09,11

Сравнение спектров поглощения ионов Nd^{3+} в кристаллах $NdFe_3(BO_3)_4$, $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ и $Ho_{0.75}Nd_{0.25}Fe_3(BO_3)_4$

© А.Л. Сухачев¹, А.В. Малаховский¹, С.S. Nelson², И.А. Гудим¹, В.Л. Темеров¹

¹ Институт физики им. Л.В. Киренского, ФИЦ КНЦ СО РАН,

Красноярск, Россия

² National Synchrotron Light Source II, Brookhaven National Laboratory,

Upton, N.Y. 11973, United States of America

E-mail: sunya@iph.krasn.ru

Поступила в Редакцию 2 сентября 2020 г. В окончательной редакции 2 сентября 2020 г. Принята к публикации 2 сентября 2020 г.

Проведено сравнение поляризованных спектров оптического поглощения в области ряда f-f переходов ионов Nd³⁺ в кристаллах Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄, Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ и NdFe₃(BO₃)₄ при 90 K. Выявлены особенности спектров, связанные с различием локального окружения ионов Nd³⁺ в указанных кристаллах. В области перехода ${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2} + {}^{2}G_{7/2}$ ионов Nd³⁺ в кристалла Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ обнаружено появление некоторых линий поглощения при структурном переходе $R32 \rightarrow P3_{1}21$ в районе ~ 200 K вследствие изменения локальной симметрии. Их интенсивность увеличивается плавно при понижении температуры от точки перехода. Измерена температурная зависимость параметров решетки кристалла Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄. Обнаружено, что при температуре перехода происходит скачкообразное изменение параметра *a* решетки, что свидетельствует о фазовом переходе первого рода. Параметр решетки *c* изменяется плавно.

Ключевые слова: неодим, ферробораты со структурой хантита, f - f электронные переходы, структурный переход.

DOI: 10.21883/FTT.2021.01.50408.182

1. Введение

Ферробораты RFe₃(BO₃)₄ (R — Y или редкоземельный (P3) элемент) имеют хантитоподобную структуру. P3 ферробораты привлекают большое внимание исследователей, потому что довольно часто такие кристаллы являются мультиферроиками [1–3]. Исследуемые в настоящей работе кристаллы NdFe₃(BO₃)₄, Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ и Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ относятся к материалам данного типа, о чем свидетельствуют исследования их магнитных, магитоупругих и магнитоэлектрических свойств [3–5]. Сочетание физических характеристик и химической стабильности боратов со структурой хантита позволяет использовать их в качестве элементов оптических и оптоэлектронных устройств [6–8], в частности, для сложения и умножения частот лазерного излучения [9,10].

Оптические свойства РЗ ионов, а именно f-f переходов, определяются симметрией локального окружения иона. При высоких температурах РЗ ферробораты кристаллизуются в тригональную структуру с пространственной симметрией R32 [10–14]. Элементарная ячейка содержит три формульных единицы. РЗ ионы расположены в центрах тригональных призм RO₆ с локальной симметрией D_3 . Ионы Fe³⁺ занимают позиции с симметрией C_3 в кислородных октаэдрах. Эти октаэдры формируют геликоидальные цепочки вдоль кристаллографической оси C_3 . С понижением температуры некоторые P3 ферробораты с малыми ионными радиусами P3 иона претерпевают структурный переход в фазу с пространственной симметрией $P3_121$ [10–12]. Это приводит к понижению локальной симметрии P3 иона до C_2 и появлению двух неэквивалентных позиций ионов Fe³⁺. В работе [15] исследовались спектры рамановского рассеяния в кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ в диапазоне температур 10–400 K и было показано, что при температуре 203 K происходит структурный переход $R32 \rightarrow P3_121$ типа смещения.

В работе [16] исследовались спектры оптического поглощения и получена электронная структура ионов Nd^{3+} в кристалле $NdFe_3(BO_3)_4$ при температуре 50 К. В работе [17] определена электронная структура ионов Nd^{3+} в кристалле $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ при температуре 40 К на основании исследования поляризованных спектров оптического поглощения и магнитного кругового дихроизма. Согласно [16,17] пространственная симметрии *R*32 кристаллов $NdFe_3(BO_3)_4$ и $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ сохраняется до гелиевых температур. Спектры оптического поглощения при комнатной температуре и параметры Джадда–Офельта получены в кристалле $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ [18] и в кристаллах $NdFe_3(BO_3)_4$, $Ho_{0.75}Nd_{0.25}Fe_3(BO_3)_4$ [19].

В настоящей работе проводится сравнительное исследование спектров поглощения ионов Nd^{3+} в кристаллах $NdFe_3(BO_3)_4$, $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ и $Ho_{0.75}Nd_{0.25}Fe_3(BO_3)_4$ с целью выяснения влияния

локальной симметрии иона Nd³⁺ и более слабых искажений решетки, связанных с замещением иона Nd³⁺ другими редкоземельными ионами.

2. Образцы и эксперименты

Исследуемые кристаллы выращены ПО раствор-расплавной Монокристаллы технологии. Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ выращены из раствора-расплава на основе K₂Mo₃O₁₀ по методике, описанной в [18,20]. Кристаллы Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ и NdFe₃(BO₃)₄ выращены из раствор-расплава на основе Bi₂Mo₃O₁₂ [19,21]. Стехиометрический состав изготовленных кристаллов определялся по соотношению закладываемых оксидов редкоземельных элементов при синтезе. Образцы для измерений были изготовлены в виде пластинок толщиной ~ 0.2 mm, с лежащей в плоскости образца кристаллографической осью С₃.

Спектры поглощения получены на автоматизированном двулучевом спектрофотометре на основе монохроматора МДР-2. Оптическая ширина щели при измерении спектров составляла 0.2 nm в области 500-600 nm и 0.4 nm в области 600-1000 nm. Образцы охлаждались в азотном газовом проточном криостате. Температура поддерживалась с точностью ~ 1 К. Спектры поглощения были измерены при распространении линейно поляризованного света нормально оси C_3 кристаллов для направления вектора **E** световой волны параллельного (π -поляризация) и перпендикулярного (σ -поляризация) оси C_3 кристаллов.

Измерения рассеяния рентгеновских лучей проводились с использованием четырехкружного дифрактометра в геометрии вертикального рассеяния на исследовательской станции X21 на синхротронном источнике Brookhaven National Laboratory's National Synchrotron Light Source. Параметры решетки определялись путем измерения брэгговских пиков (600) и (006) в функции от температуры при энергии фотона 10 keV и с помощью кристалла анализатора LiF (200).

3. Результаты и обсуждение

Спектры оптического поглощения кристаллов Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄, Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ И NdFe₃(BO₃)₄ измерены при T = 90 К в π - и σ -поляризациях. На рис. 1 представлены спектры поглощения кристалла Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄. В спектрах наблюдаются широкие полосы, связанные с d-d переходами в ионах Fe^{3+} , и узкие линии f-f переходов в ионах Nd³⁺ и Ho³⁺. Из полных спектров были вычтены d-d полосы поглощения ионов Fe³⁺. Коэффициенты поглощения были приведены к молярной концентрации ионов Nd^{3+} . Концентрация ионов Nd^{3+} в кристалле NdFe₃(BO₃)₄ составляет 8.34 mol/l. В кристаллах Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ и Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ C_{Nd} = 4.17 и 2.085 mol/l соответственно [19].

Рис. 1. Спектры оптического поглощения кристалла $Ho_{0.75}Nd_{0.25}Fe_3(BO_3)_4$ при T = 90 K в π - и σ -поляризациях.

Пространственная симметрия кристаллов NdFe₃(BO₃)₄ и Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ при температуре 90 К — R32. Локальная симметрия ионов Nd³⁺ — D₃. Для ионов с полуцелым моментом в симметрии D₃ существуют состояния двух типов $E_{1/2}$ и $E_{3/2}$. Состояния свободного атома с полуцелым полным моментом J расщепляются в кубическом кристаллическом поле, а затем в поле симметрии D₃ следующим образом:

$$I = 3/2 \to G_{3/2} \to E_{1/2} + E_{3/2},$$
 (1)

$$J = 5/2 \to E_{3/2} + G_{3/2} \to E_{1/2} + (E_{1/2} + E_{3/2}), \qquad (2)$$

$$F = 7/2 \rightarrow E_{1/2} + E_{3/2} + G_{3/2}$$

J

$$\rightarrow E_{1/2} + E_{1/2} + (E_{1/2} + E_{3/2}),$$
 (3)

$$J = 9/2 \to E_{1/2} + 2G_{3/2} \to E_{1/2} + 2(E_{1/2} + E_{3/2}).$$
 (4)

При D_3 симметрии локального окружения редкоземельного иона электродипольные переходы между состояниями происходят согласно правилам отбора, представленным в табл. 1. Согласно [16,17] все исследуемые переходы являются электродипольными. При изменении симметрии локального окружения от D_3 к C_2 различие между состояниями $E_{1/2}$ и $E_{3/2}$ исчезает и переходы становятся разрешенными во всех поляризациях (π и σ). Это наблюдается в исследуемом кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄, так как его пространственная симметрия при температуре ниже 203 К — P_{3} ₁21 [15], а локальная симметрия окружения P3 ионов C_2 . Количество линий (1–4) при таком понижении локальной

Таблица 1. Правила отбора для электродипольных переходов в *D*₃ симметрии.

	$E_{1/2}$	$E_{3/2}$
$E_{1/2}$	$\pi, \sigma(a)$	$\sigma(a)$
$E_{3/2}$	$\sigma(a)$	π

симметрии не изменяется, так как в симметрии D₃ состояния иона Nd³⁺ уже расщеплены кристаллическим полем до дублетов. Интерпретация полос поглощения и идентификация линий f-f переходов ионов Nd^{3+} в кристаллах NdFe₃(BO₃)₄ и Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ произведена на основании сравнения со спектрами кристалла Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ [17].

В табл. 2 приведены полученные из экспериментальных данных величины расщеплений ΔE электронных мультиплетов ионов Nd³⁺ в кристаллическом поле. Различие расщеплений уровней в исследованных кристаллах свидетельствует о различии четной составляющей кристаллического поля в области иона Nd³⁺ в этих кристаллах. В частности, в большинстве возбужденных мультиплетов расщепление ΔE увеличивается в последовательности Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄, Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄, NdFe₃(BO₃)₄. При сравнении спектров поглощения (рис. 2-6) наблюдается относительное уширение линий поглощения в кристаллах Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ и Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄, по сравнению с кристаллом NdFe₃(BO₃)₄, что, по-видимому, обусловлено неоднородностью локального окружения ионов Nd^{3+} .

Интегральные интенсивности f - f переходов ионов Nd^{3+} в исследованных кристаллах при температуре 90 К представлены в табл. 3. Они получены путем интегрирования л- и о-поляризованых полос поглощения (рис. 2-6) и последующего усреднения интенсивностей в соответствии с соотношением для одноосных анизотропных кристаллов, в виде: $(2I_{\sigma} + I_{\pi})/3$. При 90 К в кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ локальная симметрия ионов $Nd^{3+} - C_2$, а интегральная интенсивность суммы всех переходов заметно больше, чем в остальных исследованных кристаллах, локальная симметрия в которых D_3 (табл. 3). Большая интенсивность переходов соответствует большей величине нечетной компоненты кристаллического поля, благодаря которой происходит разрешение f - f переходов.

Переход ${}^4I_{9/2} \to {}^4F_{3/2}$ (*R*-полоса). На рис. 2 представлены спектры поглощения исследуемых кристаллов в области перехода $R ({}^4I_{9/2} \rightarrow {}^4F_{3/2})$ ионов Nd^{3+} при T = 90 К. Линии R1 и R2 идентифицированы как переходы из нижней компоненты расщепления основного состояния (Gr1) и положения уровней R1 и R2 представлены в табл. 2. Линия Gr3-R1 соответствует переходу из подуровня Gr3 основного состояния на уровень R1, а Gr2-R1 — переход из Gr2 на R1. На этом основании получаем положение компонент расщепления основного состояния Gr2 и Gr3 ионов Nd³⁺ в исследуемых кристаллах (табл. 2). Представленные в табл. 2 энергии компонент расщепления основного состояния ⁴I_{9/2} определены путем усреднения значений, полученных из положений соответствующих переходов, указанных в табл. 2. Симметрии компонент расщепления основного состояния Gr1, Gr2, Gr3 определены в работе [17] и указаны в табл. 2. Переход R2 запрещен в π -поляризации по правилам отбора в локальной симметрии D₃ (табл. 1),

 $k/C_{\mathrm{Nd}}, \mathrm{cm}^{-1} \cdot \mathrm{mol}^{-1} \cdot 1$ NdGd Nd 0 R2σ $c/C_{\rm Nd}, \, {\rm cm}^{-1} \cdot {\rm mol}^{-1} \cdot 1$ *R*1 20 Gr2-R1Gr3-R1NdHo 10 NdGd Nd 0 11200 11400 E, cm^{-1} Рис. 2. Спектры поглощения в π - и σ -поляризациях перехода ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ (R) ионов Nd^{3+} в кристаллах Но_{0.75}Nd_{0.25}Fe₃(BO₃)₄ (NdHo), Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ (NdGd) и

NdFe₃(BO₃)₄ (Nd) при T = 90 K.

Gr3-R1

π

NdHo

18

9

а в кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ линия R2 присутствует в π -поляризованном спектре поглощения (рис. 2). Это является следствием С2 локальной симметрии ионов Nd³⁺ в этом кристалле при 90 К. Относительный сдвиг одноименных линий поглощения по энергии в исследуемых кристаллах (рис. 2) означает различие в величинах четных компонент кристаллического поля в области ионов Nd³⁺.

Переход ${}^{4}I_{9/2} \rightarrow {}^{4}F_{5/2} + {}^{2}H_{9/2}$ (S-полоса). Спектры поглощения в области перехода $S ({}^{4}I_{9/2} \rightarrow {}^{4}F_{5/2} + {}^{2}H_{9/2})$ показаны на рис. 3. Линия S6, которая наблюдалась в [17] при 6К, не обнаруживается при температуре 90 К ни в одном из исследуемых кристаллов. Положения компонент расщепления состояний ${}^4F_{5/2}$ и ${}^2H_{9/2}$ представлены в табл. 2. Полоса S3, запрещенная по правилам отбора в D_3 симметрии в π -поляризации, наблюдается в спектре поглощения кристалла Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ (рис. 3), где неодим находится в позиции С₂. Подобным образом ведет себя линия Gr3-S3. Из этого следует, что состояние Gr3 имеет симметрию $E_{1/2}$ (табл. 1 и 2).

 ${}^{4}I_{9/2} \rightarrow {}^{4}F_{7/2} + {}^{4}S_{3/2}$ (А-полоса). Переход Ha рис. 4 представлены спектры поглощения в области перехода А (${}^{4}I_{9/2} \rightarrow {}^{4}F_{7/2} + {}^{4}S_{3/2}$). Пары линий (A1, A2), (АЗ, А4) и (А5, А6) практически неразличимы в $NdFe_3(BO_3)_4$ и $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$. кристаллах

*R*1

R2

Состояние	Переход (Уровень)	$Ho_{0.75}Nd_{0.25}Fe_3(BO_3)_4$ E, cm ⁻¹	$Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ E, cm ⁻¹	$\frac{\text{NdFe}_3(\text{BO}_3)_4}{E, \text{ cm}^{-1}}$	Состояние в <i>D</i> ₃ симм. [17]
⁴ <i>I</i> _{9/2}	$ \begin{array}{c ccccc} Gr1 & 0 \\ Gr2 & 75 \\ Gr3 & 161 \\ Gr4 & 216 \\ Gr5 & 345 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$		0 79 148 219	0 71 143 219	$E_{1/2} \\ E_{3/2} \\ E_{1/2} \\ E_{1/2}$
⁴ F _{3/2}			327 11205 11276 11355 11418	321 11196 11272 11342 11416	$E_{3/2}$ $E_{1/2}$ $E_{3/2}$
${}^{4}F_{5/2} + {}^{2}H_{9/2}$	ΔE_R $Gr3-S1$ $S1$ $S2$ $S3$ $S4$ $S5$ $S6$ $S7$ $S8$ ΔF_c	51 12228 12399 12447 12477 12493 12562 	63 12215 12363 12431 12451 12477 12537 - 12604 12687 324	74 12212 12354 12436 ~ 12450 12474 12531 $-$ 12597 12688 334	$E_{1/2}$ $E_{1/2}$ $E_{3/2}$ $E_{1/2}$ $E_{3/2}$ $E_{1/2}$ $E_{3/2}$ $E_{3/2}$
${}^{4}F_{7/2} + {}^{4}S_{3/2}$	$Gr3-A1$ $A1$ $A2$ $A3$ $A4$ $A5$ $A6$ ΔE_A	$\begin{array}{c} 13211\\ 13365\\ 13385\\ \sim 13436\\ \sim 13442\\ \sim 13503\\ \sim 13510\\ 145\end{array}$	$ \begin{array}{r} 324 \\ 13190 \\ 13335 \\ 13350 \\ \sim 13403 \\ \sim 13412 \\ 13472 \\ \sim 13481 \\ 146 \end{array} $	$\begin{array}{c} 13182 \\ 13324 \\ 13340 \\ \sim 13408 \\ \sim 13414 \\ 13470 \\ \sim 13475 \\ 151 \end{array}$	$E_{1/2} \\ E_{3/2} \\ E_{1/2} \\ E_{1/2} \\ E_{1/2} \\ E_{3/2}$
${}^{4}G_{5/2} + {}^{2}G_{7/2}$	$\begin{array}{c} Gr4-D1 \\ Gr5-D3 \\ Gr2-D1 \\ D1 \\ Gr2-D2 \\ Gr2-D3 \\ D2 \\ D3 \\ D4 \\ D5 \\ D6 \\ D7 \end{array}$	16740 16785 16878 16956 17009 17051 17082 17130 17227 17274 17313 17356	16711 16780 16850 16930 16992 17028 17070 17107 17208 17250 17297 17335	16704 16784 16849 16923 16996 17030 17065 17105 17205 17205 17252 17297	$E_{1/2}$ $E_{1/2}$ $E_{3/2}$ $E_{1/2}$ $E_{1/2}$ $E_{1/2}$ E
${}^{4}G_{9/2}$	ΔE_D $Gr3-E1$ $Gr2-E1$ $E1$ $E2$ $E3$ $E4$ $E5$ ΔE_E	$ \begin{array}{r} 400\\ 18733\\ 18819\\ 18894\\ 18924\\ \sim 18951\\ 19026\\ 19077\\ 183 \end{array} $	405 18724 18792 18873 18908 18954 19011 19065 192		$E_{3/2}$ $E_{1/2}$ $E_{3/2}$ $E_{1/2}$ $E_{3/2}$

Таблица 2. Положения энергетических уровней ионов Nd^{3+} в кристаллах $Ho_{0.75}Nd_{0.25}Fe_3(BO_3)_4$, $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ и $NdFe_3(BO_3)_4$ при T = 90 К.

	${}^{4}I_{9/2}\downarrow$	E, cm^{-1}	$(2I_{\sigma} + I_{\pi})/3, \mathrm{cm}^{-2}\mathrm{mol}^{-1}\mathrm{l}$		
Переход			$\frac{Ho_{0.75}Nd_{0.25}Fe_{3}(BO_{3})_{4}}{P3_{1}21\ (C_{2})}$	Nd _{0.5} Gd _{0.5} Fe ₃ (BO ₃) ₄ R32 (D ₃)	NdFe ₃ (BO ₃) ₄ R32 (D ₃)
R	${}^{4}F_{3/2}$	11350	601	448	516
S	${}^{4}F_{5/2} + {}^{2}H_{9/2}$	12400	2331	1618	1540
Α	${}^{4}F_{7/2} + {}^{4}S_{3/2}$	13350	1888	1297	1439
В	${}^{4}F_{9/2}$	14600	131	67	87
D	${}^{2}G_{7/2} + {}^{4}G_{5/2}$	17000	2188	2046	2412
E	${}^{4}G_{9/2}$	18900	399	390	436
F	${}^{2}K_{13/2} + {}^{4}G_{7/2} \ \Sigma$	19400	491 8028	450 6315	506 6936

Таблица 3. Интегральные интенсивности f-f переходов (($2I_{\sigma} + I_{\pi}$)/3) в ионах Nd³⁺ в кристаллах Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄, Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ и NdFe₃(BO₃)₄ и pu 90 K

Рис. 3. Спектры поглощения в π - и σ -поляризациях перехода ${}^{4}I_{9/2} \rightarrow {}^{4}F_{5/2} + {}^{2}H_{9/2}$ (S) ионов Nd³⁺ в кристаллах Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ (NdHo), Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ (NdGd) и NdFe₃(BO₃)₄ (Nd) при T = 90 K.

Однако пара (A1, A2) расщепляется в кристалле $Ho_{0.75}Nd_{0.25}Fe_3(BO_3)_4$, причем обе линии становятся активными в π -поляризации.

Стоит отметить, что линии A3 и A4 в *о*-поляризованном спектре поглощения кристалла H0_{0.75}Nd_{0.25}Fe₃(BO₃)₄ значительно интенсивнее, чем в

кристаллах NdFe₃(BO₃)₄ и Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ (рис. 4). Запрещенные по четности f - f переходы разрешаются за счет нечетных компонент кристаллического поля. Следовательно, такое различие интенсивностей поглощения можно объяснить за счет большей величины нечетной компоненты кристаллического поля в кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄.

Рис. 4. Спектры поглощения в π - и σ -поляризациях перехода ${}^{4}I_{9/2} \rightarrow {}^{4}F_{7/2} + {}^{4}S_{3/2}$ (A) ионов Nd³⁺ в кристаллах Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ (NdHo), Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ (NdGd) и NdFe₃(BO₃)₄ (Nd) при T = 90 K.

Переход ${}^{4}I_{9/2} \rightarrow {}^{4}G_{9/2}$ (*Е*-полоса). В переходе *Е* $({}^{4}I_{9/2} \rightarrow {}^{4}G_{9/2})$ (рис. 5) линия *Е*З в *D*₃ симметрии запрещена в π -поляризации, однако она не наблюдается и в кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄. Следует отметить существенное увеличение интенсивностей линий *Е*2 и *Е*4 в π -поляризованном спектре поглощения кристалла Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ (рис. 5) (интенсивности линий указаны на рисунке). Это можно связать с большей нецентросимметричностью локального окружения иона Nd³⁺ в этом кристалле в этом электронном состоянии.

Переход ${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2} + {}^{2}G_{7/2}$ (*D*-полоса). Спектры поглощения в области перехода *D* (${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2}$ + ${}^{2}G_{7/2}$) ионов Nd³⁺ в исследованных кристаллах при 90 К представлены на рис. 6. Положения компонент расщепления возбужденных состояний ${}^{4}G_{5/2}$ и ${}^{2}G_{7/2}$ представлены в табл. 2. Переход *D*5 в кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ очень слаб как в π -, так и в σ -спектрах (рис. 6), поэтому его положение определено из разложения π -спектра на компоненты формы Лоренца. Линия *D*1 может быть интерпретирована или как переход Gr2-D5, или как Gr3-D7. Переход *D*3 запрещен в π -поляризации в *D*₃ симметрии согласно правилам отбора (табл. 1), но в кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄

Рис. 5. Спектры поглощения в π - и σ -поляризациях перехода ${}^{4}I_{9/2} \rightarrow {}^{4}G_{9/2}(E)$ ионов Nd³⁺ в кристаллах Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ (NdHo), Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ (NdGd) и NdFe₃(BO₃)₄ (Nd) при T = 90 К. На π -спектрах в скобках указаны интенсивности линий E2 и E4 в единицах сm⁻²mol⁻¹l, полученные из разложения спектров на компоненты формы Лоренца.

Рис. 6. Спектры поглощения в π - и σ -поляризациях перехода ${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2} + {}^{2}G_{7/2}(D)$ ионов Nd³⁺ в кристаллах Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ (NdHo), Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ (NdGd) и NdFe₃(BO₃)₄ (Nd) при T = 90 K.

он явно присутствует в π -спектре (рис. 6), что является следствием локальной симметрии C_2 ионов неодима в этом кристалле при 90 К.

В области перехода D было проведено исследование спектров оптического поглощения кристалла Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ в функции от температуры. На рис. 7 представлены л- и о-поляризованные спектры при температурах 130 и 210 К, соответственно, ниже и выше температуры структурного перехода $P3_121 \rightarrow R32$ (изменение локальной симметрии $C_2 \rightarrow D_3$). На основании измеренных спектров оптического поглощения кристалла Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ в диапазоне температур 90-300 К построены температурные зависимости интегральных интенсивностей I_{π} и I_{σ} перехода D в ионах Nd³⁺ в π - и σ -поляризациях, соответственно (рис. 8). На полученных зависимостях в области структурного перехода (T = 203 K [15]) существенные особенности не наблюдаются. Однако, различный температурный ход интенсивности в *л*- и *о*-поляризациях свидетельствует об изменении локального окружения иона Nd³⁺ с изменением температуры по крайней мере в возбужденном состоянии.

Для определения температурных зависимостей интенсивностей отдельных линий полосы *D* полученные

Рис. 7. Спектры оптического поглощения в π - и σ -поляризациях перехода ${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2} + {}^{2}G_{7/2}(D)$ ионов Nd³⁺ в кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ при температурах 130 и 210 K.

спектры раскладывались на компоненты формы Лоренца. На спектрах (рис. 7) следует обратить внимание на поведение двух линий D3 и Gr5-D3. Исчезновение линии D3 в *п*-поляризации при повышении температуры связано с изменением локальной симметрии ионов Nd³⁺ с C₂ на D₃. Линия D3 является переходом из нижней компоненты расщепления основного состояния и ее интенсивность должна уменьшаться с ростом температуры. Линия Gr5-D3 является переходом не из нижней компоненты расщепления основного состояния и ее интенсивность должна увеличиваться с ростом температуры, как это происходит в *о*-поляризации с линями Gr4-D1 и Gr2-D1 (рис. 7, вставка рис. 8). Исчезновение линии Gr5-D3 в σ-поляризации с ростом температуры (рис. 9) связано с изменением локальной симметрии при структурном переходе. Переход Gr5-D3 становится запрещенным в D_3 симметрии в σ -поляризации. Согласно правилам отбора в D₃ симметрии (табл. 1) такой запрет реализуется для переходов между состояниями E_{3/2}. На основании табл. 2 можно сделать вывод, что это переход на уровень D3. Разница энергий линий D3 и Gr5-D3 дает положение уровня Gr5 с симметрией $E_{3/2}$ в группе D_3 (табл. 2). Линия Gr5-D3 ($E_{3/2}-E_{3/2}$), согласно правилам отбора (табл. 1) разрешена также в π -спектрах кристаллов Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ и $NdFe_3(BO_3)_4$, но очень слаба (рис. 6).

На рис. 9 представлена температурная зависимость интенсивности линии D3 в π -поляризации, которая уменьшается как за счет уменьшения заселенности уровня Gr1 с ростом температуры, так и, главным образом, за счет изменения локальной симметрии от C_2 до D_3 . На том же рисунке показана интенсивность линии Gr5-D3 в σ -поляризации. В этой зависимости конкурирует увеличение интенсивности за счет увеличения заселенности исходного состояния Gr5 с ростом температуры и уменьшение интенсивности из-за изменения локальной симметрии от C_2 до D_3 . Из температурных зависимостей

Рис. 8. Температурные зависимости интегральных интенсивностей перехода ${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2} + {}^{2}G_{7/2}$ (*D*) ионов Nd³⁺ в кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ в π - и σ -поляризациях. На вставке: температурные зависимости интенсивности некоторых линий *D*-полосы поглощения.

Рис. 9. Температурные зависимости интенсивностей D3 и Gr5-D3 линий D-полосы поглощения ионов Nd^{3+} и положения линии мягкой структурной моды [15] в кристалле $Ho_{0.75}Nd_{0.25}Fe_3(BO_3)_4$.

Рис. 10. Изменение параметров кристаллической решетки кристалла $Ho_{0.75}Nd_{0.25}Fe_3(BO_3)_4$ в зависимости от температуры.

интенсивностей линий D3 и Gr5-D3 видно, что они исчезают при температуре ~ 200 K, что хорошо согласуется с температурой структурного перехода, полученной в работе [15].

Мы исследовали также изменение параметров кристаллической решетки кристалла Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ в зависимости от температуры (рис. 10). Оказалось, что параметр решетки а изменяется скачком при температуре структурного перехода, что свидетельствует о переходе первого рода. В то же время параметр решетки с изменяется плавно. Для полноты картины на рис. 9 представлено изменение положения линии структурной мягкой моды в кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ в зависимости от температуры, взятое из работы [15]. Изменение положения мягкой моды также происходит скачком. Обращает на себя внимание принципиальное различие температурных изменений структурных параметров (параметров решетки и мягкой моды) и интенсивности линий *f* – *f* поглощения в области структурного перехода (рис. 9,10). Причина этого различия — различная природа обсуждаемых параметров. Структурные параметры связаны главным образом с четной составляющей кристаллического поля, тогда как интенсивность f - f переходов связана целиком с нечетной составляющей. Из температурных зависимостей интенсивности f-f переходов, приведенных на рис. 9, следует, что нечетная компонента кристаллического поля более низкой симметрии не возникает скачком при структурном переходе, а плавно увеличивается от нуля при понижении температуры от структурного перехода.

4. Заключение

Измерены поляризованные спектры поглощения иона Nd³⁺ в кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ и проведено их сравнение со спектрами иона Nd³⁺ в кристаллах Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ и NdFe₃(BO₃)₄ при 90 К. Идентифицированы электронные переходы и определены их энергии и интенсивности. Определены расщепления возбужденных электронных мультиплетов ионов Nd³⁺ в кристаллическом поле. Различие расщеплений мультиплетов в исследованных кристаллах свидетельствует о различии четной составляющей кристаллического поля в области иона Nd³⁺ в этих кристаллах. При 90 К интегральная интенсивность суммы всех переходов в кристалле $Ho_{0.75}Nd_{0.25}Fe_3(BO_3)_4$ заметно больше, чем в остальных исследованных кристаллах, что свидетельствует о большей величине нечетной компоненты кристаллического поля, благодаря которой происходит разрешение f - f переходов.

Спектры поглощения перехода ${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2} + {}^{2}G_{7/2}$ в кристалле Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ измерены в функции от температуры в диапазоне 90–300 К. В спектрах этого кристалла при температуре ниже температуры структурного перехода появляются линии, запрещенные в D_3 симметрии, вследствие понижения локальной сим-

метрии ионов Nd³⁺. Аналогичное явление наблюдается во всех исследованных полосах поглощения.

Исследовано изменение параметров кристаллической решетки Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ в зависимости от температуры. Оказалось, что параметр решетки а изменяется скачком при температуре структурного перехода, что свидетельствует о переходе первого рода. В то же время параметр решетки с изменяется плавно. Изменение положения мягкой структурной моды также происходит скачком. Температурные изменения структурных параметров (параметров решетки и мягкой моды) и интенсивности линий *f*-*f* поглощения, появляющихся ниже структурного перехода, принципиально различны. Структурные параметры связаны главным образом с четной составляющей кристаллического поля, тогда как интенсивность f - f переходов связана целиком с нечетной составляющей. Из полученных температурных зависимостей их интенсивностей следует, что нечетная компонента кристаллического поля более низкой симметрии не возникает скачком при структурном переходе, а плавно увеличивается от нуля при понижении температуры от структурного перехода.

Финансирование работы

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда науки в рамках научного проекта: № 19-42-240003 "Влияние локального окружения на магнитооптические свойства f - f переходов в редкоземельных алюмоборатах и ферроборатах", а также при поддержке проекта Российского фонда фундаментальных исследований № 19-02-00034.

This research used resources at the X21 beamline of the National Synchrotron Light Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A.K. Zvezdin, S.S. Krotov, A.M. Kadomtseva, G.P. Vorob'ev, Yu.F. Popov, A.P. Pyatakov, L.N. Bezmaternykh, E.A. Popova. JETP Lett. 81, 272 (2005).
- [2] A.M. Kadomtseva, Yu.F. Popov, G.P. Vorob'ev, A.P. Pyatakov, S.S. Krotov, K.I. Kamilov, V.Yu. Ivanov, A.A. Mukhin, A.K. Zvezdin, A.M. Kuz'menko, L.N. Bezmaternykh, I.A. Gudim, V.L. Temerov. Low Temp. Phys. 36, 511 (2010).
- [3] A.K. Zvezdin, G.P. Vorob'ev, A.M. Kadomtseva, Yu.F. Popov, A.P. Pyatakov, L.N. Bezmaternykh, A.V. Kuvardin, E.A. Popova. JETP Lett. 83, 509 (2006).

- [4] A.M. Kadomtseva, Yu.F. Popov, G.P. Vorob'ev, A.A. Mukhin, V.Yu. Ivanov, A.M. Kuz'menko, A.S. Prokhorov, L.N. Bezmaternykh, V.L. Temerov, I.A. Gudim. In: Proc. of the XXI Int. Conf. "New in magnetism and magnetic materials". M. (2009). P. 316.
- [5] Г.П. Воробьев, Ю.Ф. Попов, А.М. Кадомцева, Е.В. Кувардин, А.А. Мухин, В.Ю. Иванов, Л.Н. Безматерных, И.А. Гудим, В.Л. Темеров. Тез. III Междунар. междисциплин. симп. "Среды со структурным и магнитным упорядочением" (Multiferroics-3), Ростов-на-Дону — Лоо (2011) С. 80.
- [6] D. Jaque. J. Alloys Compd. **323-324**, 204 (2001).
- [7] A. Brenier, C. Tu, Z. Zhu, B. Wu. Appl. Phys. Lett. 84, 2034 (2004).
- [8] X. Chen, Z. Luo, D. Jaque, J.J. Romero, J. Garcia Sole, Y. Huang, A. Jiang, C. Tu. J. Phys.: Condens. Matter 13, 1171 (2001).
- [9] Y. Saeed, N. Singh, U. Schwingenschlo. J. Appl. Phys. 110, 103512 (2011).
- [10] S.A. Klimin, D. Fausti, A. Meetsma, L.N. Bezmaternikh, P.H.M. Van Loosdrecht, T.T.M. Palstra. Acta Crystallogr. B 61, 481 (2005).
- [11] Y. Hinatsu, Y. Doi, K. Ito, M. Wakeshima, A. Alemi. J. Solid State Chem. **172**, 438 (2003).
- [12] H. Zhang, S. Liu, C.S. Nelson, L.N. Bezmaternykh, Y.-S. Chen, S.G. Wang, R.P.S.M. Lobo, K. Page, M. Matsuda, D.M. Pajerowski, T.J. Williams, T.A. Tyson. J. Phys.: Condens. Matter **31**, 505704 (2019).
- [13] J.C. Joubert, W.B. White, R. Roy. J. Appl. Cryst. 1, 318 (1968).
- [14] J.A. Campá, C. Cascales, E. Gutiérrez-Puebla, M.A. Monge, I. Rasines, C. Ruíz-Valero, Chem. Mater. 9, 237 (1997).
- [15] A.S. Krylov, S.N. Sofronova, I.A. Gudim, S.N. Krylova, R. Kumar, A.N. Vtyurin. J. Adv. Dielectrics 8, 2, 1850011 (2018).
- [16] M.N. Popova, E.P. Chukalina, T.N. Stanislavchuk, B.Z. Malkin, A.R. Zakirov, E. Antic-Fidancev, E.A. Popova, L.N. Bezmaternykh, V.L. Temerov. Phys. Rev. B 75, 224435 (2007).
- [17] A.V. Malakhovskii, S.L. Gnatchenko, I.S. Kachur, V.G. Piryatinskaya, A.L. Sukhachev, V.L. Temerov. JMMM 401, 517 (2016).
- [18] A.V. Malakhovskii, A.L. Sukhachev, A.A. Leont'ev, I.A. Gudim, A.S. Krylov, A.S. Aleksandrovsky. J. Alloys Compd. 529, 38 (2012).
- [19] A.L. Sukhachev, A.V. Malakhovskii, A.S. Aleksandrovsky, I.A. Gudim, V.L. Temerov. Opt. Mater. 83, 87 (2018).
- [20] A.D. Balaev, L.N. Bezmaternykh, I.A. Gudim, V.L. Temerov, S.G. Ovchinnikov, S.A. Kharlamova. JMMM 258-259, 532 (2003).
- [21] I.A. Gudim, E.V. Eremin, V.L. Temerov. J. Cryst. Growth 312, 2427 (2010).

Редактор Д.В. Жуманов