475932
- [33] Maroulis G. // J. Chem. Phys. 2003. V. 118. N 6. P. 2673. doi 10.1063/1.1535443
- [34] Kállay M., Gauss J. // J. Mol. Struct.: THEOCHEM. 2006.
 V. 768. N 1. P. 71. doi 10.1016/j.theochem.2006.05.021
- [35] Калугина Ю.Н., Черепанов В.Н. // Оптика атмосф. и океана. 2015. Т. 28. № 5. С. 436; Kalugina Yu.N., Cherepanov V.N. // Atmos. Ocean Opt. 2015. V. 28. N 5. P. 406. doi 10.15372/AOO20150507
- [36] Andersen T., Haugen H.K., Hotop H. // J. Phys. Chem. Ref. Data. 1999. V. 28. N 6. P. 1511. doi 10.1063/1.556047

- [37] Woon D.E., Dunning T.H. // J. Chem. Phys. 1994. V. 100. N 4.
 P. 2975. doi 10.1063/1.466439
- [38] Broad J.T., Reinhardt W.P. // Phys. Rev. A. 1976. V. 14. P. 2159. doi 10.1103/PhysRevA.14.2159
- [39] *Hill R.N.* // Phys. Rev. Lett. 1977. V. 38. P. 643. doi 10.1103/PhysRevLett.38.643
- [40] Bürgers A., Lindroth E. // Eur. Phys. J. D. 2000. V. 10. P. 327. doi 10.1007/s100530050556
- [41] *Straton J.C.* // Atoms. 2020. V. 8. N 2. P. 13. doi 10.3390/atoms8020013
- [42] Dalgarno A. Applications of Time-dependent Perturbation Theory // Perturbation Theory and its Applications in Quantum Mechanics / Ed. by Wilcox C.H. NY.: Wiley, 1966. P. 145–183.