01,07

Температурная зависимость автоволновых характеристик локализованной пластичности

© Л.Б. Зуев, С.А. Баранникова, С.В. Колосов, А.М. Никонова

Институт физики прочности и материаловедения СО РАН, Томск, Россия

E-mail: lbz@ispms.tsc.ru

Поступила в Редакцию 12 августа 2020 г. В окончательной редакции 12 августа 2020 г. Принята к публикации 3 сентября 2020 г.

Рассмотрено поведение автоволн локализованного пластического течения в сплаве Fe–Ni–Cr при температурах $143 \le T \le 420$ К. Изучен температурный ход скорости распространения автоволны. Установлено, что для области низких температур выполняются обратная пропорциональность скорости автоволны коэффициенту деформационного упрочнения и квадратичный закон дисперсии. Установлена температурная независимость упругопластического инварианта деформации.

Ключевые слова: деформация, пластичность, автоволны, длина автоволны, скорость автоволны, локализация, низкие температуры, дислокации.

DOI: 10.21883/FTT.2021.01.50397.169

1. Введение

Экспериментальные исследования кинетики развития пластической деформации твердых тел [1–3] показали, что в ходе деформационного процесса формируются различные моды автоволн локализованного пластического течения, закономерно меняющиеся при изменении закона деформационного упрочнения. Автоволны характеризуются длиной λ , периодом T и скоростью распространения $V_{aw} = \lambda/T$. Их скорость обратно пропорциональна коэффициенту деформационного упрочнения $V_{aw} \sim \theta^{-1}$, а закон дисперсии имеет квадратичный характер $\omega \sim 1 + k^2$, где $\omega = 2\pi/T$ — частота, а $k = 2\pi/\lambda$ — волновое число.

Характеристики автоволны λ и V_{aw} связаны с межплоскостным расстоянием χ и скоростью поперечных упругих волн V_t безразмерным отношением

$$\frac{\lambda V_{aw}}{\chi V_t} = \hat{Z} \approx \frac{1}{2},\tag{1}$$

справедливым для стадий линейного деформационного упрочнения и названным упругопластическим инвариантом деформации. Природа этого соотношения определяется взаимной обусловленностью процессов, одновременно протекающих в фононной и деформационной подсистемах пластически деформируемой среды [1,2]. Выполнимость инварианта (1) была установлена на основании опытов по деформации металлов, щелочно-галоидных кристаллов и горных пород, а также в экспериментах по ползучести и по измерениям пробегов индивидуальных дислокаций в монокристаллах [1]. Инвариант указывает на связь двух разномасштабных пространственно-временны́х процессов, реализующихся одновременно в деформируемой среде: перераспределения упругих деформаций (масштаб χ , скорость V_t) и перераспределения локализованной пластической деформации (масштаб λ , скорость V_{aw}). Он играет важную роль в механике пластической деформации, а следствия из него [1,2] описывают наиболее важные закономерности пластической деформации.

В исследованиях [1–3] выполнение зависимостей $V_{aw} \sim \theta^{-1}$ для скорости и $\omega \sim 1 + k^2$ для дисперсии, а также инварианта (1) было проверено для деформации при 300 К. Задачей настоящей работы был анализ температурных зависимостей характеристик автоволновых деформационных процессов.

Исследованный материал и экспериментальная методика

Эксперименты были выполнены на поликристаллическом ГЦК-сплаве Fe-18 wt.% Cr-10 wt.% Ni с размером зерна ~ 12.5 μ m. Образцы с размерами рабочей части 40 × 5 × 2 mm растягивались на испытательной машине "Instron-1185" со скоростью 3.3 · 10⁻⁴ s⁻¹ при температурах 420, 296, 266, 243, 213, 143 K, то есть, при $T \leq \theta_D$, где $\theta_D \approx 420$ K — температура Дебая для железа [4]. Температура испытания задавалась скоростью продувки рабочей камеры, где находился образец при испытании, парами азота из сосуда Дьюара и контролировалась хромель-алюмелевой термопарой, спай которой контактировал с образцом. Скорость продувки парами азота регулировалась нагревательным элементом, смонтировананым внутри сосуда Дьюара.

Автоволновая мода, возникающая на стадии линейного деформационного упрочнения (фазовая автоволна)

Рис. 1. Участки линейного деформационного упрочнения в координатах e-s: 1 - 420, 2 - 296, 3 - 266, 4 - 243, 5 - 213, 6 - 143 K (*a*). Пример X-t кинетической диаграммы деформации: T = 266 L: X — координата деформационной полосы, t — время (*b*).

наиболее устойчива [1], и при анализе результатов внимание было обращено на автоволновые характеристики деформационного процесса на этой стадии. Для выделения линейных стадий записанные первоначально в координатах "напряжение σ -деформация ε " индикаторные кривые преобразовывались в зависимости истинных напряжений s от истинных деформаций e [5]. Далее на кривых s(e) выделялись участки, для которых $s \sim e$, а коэффициент деформационного упрочнения, нормированный на упругий модуль E, $\theta = E^{-1}ds/de = \text{const}$, как показано на рис. 1, a.

Для визуализации автоволновых картин непосредственно в ходе механических испытаний при пониженных температурах методом двухэкспозиционной спеклфотографии [6] восстанавливались поля векторов смещений на поверхности образцов $\mathbf{r}(x, y)$. Дифференцированием этих полей по координатам x и y вычислялись компоненты тензора пластической дисторсии для всех точек наблюдаемой плоской поверхности и строились их распределения по образцу для разных моментов времени. Характеристики автоволн локализованной пластичности λ и V_{aw} , постоянные при линейном деформационном упрочнении, оценивались по X-t диаграммам, построенным на основе анализа распределений продольной компоненты тензора дисторсии ε_{xx} , как показано на рис. 1, *b*.

3. Результаты экспериментов и их интерпретация

Как следует из табл. 1, механические свойства сплава (временное сопротивление σ_B , условный предел текучести σ_{02} , относительное удлинение до разрыва δ и коэффициент деформационного упрочнения θ) существенно зависят от температуры. Важным аспектом настоящего исследования является анализ возможной

Таблица 1. Механические характеристики исследованного сплава

<i>Т</i> , К	σ_B , MPa	σ_{02} , MPa	δ	$\theta \cdot 10^3$	$\lambda \cdot 10^3$, m	$V_{aw} \cdot 10^5$, m/s
420	454	194	0.4	8	4.5	7.6
296	790	269	0.7	9	5.3	4.7
266	860	292	0.55	10.9	4.9	4.1
243	955	287	0.44	21.5	3.5	3.7
213	988	293	0.43	26.2	4.2	3.1
143	1129	291	0.37	38.8	4.6	2.5

температурной зависимости инварианта (1) и входящих в него величин. Так как величины χ и V_t с температурой меняются слабо [7], а λ , как сказано выше, постоянна в исследованном температурном интервале, то специальный интерес представляет температурная зависимость скорости распространения автоволн локализованной пластичности V_{aw} , входящей в уравнение инварианта (1).

3.1. Скорость распространения автоволн

Экспериментально полученная температурная зависимость скорости распространения автоволн $V_{aw}(T)$ показана на рис. 2, *a*, *b*. Длина автоволны в этом интервале в пределах точности эксперимента не зависит от температуры и составляет $\lambda = 4.5 \pm 0.25$ mm. Это позволяет считать зависимости $V_{aw}(T)$ и $\lambda V_{aw}(T)$ эквивалентными.

По данным о величинах скоростей фронтов локализованной пластичности на стадиях линейного деформационного упрочнения и соответствующих коэффициентов деформационного упрочнения (табл. 1) был установлен

Рис. 2. Температурная зависимость скорости распространения автоволн локализованной пластичности в координатах $T - V_{aw}$ (*a*) и $T^{-1} - \ln V_{aw}$ (*b*).

Рис. 3. Скорость распространения автоволн локализованной пластичности в исследованном сплаве при разных температурах (*a*) и для всех исследованных металлов (*b*) как функция коэффициента деформационного упрочнения.

вид функции $V_{aw}(\theta)$ при пониженных температурах. Рис. 3, *а* показывает, что

$$V_{aw}(\theta) = V_0 + \frac{\Xi}{\theta} \sim \theta^{-1}.$$
 (2)

Как сказано выше, аналогичное соотношение было установлено по результатам исследований автоволновой пластичности материалов при 300 К [1,2]. Значения констант $V_0 = 1.8 \cdot 10^{-5}$ m/s и $\Xi = 9.8 \cdot 10^{-7}$ m/s в уравнении (2) близки к найденным ранее общим для исследованных ранее материалов значениям, полученным при $T \approx 300$ К. Измеренные для низких температур скорости распространения автоволн локализованной пластичности хорошо укладываются на обобщающий график зависимости $V_{aw}(\theta)$, как это показано на рис. 3, *b*.

3.2. Дисперсионное соотношение для автоволн

По полученным распределениям компонент тензора пластической дисторсии были определены частота ω и волновое число k для автоволн локализованной пластичности при разных температурах. Как оказалось, связывающее их дисперсионное уравнение $\omega(k)$ имеет квадратичную форму

$$\omega(k) = \omega_0 + \alpha (k - k_0)^2 \sim k^2, \qquad (3)$$

найденную ранее [2] и характерную для ряда нелинейных волн [8].

В уравнении (3) ω_0 , k_0 и α -эмпирические константы, значения которых даны в табл. 2. Их сравнение с ранее полученными данными, представленными на рис. 4, a и в табл. 2, демонстрирует хорошее согласие с результа-

Рис. 4. Дисперсионное соотношение для скорости автоволн локализованной пластичности *I* — поликристаллы Al, *2* — поликристаллы Fe (настоящее исследование), *3* — монокристаллы Fe) (*a*); то же в обобщенном виде (*b*).

тами для монокристаллов сплава Fe–Ni–Cr и поликристаллов Al. Из рис. 4, *b* следует, что низкотемпературные значения частоты ω и волнового числа *k* автоволн укладываются на описанную ранее в [2] обобщенную кривую $\tilde{\omega}(\tilde{k})$, где $\tilde{\omega}$ и \tilde{k} — обезразмеренные частота и волновое число соответственно.

3.3. Термоактивационный анализ автоволновых характеристик

Из рис. 2, *b* следует, что зависимость $V_{aw}(T)$ для $1 \le \theta_D/T \le 3$ спрямляется в координатах $\ln V_{aw} - T^{-1}$, т. е., может быть аппроксимирована соотношением

$$(\lambda V_{aw}) \sim V_{aw} = V^* \exp\left(-\frac{H}{k_{\rm B}T}\right),$$
 (4)

характерным для термически активированных процессов [9], где $H \approx U - \gamma \sigma$ — энтальпия активации, $k_{\rm B}$ постоянная Больцмана, U — потенциальный барьер, γ — активационный объем, а V^* — константа. По данным рис. 5, где выбранные для расчета напряжения отвечают условию e = const, получаем $U \approx 0.06 \text{ eV}$, а $\gamma \approx 8.5 b^3$, где $b \approx 0.2 \text{ nm}$ — вектор Бюргерса дислокаций в ГЦК-Fe.

Такие низкие значения активационных параметров означают, что автоволны локализованной пластичности

Рис. 5. К определению термоактивационных параметров развития автоволн локализованной пластичности по температурной зависимости скорости автоволн.

могут спонтанно порождаться в кристаллах при всех режимах деформирования, что и наблюдается в действительности [1]. На это же указывает и низкое значение константы ω_0 в уравнении дисперсии (3). Эта величина определяет ширину энергетической щели в спектре колебаний деформируемого тела и отвечает почти нулевой энергии $\hbar\omega_0$. Это значит, что пластическая деформация всегда развивается локализовано в форме автоволновых процессов. В то же время тип реализующейся

Материал	α	k ₀	ω_0
(методика вариации автоволновых параметров)	$m^2/s\cdot 10^2$	$(1/m) \cdot 10^{-3}$	$Hz \cdot 10^2$
Al — поликристаллы (размер зерна) [1]	0.79	1.08	5.5
Сплав на основе Fe — монокристаллы (ориентация) [1]	0.54	1.01	3.6
Сплав на основе Fe — поликристаллы (температура)	0.66	1.64	5.2

Таблица 2. Коэффициенты в уравнении дисперсии автоволн локализованной пластичности

автоволновой моды определяется действующим законом деформационного упрочнения.

3.4. О температурной независимости инварианта (1)

Обратим внимание на то обстоятельство, что величина χV_t , входящая в уравнение (1), имеет размерность кинематической вязкости среды m²/s. В этом случае нетрудно найти аналогию между инвариантом (1) и числом Рейнольдса, характеризующим режимы ламинарного и турбулентного движения жидкости [10] и записанным в виде

$$\operatorname{Re} = \frac{lV}{\nu} = \frac{\rho lV}{\mu},\tag{5}$$

где l — характерный пространственный масштаб потока, V — его скорость, ρ —плотность, ν — кинематическая, а μ — динамическая вязкость среды. Если для случая пластического течения принять, что $l \equiv \lambda$, $V \equiv V_{aw}$ и $\nu \equiv \chi V_t$, то уравнение (5) совпадает с инвариантом (1).

Нужно сказать, что идея о развитии ламинарного и турбулентного режимов при пластическом течении твердых тел по аналогии с течением жидкости была высказана Коттреллом [11]. Будем считать, что в основе автоволновых механизмов пластического течения, как и в основе механизмов пластичности вообще [12], лежит движение дислокаций. Проблема их подвижности детально разработана в [13,14], где показано, что скорость движения дефектов в поле напряжений контролируется вязкостью фононного газа (в металлах также и электронного [15]) и определяется соотношением

$$V_{disl} = \frac{b\sigma}{B},\tag{6}$$

где *В* —- константа торможения дислокаций, определяемая характеристиками фононного газа. При "деформационной" интерпретации соотношения (5) имеет

Рис. 6. Сопоставление зависимостей $\lambda V_{aw}(T)$ (1, слева) и $\frac{B}{B_{T=\Theta_D}}(T)$ (2, справа).

смысл связать вязкость μ с константой дислокационного торможения *B* и полагать, что $\chi V_t \sim \mu \sim B$.

Из этого утверждения следует возможность анализа температурной зависимости критерия Рейнольдса и, соответственно, инварианта (1) на основе зависимости B(T). Последняя приведена и проанализирована в работе [13]. Сопоставим показанные на рис. 6 экспериментально полученную зависимость $\lambda V_{aw}(T)$ (график 1) и зависимость $\frac{B_T}{B_{T=\theta_D}}(T)$ (график 2), построенную по данным работы [13]. В последнем соотношении B_T — константа торможения дислокаций при температуре T, а $B_{T=\theta_D}$ — то же при $T = \theta_D$. Как показывает сравнение, при падении температуры испытания от $T/\theta_D = 1$ до $T/\theta_D = 0.3$ значения зависимостей $\lambda V_{aw}(T)$ и $\frac{B}{B_{T=\theta_D}}(T)$ уменьшаются почти в одинаковой степени, и выполняется отношение $\lambda V_{aw}/\chi V_t \approx$ const. Это можно рассматривать как указание на температурную независимость упругопластического инварианта (1).

3.5. Дислокационное описание результатов

При анализе связи полученных результатов с дислокационными моделями пластичности использованы данные работы [16], в которой рентгеновским методом [17] оценены плотности дислокаций ρ при растяжении при температурах $143 \le T \le 340$ К в сплаве, аналогичном по своему составу исследованному нами. Установлено, что для напряжения течения выполняется соотношение $\sigma = \sigma_0 + \alpha_0 Gb \rho^{1/2}$ [12], где σ_0 и α_0 — постоянные, G модуль сдвига.

На рис. 7 (прямая 1) показана зависимость напряжения течения от плотности дислокаций при растяжении, взятая из [16]. Для каждой температуры были определены значения $\rho^{1/2}$, соответствующие средним напряжениям течения для стадий линейного деформационного упрочнения. Поскольку стадии линейного деформационного упрочнения соответствует бегущая с постоянной скоростью V_{aw} автоволна локализованного пластического течения, то можно найти корреляцию между скоростями автоволн, полученными в настоящей работе, и плотностью дислокаций, изученной в [16], в аналогичном интервале температур $143 \le T \le 340$ K, как показано на рис. 7 (прямая 2).

Используя дополнительно данные работы [18], согласно которым средние длины дислокационных пробегов при деформации кристаллов железа составляют $10^{-5} \le l \le 10^{-4}$ m, а скорости движения дислокаций лежат в интервале $10^{-3} \le V_{disl} \le 10^{-2}$ m/s, получаем $\langle lV \rangle_{disl} = \text{const} \approx 10^{-7} \text{ m}^2/\text{s}$. Постоянство этого произведения объясняется тем, что дислокации начинают двигаться, если приложенные напряжения достигают уровня внутренних напряжений, создаваемых в кристалле дислокационной сеткой $\sigma \ge \alpha_0 Gb\rho^{1/2}$.

Рис. 7. Зависимость напряжения течения (1, слева) при T = 298 K [16] и зависимость скорости автоволн локализованной пластичности (2, справа) от плотности дислокаций по данным работы [16] в интервале температур $143 \le T \le 300 \text{ K}$.

Рис. 8. Зависимость скорости автоволн локализованной от скорости движения дислокаций для стадий линейного деформационного упрочнения в интервале температур $143 \le T \le 300$ K.

В работах [1,2] было показано, что $\langle \lambda V_{aw} \rangle \approx \langle lV \rangle_{disl} \approx 10^{-7} \, \mathrm{m}^2/\mathrm{s}$. Тогда скорость движений дислокаций

$$V_{disl} \approx \lambda V_{aw} \, l^{-1} \approx \lambda V_{aw} \, \rho^{1/2} \sim V_{aw}. \tag{7}$$

Очевидно, из этих данных следует корреляция скорости автоволн локализованной пластичности (макроскопическая величина) и скорости движения дислокаций (микроскопическая величина) для стадий линейного деформационного упрочнения сплава в интервале температур $143 \le T \le 300 \text{ K}$ (рис. 8).

4. Выводы

1. Установлены закономерности поведения автоволновых характеристик локализованного пластического течения от температуры испытания в интервале $143 \le T \le 420$ К. Показано, длина автоволны локализованной пластической деформации не зависит от температуры испытания, в то время, как скорость автоволны растет с температурой по закону Аррениуса.

2. Для области пониженных температур испытания подтверждены выполнение обратной пропорциональности скорости автоволн коэффициенту деформационного упрочнения, а также квадратичного закона дисперсии автоволн, установленных ранее для комнатной температуры.

3. Предложена интерпретация упругопластического инварианта деформации как аналога числа Рейнольдса, которая может быть перспективна и полезна для объяснения физической природы закономерностей локализованного пластического течения в материалах.

4. Предложена интерпретация температурных зависимостей параметров автоволновой пластичности на основе данных об изменениях плотности дислокаций в процессе деформирования.

Благодарности

Авторы признательны В.И. Данилову за полезные советы по методике низкотемпературных механических испытаний.

Финансирование работы

Работа выполнена в рамках государственного задания ИФПМ СО РАН, проект III.23.1.2 и частично поддержана грантом РФФИ № 20-08-00305/20.

Конфликт интересов

Авторы заявляют об отсутствии у них конфликта интересов.

Список литературы

- [1] L.B. Zuev, S.A. Barannikova. Crystals 9, 458 (2019).
- [2] Л.Б. Зуев. Автоволновая пластичность. Локализация и коллективные моды. Физматлит, М. (2019). 207 с.
- [3] Л.Б. Зуев, С.А. Баранникова. ЖТФ 90, 773 (2020).
- [4] R.E. Newnham. Properties of Materials. University Press, Oxford (2005). 378 p.
- [5] R.J. Asaro, V.A. Lubarda. Mechanics of Solids and Materials. University Press, Cambridge (2006). 880 p.
- [6] Р. Джоунс, К. Уайкс. Голографическая и спеклинтерферометрия. Мир, М. (1986). 327 с
- [7] H.B. Huntington. The Elastic Constants of Crystals. Academic Press, N.Y. (1958). 139 p.
- [8] Э. Скотт. Нелинейная наука. Рождение и развитие когерентных структур. Физматлит, М. (2007). 559 с.
- [9] D. Caillard, J.L. Martin. Thermally Activated Mechanisms in Crystal Plasticity. Elsevier, Oxford (2003). 433 p.
- [10] Л.Д. Ландау, Е.М. Лифшиц. Гидродинамика. Физматлит, М. (2001). 732 с.

- [11] А.Х. Коттрелл. Дислокации и пластическое течение в кристаллах. Металлургия, М. (1958). 267 с.
- [12] A. Argon. Strengthening Mechanisms in Crystal Plasticity. University Press, Oxford (2008). 404 p.
- [13] V.I. Al'shits, V.L. Indenbom. Dislocations in Crystals / Ed. F.R.N. Nabarro. North-Holland, Amsterdam (1986). 7, 43.
- [14] D. Blaschke, E. Motolla, D.L. Preston. Phil. Mag. 100, 571 (2020).
- [15] J.M. Ziman. Electrons and Phonons. University Press, Oxford (2001). 576 p.
- [16] J. Talonen, P. Nenonen, G. Pape, H. Hänninen. Met. Mater. Trans. A 36, 421 (2005).
- [17] M. Wilkens. Phys. Status Solidi A 2, 359 (1970).
- [18] D. Caillard. Acta Mater. 58, 3493 (2010).

Редактор К.В. Емцев