03,05

Магнитные состояния ионов Fe^{2+} в $Fe_x Mn_{1-x}S$, индуцированные химическим давлением

© Г.М. Абрамова¹, Ю.В. Князев¹, О.А. Баюков¹, С.П. Кубрин²

 ¹ Научно-исследовательский институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, Россия
² НИИ физики Южного федерального университета, Ростов-на-Дону, Россия
E-mail: agm@iph.krasn.ru

Поступила в Редакцию 27 августа 2020 г.

В окончательной редакции 27 августа 2020 г. Принята к публикации 30 августа 2020 г.

Изучено влияние химического давления (x) на спиновое состояние ионов железа в монокристаллах $Fe_xMn_{1-x}S$ (0.12 $\leq x \leq 0.29$) методом мёссбауэровской спектроскопии в интервале 4.2–300 К. Выявлены особенности формирования парамагнитной и антиферромагнитной фаз твердых растворов. Установлено, что при изменении x в $Fe_xMn_{1-x}S$ происходит замещение катионов Mn^{2+} на катионы Fe^{2+} в высокоспиновом состоянии. Уменьшение межионных расстояний в $Fe_xMn_{1-x}S$ вызывает изменение состояния ионов Fe^{2+} в образцах x = 0.25 и 0.29. В магнитоупорядоченной фазе при 4.2 К обнаружены изменения параметра асимметрии тензора градиента электрического поля (ГЭП) и угла между направлениями магнитного момента и главной оси градиента электрического поля от 21° в образце с x = 0.12 до 33° при x = 0.29.

Ключевые слова: моносульфиды 3*d*-элементов, сильно коррелированные вещества, мёссбауэровские исследования, состояния иона Fe²⁺.

DOI: 10.21883/FTT.2021.01.50400.176

1. Введение

Для кубического полупроводника α -MnS, относящегося к группе веществ с сильными электронными корреляциями, типа MnO [1], обнаружены переход изолятор-металл под воздействием гидростатического давления [3], сопровождающийся структурным переходом с изменением симметрии решетки в области 26–30 GPa, и спиновым кроссовером [4]. При этом изменение спинового состояния ионов марганца Mn²⁺ осуществлялось непрерывно в интервале давлений от 10 до 40 GPa [4]. В работах [1,2] предполагалось, что в веществах с сильными электронными корреляциями (типа MnO) механизм спинового кроссовера может быть связан с изменением типа проводимости соединений.

В работе [5] представлены вещества, синтезированные на основе моносульфида марганца α-MnS. Установлено, что с ростом степени катионного замещения в сульфидах $Fe_x Mn_{1-x}S$ (0.0 $\le x \le 0.29$) наблюдается уменьшение критического гидростатического давления перехода изолятор-металл таким образом, что вещества с составами ($0.25 \le x \le 0.29$) являются полуметаллами при атмосферном давлении. При увеличении x в Fe_xMn_{1-x}S температура Нееля (T_N) возрастает от 147–156 К для α-MnS [6,7] до 205 К для x = 0.29 [8]. Под воздействием гидростатического давления в 4 GPa обнаружено смещение температуры Нееля до 280 К и уменьшение намагниченности вещества [9]. Поскольку химическое давление, возникающее при изменении степени катионного замещения в кристаллах, является, отчасти, аналогом гидростатического давления, представляли интерес

исследования магнитного состояния 3d-ионов в твердых растворах на основе α -MnS и возможности возникновения спинового кроссовера при атмосферном давлении, индуцированного изменением (x).

В настоящей работе представлены результаты исследования твердых растворов системы $Fe_x Mn_{1-x}S$ (0.12 $\leq x \leq$ 0.29) методом мёссбауэровской спектроскопии ⁵⁷Fe в интервале температур 4.2–300 K, выполненные с целью изучения состояния ионов Fe²⁺ при изменении степени катионного замещения, температуры и магнитного порядка.

Объекты и методы исследования образцов

Твердые растворы $Fe_x Mn_{1-x}S$ (0.12 $\leq x \leq 0.29$) были получены методом, подробно описанном в [10]. Исходные вещества (x = 0.12; 0.18; 0.25; 0.29) представляли собой монокристаллы $Fe_x Mn_{1-x}S$ с fcc NaCl структурой и с составами x, соответствующими заданному значению с точностью ± 0.02 , что было подтверждено рентгеновской и микроэлектронной спектроскопией [5,8,10]. Образцы для мёссбауэровских исследований готовили путем измельчения монокристаллов в порошок (толщиной 5–10 mg/cm² по содержанию природного железа). Мёссбауэровские спектры образцов исследованы в интервале температур 4.2–300 K на спектрометре MS-1104Em с источником излучения ⁵⁷Co (Rh) и гелиевым криостатом в геометрии пропускания. Обработка спектров проводилась в два этапа. На первом этапе были рассчитаны распределения вероятностей квадрупольного расщепления P(QS) в экспериментальных спектрах. На основе полученных результатов были определены возможные неэквивалентные кристаллографические положения железа в образцах. На втором этапе строились предварительные спектры, которые затем подгонялись к экспериментальным путем варьирования всего набора сверхтонких параметров методом наименыших квадратов в линейном приближении [11]. Спектры при 4.2 К были обработаны в программе SpectrRelax [12] с использованием полного Гамильтониана, учитывающего магнитные дипольные и квадрупольные взаимодействия. Химические сдвиги приведены относительно α -Fe.

3. Экспериментальные результаты и обсуждение

Согласно результатам рентгеноструктурного анализа [5,10] при комнатной температуре катионное замещение в $Fe_x Mn_{1-x}S$ ($0.0 \le x \le 0.29$) со-

Рис. 1. Мёссбауэровские спектры $Fe_x Mn_{1-x}S$ (0.12 $\leq x \leq$ 0.29) при комнатной температуре. Представлены экспериментальные (светлые кружки) и теоретические (сплошные кривые) спектры. Выделены синглет (L1) и дублет (D1).

Рис. 2. Вероятности квадрупольного расщепления для основного синглета (High Spin) и дополнительного дублета (Low Spin) состояний железа Fe^{2+} в $Fe_x Mn_{1-x}S$ ($0.12 \le x \le 0.29$) при 300 К.

провождается уменьшением параметра элементарной ячейки от 5.224 Å (при x = 0) до 5.165 Å (при x = 0.29) без изменения кубической симметрии решетки (пр. гр. *Fm*-3*m*). Мёссбауэровские спектры $Fe_xMn_{1-x}S$ (0.12 $\leq x \leq$ 0.29) при 300 K показаны на рис. 1. Основной компонентой спектров при 300 К в образцах x = 0.12 и x = 0.18 является синглет, что подтверждается и распределением P(QS) на рис. 2. Параметры основной синглетной линии в спектрах этих образцов соответствуют двухвалентному иону железа Fe²⁺ в высокоспиновом состоянии (High Spin, HS) с электронной конфигурацией d^6 , $({}^4t_{2g}{}^2e_g)$, что свидетельствует об изовалентном замещении сферически симметричных ионов марганца Mn²⁺ (электронная конфигурация d^5 , ${}^3t_{2g}{}^2e_g$) в твердых растворах. С ростом степени катионного замещения для x > 0.18 происходит уширение синглета за счет появления небольшого квадрупольного расщепления, сравнимого с шириной линии мёссбауэровского поглощения, что согласуется с результатами [10]. Величина химического сдвига IS основной линии уменьшается с ростом x в Fe_xMn_{1-x}S, (рис. 3, кривая IS) и коррелирует с уменьшением пара-

Рис. 3. Концентрационные зависимости химического сдвига IS для основной компоненты спектра, постоянной решетки *a* и энергии активации проводимости E_a парамагнитного состояния для образцов Fe_xMn_{1-x}S (0.12 $\leq x \leq$ 0.29).

метра кубической ячейки (рис. 3, кривая а), косвенно указывая на увеличение химического давления внутри кристаллов. Подобное поведение IS наблюдалось, например, в (Mg, Fe)O [13] при воздействии гидростатического давления. Достаточно хорошая корреляция в поведении значений химического сдвига IS основной линии спектров и постоянной решетки от состава в Fe_xMn_{1-x}S $(0.12 \le x \le 0.29)$ (рис. 3) свидетельствует о том, что уменьшение IS с ростом x обусловлено увеличением электронной плотности на ядрах ⁵⁷Fe за счет уменьшения межионных расстояний. С учетом высокой кубической симметрии решетки (fcc, NaCl, sp. gr. Fm-3m) твердых растворов $\operatorname{Fe}_x \operatorname{Mn}_{1-x} S$ $(0.12 \le x \le 0.29)$ электронные уровни (e_g и t_{2g}), катионов Mn²⁺ должны оставаться вырожденными. Однако ион Fe²⁺ может искажать симметричное октаэдрическое окружение за счет эффекта Яна-Теллера, и в мёссбауэровском спектре должно появляться квадрупольное расщепление, например, подобно тому, как это наблюдается в изоструктурном FeO [14]. Экспериментальные данные для образцов Fe_xMn_{1-x}S показывают лишь уширение основной линии спектров за счет малого квадрупольного расщепления QS $(\sim 0.18 \text{ mm/s})$. Для объяснение этого факта можно предположить, что для изучаемых соединений характерна конкуренция спин-орбитального и ян-теллеровского вкладов. Поскольку высокоспиновый катион Fe²⁺ обладает ненулевым орбитальным моментом [15], то для него естественно ожидать спин-орбитальное взаимодействие, которое конкурирует с расщеплением t2g-уровней, вызванным эффектом Яна-Теллера [16]. Ян-Теллеровский вклад стремится снять вырождение t_{2g}-уровней, а спинорбитальный вклад, напротив, вернуть его. В результате этой конкуренции в экспериментальных спектрах парамагнитного состояния образцов Fe_xMn_{1-x}S наблюдается появление лишь незначительного квадрупольного

расщепления основной линии спектра, соответствующей $\mathrm{HS}\mathrm{-Fe}^{2+}.$

Из рис. З видно, что сжатие решетки для образцов $Fe_x Mn_{1-x}S$ с составами x > 0.18 сопровождается достаточно резким уменьшением энергии активации проводимости парамагнитного состояния этих веществ. Металлизация образцов с составами $x \sim 0.25$ подтверждена оптическими исследованиями [17]. Из рис. 1 и 2 следует, что на левой части мёссбауэровских спектров образцов с x > 0.18 появляется дополнительный дублет, интенсивность которого увеличивается при увеличении х. Химический сдвиг дополнительного дублета при $300 \, \text{K}$ составляет $0.23 \pm 0.01 \, \text{mm/s}$ для обоих образцов, а квадрупольное расщепление изменяется от 0.33 mm/s для x = 0.25 до 0.39 mm/s для x = 0.29. Подобные значения IS и QS характерны для низко- спинового состояния (Low Spin, LS) иона Fe^{2+} и наблюдаются в области спинового кроссовера, например, в системе (Mg, Fe)O [13], в FeS [18]. Поскольку катион LS-Fe²⁺ с электронной конфигурацией t_{2g}^6 обладает нулевым спином и, соответственно, не имеет спин-орбитального взаимодействия и эффекта Яна-Теллера, он становится сферически симметричным, подобно иону Mn²⁺. И, подобно иону марганца, может испытывать воздействие кубического поля и температуры [13]. Другим возможным объяснением природы появления дополнительного дублета в мёссбауэровских спектрах может быть образование ионов Fe³⁺ в сильных ковалентных связях Fe-S. Типичные значения параметров, характерные для Fe³⁺-ионов в изоструктурных веществах, составляют IS ~ 0.55 mm/s, $QS \sim 0.90 \text{ mm/s}$ [13,19], что отличается от параметров дублета, обнаруженного в $Fe_x Mn_{1-x}S$ (0.25 $\leq x \leq$ 0.29). В то же время экспериментальные значения квадрупольного расщепления (0.33 mm/s для x = 0.25 до 0.39 mm/s для x = 0.29) близки к наблюдаемым и расчетным Absorption, arb. units

• Exp.

a

-6

-8

S1

- Calc.

S2

D1

Рис. 4. Мёссбауэровские спектры $Fe_x Mn_{1-x}S$ ($0.12 \le x \le 0.29$) при 4.2 К. Представлены экспериментальные (открытые значки) и теоретические (сплошные кривые) спектры. Выделены состояния $HS-Fe^{2+}$ (S1, S2, S3) и дублет (D1).

0

v, mm/s

2

4

-2

x = 0.29

x = 0.25

APRO-A

x = 0.18

A CONTRACT

x = 0.12

8

6

данным для LS–Fe²⁺ (QS = 0.4 mm/s), полученным в работе [13], для изоструктурных соединений (Mg, Fe)O. Механизм появления слабого квадрупольного расщепления автор связывает с температурным эффектом и искажением октаэдра FeO₆. В случае LS–Fe²⁺ это искажение более значительно, чем в случае HS–Fe²⁺, однако градиент электрического поля незначителен, благодаря тому, что основной вклад в ГЭП связан не с решеточной составляющей, а с вкладом валентных электронов.

Мёссбауэровские исследования образцов $Fe_x Mn_{1-x}S$ (0.12 $\leq x \leq$ 0.29) в магнитоупорядоченном состоянии проведены при температурах 4.2, 110 и 140 К. Спектры, измеренные при 110 и 140 К, во многом подобны наблюдаемым для α -MnS [6]. Переход в магнитоупорядоченное состояние для $Fe_x Mn_{1-x}S$ сопровождается возрастанием величин химического сдвига и квадрупольного расщепления основной линии спектров, а также появлением отличных от нуля значений сверхтонкого магнитного поля *H*. При этом дополнительный дублет остается немагнитным.

На рис. 4 представлены мёссбауэровские спектры образцов $Fe_x Mn_{1-x}S$ (0.12 < x < 0.29), измеренные в магнитоупорядоченном состоянии при 4.2 К. Сравнимость магнитных и электрических взаимодействий ядра при 4.2 К приводят к тому, что становятся возможными два запрещенных ядерных перехода ⁵⁷Fe с $\Delta m = \pm 2$. Анализ полного гамильтониана в программе SpectrRelax позволил вычислить углы между сверхтонким полем Н и ГЭП. Сверхтонкие параметры образцов Fe_xMn_{1-x}S при 4.2 К приведены в таблице. Из таблицы видно, что в низкотемпературной антиферромагнитной фазе $Fe_x Mn_{1-x}S$ (0.12 $\leq x \leq 0.29$) наблюдается возрастание химического сдвига IS и величины квадрупольного смещения OS для высокоспиновых ионов Fe²⁺ относительно парамагнитной фазы. Согласно [6,7] экстраполированная к 0 К величина химического сдвига для *α*-MnS составляет 1.12 mm/s, тогда как для изоструктурного, более ковалентного MnSe IS = 1.06 mm/s. Низкотемпературные значения IS для $Fe_x Mn_{1-x}S$ ближе к ковалентному MnSe. В работе [7] сообщается о двух характерных состояниях Fe⁵⁷ $-\alpha$ -MnS (NaCl) при 5 K, для которых значения сверхтонкого магнитного поля Н составляют 51.9 и 49.5 kOe, соответствующие квадрупольные расщепления равны -1.2 и -1.38 mm/s. Экспериментальные значения квадрупольного смещения QS для Fe_xMn_{1-x}S

Рис. 5. Вероятности распределения сверхтонкого поля H в сульфидах Fe_xMn_{1-x}S (0.12 $\leq x \leq$ 0.29) при 4.2 K.

Параметр	IS, ± 0.005 mm/s	QS ± 0.01 mm/s	$H, \pm 5 \mathrm{kOe}$	$ heta$, $\pm 2^{\circ}$	η	G , ± 0.01 mm/s	A, ±3%
x = 0.12							
S1	1.032	2.83	56	22	0.66	0.44	33
S2	1.023	2.57	87	22		0.44	67
x = 0.18							
S1	1.045	2.70	59	22	0.62	0.40	26
S2	1.005	2.78	84	22		0.40	37
S3	0.985	2.67	94	22		0.40	37
x = 0.25							
S1	1.070	3.08	58	24	0.54	0.36	16
S2	1.010	2.73	81	24		0.36	41
S3	0.970	2.80	95	24		0.36	37
D1	0.244	0.17	-	-	-	0.25	6
x = 0.29							
S1	1.061	2.57	55	33	0.34	0.39	8
S2	1.041	2.89	75	33		0.39	44
S3	1.021	2.84	93	33		0.39	43
D1	0.340	0.35	_	_	_	0.25	6

Мёссбауэровские параметры Fe_xMn_{1-x}S (0.12 $\leq x \leq 0.29)$ при 4.2 K

Примечание. IS — химический изомерный сдвиг относительно α-Fe, QS — квадрупольное смещение, H — сверхтонкое поле на ядре железа, θ — полярный угол H относительно ГЭП, η — параметр асимметрии ГЭП, G — ширина мёссбауэровской линии на полувысоте, A — относительная доля в спектре.

(таблица) характерны для высокоспиновых ионов Fe²⁺ в искаженных октаэдрах [13].

На рис. 5 представлены распределения сверхтонких полей H для $Fe_x Mn_{1-x}S$ (0.12 $\leq x \leq 0.29$) при 4.2 К. Максимумы на кривых распределения P(H) свидетельствуют, что при увеличении x в Fe_xMn_{1-x}S для высокоспиновых ионов Fe²⁺ формируются три неэквивалентных магнитных состояния с разными характерными сверхтонкими полями Н. Схожая картина наблюдалась в обогащенном изотопом ⁵⁷Fe α -MnS [20]. Оценка вероятности случайного распределения катионов железа в структуре $Fe_x Mn_{1-x}S$ показала, что при x = 0.12 имеется заметная вероятность появления одного катиона Fe²⁺ среди его ближайших соседей. С ростом замещения до x = 0.29 возрастают вероятности большего числа соседних катионов Fe²⁺, что и проявляется в мёссбауэровских спектрах. По-видимому, концентрационная неоднородность распределения катионов Fe²⁺ в объеме твердого раствора Fe_xMn_{1-x}S приводит к появлению дополнительных неэквивалентных магнитных состояний железа Fe²⁺ в образцах, что согласуется с данными нейтронографии [7].

Известно [21], что α -MnS при 20 К имеет антиферромагнитную структуру с магнитными моментами ионов Mn²⁺, ориентированными вдоль направления [110] кубической решетки, направление ГЭП соответствует [6,7,22] одной из диагоналей куба [111] и связано со слабым ромбоэдрическим искажением кубической решетки моносульфида. Согласно экспериментальным данным (таблица), в твердых растворах $Fe_x Mn_{1-x}S$ с ростом замещения *x* полярный угол θ между направлением вектора сверхтонкого поля и осью ГЭП возрастает от 21° для x = 0.12 до 33° для x = 0.29. Одновременно наблюдается изменение параметра асимметрии тензора ГЭП (η), что указывает на изменение симметрии решетки Fe_xMn_{1-x}S при изменении степени замещения.

Как видно из таблицы, дополнительный дублет присутствует в спектрах магнитоупорядоченной фазы $Fe_x Mn_{1-x}S$ с x = 0.25 и 0.29 и является немагнитным вплоть до 4.2 К. С понижением температуры наблюдается тенденция к уменьшению величины квадрупольного расщепления дублета, однако это изменение находится в пределах ошибки измерения. Тем не менее, можно отметить, что величина удельного электросопротивления образцов с x = 0.25 и 0.29 в области 4.2-77 К на несколько порядков ниже, чем у составов с x = 0.12и 0.18 [5]. Поэтому появление немагнитных состояний ионов железа с низкими значениями IS и OS (дополнительный дублет) в твердых растворах с x = 0.25и 0.29 можно связать с изменением типа проводимости веществ под воздействием химического давления. Образование таких состояний объясняет и уменьшение намагниченности, обнаруженное методом нейтронографии под воздействием гидростатического давления в 4.2 GPa в образцах $Fe_x Mn_{1-x}S$ с x = 0.27 [9].

Явление спинового кроссовера становится возможным при условии 10Dq > 2.5B + 4C, где *B* и *C* параметры Рака для иона Fe²⁺ в кубической структуре равные 1040 ст⁻¹ и 3809 ст⁻¹, соответственно [23]. Тогда необходимое расщепление составит $17836 \, \text{cm}^{-1}$ (2.07 eV). Для моносульфида марганца с ГЦК структурой величина 10Dq (определяющая разность энергий eg и t2g состояний 3*d*-иона) при 300 К составляет 0.9 eV [24] и возрастает до 1.26 eV при 4.2 К [25], при этом изменение объема элементарной кубической ячейки составляет $\sim 2\%$. Для Fe_xMn_{1-x}S (0.12 $\leq x \leq 0.29$) при комнатной температуре с ростом х объем элементарной кубической ячейки твердого раствора уменьшается почти на 4% относительно x = 0 (α -MnS). Поэтому можно ожидать существенной локальной величины 10Dq. Например, для октаэдрических позиций Fe²⁺ в FeS [18] эта величина достигает 2 eV под давлением 5-7 GPa.

Учитывая вышеизложенное, не исключено, что обнаруженные особенности мёссбауэровских спектров образцов $Fe_xMn_{1-x}S$ с x = 0.25 и 0.29 могут быть обусловлены сосуществованием HS и LS состояний 3*d*-ионов, возникающих благодаря росту кубического поля в локально-искаженных областях кристаллов. Появление ионов Fe^{2+} с низкими значениями IS и QS может быть вызвано формированием ближнего порядка, предшествующего структурным превращениям при сжатии решетки. Однако, для подтверждения этой гипотезы необходимы дополнительные мёссбауэровские исследования $Fe_xMn_{1-x}S$ при воздействии гидростатического давления.

4. Заключение

Исследованы мёссбауэровские спектры образцов $Fe_x Mn_{1-x}S$ (0.12 $\leq x \leq 0.29$) в интервале температур 4.2-300 К. Установлено, что ионы Fe²⁺ имеют высокоспиновое состояние в локально искаженных октаэдрических позициях твердого раствора. С ростом степени замещения в парамагнитном состоянии наблюдается уменьшение величины химического сдвига и появление слабого квадрупольного расщепления основной линии спектра. В образцах с $0.25 \le x \le 0.29$ химическое давление приводит к появлению состояний Fe²⁺, соответствующих дополнительному дублету со значением IS, характерным для LS-Fe²⁺. В магнитоупорядоченной фазе сульфидов $\text{Fe}_x \text{Mn}_{1-x} \text{S} \ (0.12 \le x \le 0.29)$ с ростом xвозрастает структурный беспорядок, что приводит к формированию неэквивалентных состояний с разными значениями квадрупольного смещения ($\sim 2.5 - 3.0 \text{ mm/s}$) и сверхтонкого магнитного поля (~ 56-95 kOe). Увеличение химического давления вызывает поворот магнитного момента, о чем свидетельствует изменение полярного угла θ между направлением вектора сверхтонкого

поля и осью ГЭП от 21° для x = 0.12 до 33° для x = 0.29, одновременно изменяется параметр асимметрии, указывая на изменение симметрии решетки антиферромагнитного состояния веществ. Дополнительный дублет в полуметаллических образцах с $0.25 \le x \le 0.29$ является немагнитным во всей изученной области температур. Полученные результаты позволяют предполагать о перспективности мёссбауэровских исследований сульфидов $Fe_x Mn_{1-x}S$ ($0.12 \le x \le 0.29$) под воздействием гидростатического давления с целью выяснения природы состояний Fe^{2+} .

Финансирование работы

Работа выполнена при частичной финансовой поддержке Министерства науки и высшего образования РФ (государственное задание в сфере научной деятельности, Южный федеральный университет, 2020).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов

Список литературы

- [1] J. Kunes, A.V. Lukoyanov, V.I. Anisimov, R.T. Scalettar, W.E. Pickett. Nature Mater. 7, 198 (2008).
- [2] С.Г. Овчинников. Письма в ЖЭТФ 94, 3, 210 (2011).
- [3] Y. Mita, M. Kobayashi, S. Endo, S. Mochizuki. J. Magn. Magn. Mater. 272–276, 428 (2004).
- [4] Y. Wang, L. Bai, T. Wen, L. Yang, H. Gou, Y. Xiao, P. Chow, M. Pravica, W. Yang, Y. Zhao. Angew. Chem. Int. Ed. 55, 35, 10350 (2016).
- [5] G.M. Abramova, A. Hanzawa, T. Kagayama, Y. Mita, E.M. Eremin, G.M. Zeer, S.M. Zharkov, S.G. Ovchinnikov. J. Magn. Magn. Mater. 465, 775 (2018).
- [6] R.J. Pollard, V.H. McCann, J.B. Ward. J. Phys. C 16, 2, 345 (1983).
- [7] R.J. Pollard. Mossbauer spectroscopy of some magnetic materials. University of Canterbury (1982).
- [8] G. Abramova, J. Schefer, N. Aliouane, M. Boehm, G. Petrakovskiy, A. Vorotynov, M. Gorev, A. Bovina, V. Sokolov. J. Alloys Compd. 632, 562 (2015).
- [9] G. Abramova, M. Boehm, J. Schefer, A. Piovano, G. Zeer, S. Zharkov, Y. Mita, V. Sokolov. JETP Lett. 106, 8, 498 (2017).
- [10] G. Abramova, N. Volkov, G. Petrakovskiy, V. Sokolov, M. Boehm, O. Bayukov, A. Vorotynov, A. Bovina, A. Pischjugin. J. Magn. Magn. Mater. **320**, *23*, 3261 (2008).
- [11] Yu.V. Knyazev, A.S. Tarasov, M.S. Platunov, A.L. Trigub, O.A. Bayukov, A.I. Boronin, L.A. Solovyov, E.V. Rabchevskii, N.N. Shishkina, A.G. Anshits. J. Alloys Compd. 820, 153073 (2020).
- [12] M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 1, 178 (2012).
- [13] I. Kantor, L. Dubrovinsky, C. McCammon, G. Steinle-Neumann, A. Kantor, N. Skorodumova, S. Pascarelli, G. Aquilanti. Phys. Rev. B 80, 014204 (2009).

- [14] C.A. McCammon, D.C. Price. Phys. Chem. Minerals C 250, 254 (1985).
- [15] R.J. Radwanski, Z. Ropka. arXiv:cond-mat/0010032v1 [condmat.str-el] 2 Oct (2000).
- [16] F.J. Berry. Chemical bonding and spectroscopy in mineral chemistry. CHAPMAN AND HALL, London, N.Y. (1985).
- [17] G.M. Abramova, N.V. Volkov, G.A. Petrakovskioe, Y. Mita, O.A. Bayukov, D.A. Velikanov, A.M. Vorotynov, V.V. Sokolov, A.F. Bovina. JETP Lett. 86, 6, 371 (2007).
- [18] Z. Ropka, R.J. Radwanski. Phys. Status Solidi A 196, 275 (2003). (DOI: 10.1002/pssa.200306405)
- [19] Laurent Aldon, Jean-Claude Jumas. Solid State Sci. 14, 3, 354 (2012).
- [20] A. Tomas, L. Brossard, J.L. Dormann, M. Guittard. J. Magn. Magn. Mater. **31**, 755 (1983).
- [21] S. Steger, V.Yu. Pomjakushin, V.P. Repor. Magnetic Properties of MnS Antiferromagnetic Long Range Order and Hysteresis, August 24 (2008).
- [22] H. van der Heide, C.F. van Bruggen, G.A. Wiegers, C. Haas. J. Phys. C 16, 855 (1983).
- [23] S. Ivascu, A.S. Gruia, N.M. Avram. Physica B 450, 146 (2014). doi: 10.1016/j.physb.2014.05.065
- [24] M. Kobayashi, T. Nakai, S. Mochizuki, N. Takayama. J. Phys. Chem. Solids 56, 3–4, 341 (1995).
- [25] H. Komura. J. Phys. Soc. Jpn. 26, 1446 (1969).

Редактор К.В. Емцев