УДК 621.315.592

Структура ближнего порядка и антиструктурные дефекты олова в пленках аморфного и кристаллического Ge₂Sb₂Te₅

© А.В. Марченко¹, Е.И. Теруков^{2,3}, Ф.С. Насрединов⁴, Ю.А. Петрушин¹, П.П. Серегин^{1,¶}

¹ Российский государственный педагогический университет им. А.И. Герцена,

191186 Санкт-Петербург, Россия

² Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

³ Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина),

197376 Санкт-Петербург, Россия

⁴ Санкт-Петербургский политехнический университет Петра Великого,

195251 Санкт-Петербург, Россия

[¶] E-mail: ppseregin@mail.ru

Поступила в Редакцию 21 сентября 2020 г. В окончательной редакции 23 сентября 2020 г. Принята к публикации 23 сентября 2020 г.

Методом абсорбционной мессбауэровской спектроскопии на примесных центрах ¹¹⁹Sn показано, что атомы германия в структуре аморфных и поликристаллических пленок Ge₂Sb₂Te₅ имеют различную симметрию локального окружения (тетраэдрическую в аморфной фазе и октаэдрическую в кристаллической фазе). Методом эмиссионной мессбауэровской спектроскопии на примесных центрах ^{119m}Sn, образующихся после радиоактивного распада материнских атомов ¹¹⁹Sb и ^{119m}Te, идентифицированы антиструктурные дефекты олова в узлах сурьмы и теллура кристаллических пленок Ge₂Sb₂Te₅.

Ключевые слова: антиструктурные дефекты, мессбауэровская спектроскопия, Ge₂Sb₂Te₅.

DOI: 10.21883/FTP.2021.01.50376.9524

1. Введение

Устройства фазовой памяти (ФП) на основе халькогенидных полупроводников в настоящее время используют главным образом обратимые переходы из аморфного в кристаллическое состояние тонких пленок состава Ge-Sb-Te, а среди них наибольший интерес вызывает состав Ge₂Sb₂Te₅. Соединение Ge₂Sb₂Te₅ не удается получить в виде объемного стекла, но методом магнетронного распыления мишени возможно получение его аморфных пленок. Совершенствование устройств ФП и технологии их получения должно опираться на исследования процесса кристаллизации аморфных пленок Ge₂Sb₂Te₅. В этих исследованиях принципиальным является получение информации о локальной структуре аморфной пленки и сравнение ее со структурой кристалла. Невозможно описать механизм ФП без знания структурных трансформаций при обратимых фазовых переходах между аморфным и кристаллическим состояниями. Например, на ранних этапах исследования пленок Ge₂Sb₂Te₅ по результатам, полученным методом XANES (околопороговая тонкая структура рентгеновского спектра поглощения) [1], была предложена модель быстрого обратимого перехода из кристаллического состояния в аморфное для указанных пленок (модель "вывернутого зонтика").

Переход из аморфного состояния в кубическую кристаллическую фазу и обратно используется в устройствах $\Phi\Pi$ на $Ge_2Sb_2Te_5$ чаще всего. Однако рабо-

чие температуры таких устройств ограничены 120° С из-за низкой термической устойчивости аморфной фазы. В недавней работе [2] было предложено заменить переход аморфная—кубическая фаза на переход из метастабильной кубической в стабильную гексагональную фазу в тех же пленках. Такая замена дает комбинацию высокого оптического контраста, термостабильности, малого изменения плотности и увеличивает максимальную рабочую температуру оптики до 240°С. Авторы [2] связывают высокий оптический контраст с увеличением разницы в структурном беспорядке при переходе от кубической фазы к гексагональной. В связи с этим возникает необходимость исследования структуры и степени разупорядочения обеих кристаллических фаз Ge₂Sb₂Te₅.

Эффективным методом исследования структурных перестроений в твердых телах является мессбауэровская спектроскопия [3]. Ключевым требованием к мессбауэровским зондам, используемым для таких целей, является возможность их локализации в определенном узле кристаллической решетки или структурной сетки аморфного материала. При использовании абсорбционной спектроскопии для исследования локальной структуры кристаллических и аморфных пленок Ge₂Sb₂Te₅ это требование выполняется на изотопах ¹²⁵Te, ¹²¹Sb и ¹¹⁹Sn. Зондами для узлов теллура и сурьмы могут служить ¹²⁵Te и ¹²¹Sb, а атомы олова ¹¹⁹Sn, как было ранее показано [4–6], изовалентно замещают атомы германия в структуре как стеклообразных, так и кристаллических теллуридов германия. Дополнительно может быть ис-

Рис. 1. Схема распада материнских изотопов 119mm Sn, 119 Sb и 119m Te.

пользована эмиссионная мессбауэровская спектроскопия на изотопе ^{119m}Sn с материнскими ядрами ¹¹⁹Sb и ^{119m}Te. Материнские ядра определенно вводятся в узлы сурьмы и теллура соответственно. Образующийся согласно схеме распада ¹¹⁹Sb и ^{119m}Te на рис. 1 дочерний мессбауэровский зонд ^{119m}Sn может наследовать либо узлы сурьмы (если используется изотоп ¹¹⁹Sb), либо узлы теллура (если используется изотоп ^{119m}Te). Особенностью такого процесса является получение моделей антиструктурных дефектов — олово (как аналог германия) в узлах сурьмы или теллура.

В настоящей работе для исследования структурных перестроений в пленках $Ge_2Sb_2Te_5$ используются описанные выше абсорбционные и эмиссионные методики. Целью таких исследований является информация как о структурных перестроениях в локальном окружении атомов германия, сурьмы и теллура в процесс кристаллизации аморфных пленок, так и о природе дефектов олова в структуре кристаллических пленок. Для интерпретации полученных данных были проведены также аналогичные исследования кристаллических соединений Sb₂Te₃, GeTe и стеклообразного сплава Ge_{1.5}Te_{8.5}.

2. Методика эксперимента

Исследованные в работе соединения $Ge_2Sb_2Te_5$, $Ge_{1.95}Sn_{0.05}Sb_2Te_5$, Sb_2Te_3 , GeTe и сплавы $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}Te_{8.5}$, $Ge_{1.5}As_{0.4}Te_{8.1}$, $Ge_{1.45}Sn_{0.05}As_{0.4}Te_{8.1}$ были синтезированы из элементарных веществ при 1050°C в откачанных до 10^{-3} мм рт. ст. кварцевых ампулах.

Рентгеноаморфные пленки $Ge_2Sb_2Te_5$, $Ge_{1.95}Sn_{0.05}Sb_2Te_5$, GeTe, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}Te_{8.5}$ были получены методом магнетронного распыления на постоянном токе в атмосфере азота мишеней аналогичного состава. Для получения пленок $Ge_{1.95}Sn_{0.05}Sb_2Te_5$ и $Ge_{1.45}Sn_{0.05}Te_{8.5}$ использовался препарат ¹¹⁹Sn с обогащением 92%. Кристаллизация аморфных пленок $Ge_2Sb_2Te_5$ и $Ge_{1.95}Sn_{0.05}Sb_2Te_5$ проводилась при температурах 150°C (с образованием кубической фазы *fcc*) или 310°C (с образованием гексагональной фазы hcp) [7–10]. Кристаллизация аморфных пленок Ge_{1.5}Te_{8.5} и Ge_{1.45}Sn_{0.05}Te_{8.5} проводилась при 250°С.

Мессбауэровские источники ^{119m}Sn на основе кристаллических пленок Ge₂Sb₂Te₅ (*hc p*-фаза) были приготовлены путем диффузии безносительных изотопов ¹¹⁹Sb или ^{119m}Te в тонкие аморфные пленки при температуре 310°C в течение 10 ч. Мессбауэровские источники ^{119m}Sn на основе Sb₂Te₃ и GeTe готовили сплавлением соответствующего соединения с безносительными изотопами ¹¹⁹Sb или ^{119m}Te в запаянных ампулах.

Изотопы ¹¹⁹Sb и ^{119m}Te были получены соответственно по реакциям ¹¹⁹Sn $(p, n)^{119}$ Sb и ¹¹⁷Sn $(\alpha, 2n)^{119m}$ Te с последующим хроматографическим выделением безносительных препаратов ¹¹⁹Sb и ^{119m}Te.

Все мессбауэровские спектры измерялись на спектрометре CM 4201 TerLab при 80 K.

При измерении эмиссионных спектров использовался поглотитель CaSnO₃ (поверхностная плотность по олову 5 мг/см²). Спектр этого поглотителя с источником того же состава представлял собой одиночную линию с шириной на полувысоте G = 0.79(1) мм/с, которая принималась за аппаратурную ширину спектральной линии. Для источников, приготовленных с использованием ^{119m}Te, спектры снимались после установления динамического радиоактивного равновесия между изотопами ¹¹⁹Sb и ^{119m}Te. Изомерные сдвиги мессбауэровских спектров ^{119m}Sn и ¹¹⁹Sn приводятся относительно поглотителя CaSnO₃.

При измерении абсорбционных спектров ¹¹⁹Sn, ¹²¹Sb и ¹²⁵Te использовались источники Ca^{119mm}SnO₃, Ca¹²¹SnO₃ и Zn^{125m}Te соответственно. Аппаратурные ширины спектральных линий (G_{app}) для спектров ¹¹⁹Sn, ¹²¹Sb, ¹²⁵Te составляли соответственно 0.79(2), 2.35(6), 6.20(6) мм/с. Изомерные сдвиги (IS) спектров ¹¹⁹Sn, ¹²¹Sb и ¹²⁵Te приводятся относительно поглотителей CaSnO₃, InSb и ZnTe соответственно.

Состав аморфных и кристаллических пленок, а также состав мишени контролировались методом рентенофлуоресцентного анализа (РФА). Для этого элементарных веществ были синтезированы ИЗ поликристаллические сплавы $Ge_xSb_yTe_{1-x-y}$ $(Ge_{0.22}Sb_{0.22}Te_{0.56}, Ge_{0.14}Sb_{0.29}Te_{0.57}, Ge_{0.8}Sb_{0.34}Te_{0.58},$ Sb_{0.40}Te_{0.60} и Ge_{0.50}Te_{0.50}). Значения *x* и *y* указаны по составу исходной шихты с погрешностью ±0.005. Рентгенофлуоресцентные спектры измерялись на спектрометре X-Art M при значении анодного напряжения 35 кВ с палладиевым антикатодом. Определялись площади под флуоресцентными Ка-линиями германия, S_{Ge} , сурьмы, S_{Sb} и теллура, S_{Te} , а далее с помощью соотношений типа $x_{\text{RFA}} = S_{\text{Ge}}/(S_{\text{Ge}} + S_{\text{Sb}} + S_{\text{Te}})$ вычислялись относительные площади спектральных линий германия, сурьмы и теллура. Индекс "RFA" указывает на получение значений х и у из данных рентгенофлуоресцентного анализа. Экспериментальные значения среднеквадратичных отклонений x_{RFA} и y_{RFA} при многократных измерениях не превышали ±0.02. На рис. 2 представлены зависимости $x = f(x_{RFA})$ и

Рис. 2. Зависимости $x = f(x_{RFA})$ и $y = f(y_{RFA})$ для поликристаллических сплавов (1) и пленок толщиной 40 нм (спектры измерялись для аморфной (2) и поликристаллической (3) пленок), 60 нм (спектры измерялись для аморфной пленки (4)).

 $y = f(y_{\text{RFA}})$ для поликристаллических сплавов и пленок (аморфных и кристаллических) различной толщины. Эти зависимости для поликристаллических сплавов удовлетворительно аппроксимируются полиномами $x = 0.6187x_{\text{RFA}}^3 - 0.0922x_{\text{RFA}}^2 + 0.2531x_{\text{RFA}}$ (R = 0.998) и $y = -0.3227y_{\text{RFA}}^3 - 1.1385y_{\text{RFA}}^2 + 1.4487y_{\text{RFA}}$ (R = 0.999), где R — коэффициент достоверности аппроксимации.

Для пленок экспериментальные данные рентгенофлюоресцентного анализа (РФА) существенно отклоняются от зависимостей $x = f(x_{RFA})$ и $y = f(y_{RFA})$, полученных для поликристаллических сплавов. Кроме того, данные РФА для пленок зависят от их толщины (см., например, экспериментальные точки 3 и 4 на рис. 2). Поэтому для контроля состава пленок были приготовлены пленкистандарты Ge₂Sb₂Te₅ толщиной 40, 80 и 120 нм, для которых методом оже-спектроскопии определялся состав. Далее, в процессе напыления исследуемых пленок выдерживалась их толщина и проводилось сравнение параметров x, y и z с соответствующими параметрами спектров стандартов.

3. Экспериментальные результаты и их обсуждение

3.1. Данные абсорбционной мессбауэровской спектроскопии ¹¹⁹Sn

Типичные спектры примесных атомов ¹¹⁹Sn в аморфных (стеклообразных) и поликристаллических материалах, приведенные на рис. 3 и 4, представляют собой одиночные уширенные линии ($G \approx 1.15 - 1.35$ мм/с). Спектры ¹¹⁹Sn в аморфном Ge₂Sb₂Te₅ и стеклообразном Ge_{1.5}Te_{8.5} имеют изомерные сдвиги $IS \approx 2.06-2.09$ мм/с. Такие изомерные сдвиги типичны для спектров ¹¹⁹Sn соединений четырехвалентного олова с тетраэдрической системой химических связей Sn–IV [3,4]. Спектры ¹¹⁹Sn поликристаллических образцов Ge₂SnSb₂Te₅ в обеих фазах, *fcc* и *hcp*, а также Ge_{1.5}Te_{8.5} имеют изомерные сдвиги $IS \approx 3.49-3.52$ мм/с, близкие к изомерному сдвигу спектра ¹¹⁹Sn соединения двухвалентного олова с теллуром, IS = 3.55(2) мм/с, в котором реализуется октаэдрическая система химических связей.

Исходя из величин изомерных сдвигов спектров ¹¹⁹Sn можно сделать вывод, что атомы олова и замещаемые ими атомы германия в структурной сетке аморфного Ge₂Sb₂Te₅ и стеклообразного Ge_{1.5}Te_{8.5} образуют тетраэдрическую sp^3 -систему химических связей. Поскольку в структурной сетке стеклообразного сплава Ge_{1.5}Te_{8.5} атомы германия (олова) могут иметь в сво-

Рис. 3. Абсорбционные мессбауэровские спектры примесных атомов 119 Sn в аморфных и поликристаллических пленках Ge₂Sb₂Te₅. Показано положение спектральных линий, отвечающих центрам Sn–IV и Sn²⁺.

Рис. 4. Абсорбционные мессбауэровские спектры примесных атомов ¹¹⁹Sn в стеклообразном и поликристаллическом сплаве Ge_{1.5}Te_{8.5}. Показано положение спектральных линий, отвечающих центрам Sn–IV и Sn²⁺.

ем локальном окружении только атомы теллура, близость изомерных сдвигов всех исследованных аморфных материалов свидетельствует о том, что и в структурной сетке аморфного $Ge_2Sb_2Te_5$ атомы германия (олова) связаны только с атомами теллура. Уширение спектров ¹¹⁹Sn всех исследованных аморфных материалов объясняется отсутствием в них дальнего порядка в расположении атомов и является характерным свойством мессбауэровских спектров неупорядоченных структур.

Близость изомерных сдвигов спектров ¹¹⁹Sn в поликристаллических Ge₂Sb₂Te₅ и Ge_{1.5}Te_{8.5} к изомерному сдвигу соединения SnTe указывает на то, что при кристаллизации в локальном окружении атомов германия (олова) остаются только атомы теллура. Ширина спектров поликристаллических образцов существенно больше аппаратурной ширины. Это свидетельствует о том, что в их составе олово не образует соединение SnTe (кристаллическая решетка типа NaCl), а входит в состав твердых растворов Ge_{1-x}Sn_xTe (в сплаве Ge_{1.5}Te_{8.5}) или в состав фаз *fcc* и *hcp* (в пленках Ge₂Sb₂Te₅). Согласно данным рентгеноструктурного анализа, твердые растворы Ge_{1-x}Sn_xTe и *fcc*-фаза Ge₂Sb₂Te₅ имеют ромбоэдрически искаженные решетки типа NaCl, а *hc p*-фаза Ge₂Sb₂Te₅ имеет решетку с 9-слойной тригональной упаковкой атомов – Te-Sb-Te-Ge-Te-Ge-Te-Ge-Te-Sb- [7-10]. Некубическое искажение решеток должно приводить к квадрупольному расщеплению мессбауэровских спектров ¹¹⁹Sn на величину, меньшую в данном случае ширины спектральной линии.

3.2. Данные эмиссионной мессбауэровской спектроскопии ^{119m}Sn

В процессе диффузионного легирования аморфных пленок Ge₂Sb₂Te₅ примесными атомами ¹¹⁹Sb и ^{119m}Te при температуре ~ 310°C происходит кристаллизация пленок с образованиеми *hc p*-фазы [7–10]. Типичные спектры примесных атомов ^{119m}Sn, образовавшихся после радиоактивного распада атомов ¹¹⁹Sb в узлах сурьмы и атомов ^{119m}Te в узлах теллура кристаллической пленки, приведены на рис. 5.

В случае материнских атомов ¹¹⁹Sb спектр представляет собой одиночную уширенную линию (G = 1.32(2) мм/с). Изомерный сдвиг этого спектра, IS = 3.47(2) мм/с, отвечает двухвалентному олову Sn²⁺. Близкие параметры имеет спектр примесных атомов

Ge2Sb2Te2:119St

Рис. 5. Эмиссионные мессоауэровские спектры примесных атомов ^{119m}Sn, образовавшихся после радиоактивного распада атомов ¹¹⁹Sb в узлах сурьмы, и атомов ^{119m}Te в узлах теллура кристаллической (*hc p*-фаза) пленки Ge₂Sb₂Te₅. Показано положение спектральных линий, отвечающих центрам Sn²⁺ и Sn⁰.

Физика и техника полупроводников, 2021, том 55, вып. 1

Рис. 6. Эмиссионные мессбауэровские спектры примесных атомов ^{119m}Sn, образовавшихся после радиоактивного распада атомов ¹¹⁹Sb в узлах сурьмы, и атомов ^{119m}Te в узлах теллура соединений Sb₂Te₃ и GeTe. Показано положение спектральных линий, отвечающих центрам Sn²⁺ и Sn⁰.

^{119*m*}Sn, образующихся после радиоактивного распада материнских атомов ¹¹⁹Sb в узлах сурьмы кристаллической решетки Sb₂Te₃ (см. рис. 6, см. также [11]). Исходя из этого можно сделать вывод, что в обоих случаях в локальном окружении атомов ^{119*m*}Sn²⁺ находятся атомы теллура. Это согласуется с данными *hc p*-структуры кристаллических пленок Ge₂Sb₂Te₅ [7], согласно которым в локальном окружении атомов сурьмы находятся атомы теллура. Аналогичные параметры имеет спектр примесных атомов ^{119*m*}Sn, образующихся после радиоактивного распада материнских атомов ¹¹⁹Sb в узлах сурьмы кристаллической решетки Sb₂Te₃ (см. рис. 6, см. также [11]), и можно сделать вывод, что в обоих случаях в локальном окружении атомов ^{119*m*}Sn²⁺ находятся только атомы теллура.

В случае материнских атомов ^{119m}Те спектр представляет собой наложение двух уширенных линий

(G = 1.41 - 1.46 мм/с). Более интенсивная линия с изомерным сдвигом IS = 2.42(2) мм/с, лежащим в области изомерных сдвигов спектров интерметаллических соединений олова, отвечает центрам ^{119m}Sn⁰, образовавшимся после распада материнских атомов ^{119m}Te в узлах теллура. В слоистой решетке *hc p*-фазы Ge₂Sb₂Te₅ имеются три типа слоев теллура [5], что приводит к появлению неоднородного изомерного сдвига в дополнение к квадрупольному расщеплению и значительному уширению спектральной линии.

Менее интенсивная линия с IS = 3.51(2) мм/с отвечает центрам ^{119m}Sn²⁺, образовавшимся после распада материнских атомов ^{119m}Te, сместившихся из узлов теллура в узлы Sb или Ge, за счет энергии отдачи, сопровождающей радиоактивный распад изотопа ^{119m}Te. Набор узлов, в которые смещается дочерний атом ¹¹⁹Sb, также приводит к неоднородному изомерному сдвигу и к значительному уширению спектральной линии.

Аналогичную структуру имеют спектры примесных атомов 119m Sn, образующиеся после радиоактивного распада материнских атомов 119m Te в узлах теллура кристаллических решеток Sb₂Te₃ и GeTe (см. рис. 6), и можно сделать вывод, что во всех случаях в локальном окружении атомов 119m Sn²⁺ находятся только атомы теллура.

Атомы ^{119m}Sn, которые в результате электронного захвата из ¹¹⁹Sb или цепочки электронных захватов из ^{119m}Te оказываются зафиксированными в узлах Sb или Te решетки hcp Ge₂Sb₂Te₅, можно рассматривать как модели антиструктурных дефектов, так как электронный аналог атома одной подрешетки (германиевой) оказывается в узле другой подрешетки.

4. Заключение

Показано, что атомы олова и замещаемые ими атомы германия в структуре аморфных и поликристаллических Ge₂Sb₂Te₅ и Ge_{1.5}Te_{8.5} имеют различную симметрию локального окружения (тетраэдрическую в аморфной фазе и октаэдрическую в кристаллической фазе). Этот вывод находится в согласии с результатами исследований пленок Ge₂Sb₂Te₅ методом XANES [1]. Методом эмиссионной мессбауэровской спектроскопии на примесных центрах ^{119m}Sn, образующихся после радиоактивного распада материнских атомов ¹¹⁹Sb и ^{119m}Te, идентифицированы антиструктурные дефекты олова в узлах сурьмы и теллура кристаллических пленок Ge₂Sb₂Te₅. Уширение спектров антиструктурных дефектов объясняется либо набором возможных атомов (сурьмы, германия, теллура) в локальном окружении узлов теллура, либо аналогичным набором узлов, в которые смещается дочерний атом ¹¹⁹Sb.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga. Nature Materials, 3, 703 (2004).
- [2] C. Hu, Z. Yang, C. Bi, H. Peng, L. Ma, C. Zhang, Z. Gu, J. Zhu. Acta Materialia, 188, 121 (2020).
- [3] K. Bobokhuzhaev, A. Marchenko, P. Seregin. *Structural and antistructural defects in chalcogenide semiconductors. Mössbauer spectroscopy* (Academic Pubblishing, 2020).
- [4] Л.Н. Серегина, Ф.С. Насрединов, Б.Т. Мелех, З.В. Маслова,
 Э.Ю. Тураев, П.П. Серегин. Физика и химия стекла, 3, 328 (1977).
- [5] M. Micoulaut, K. Gunasekera, S. Ravindren, P. Boolchand. Phys. Rev. B, **90**, 094207 (2014).
- [6] А.В. Марченко, П.П. Серегин, Е.И. Теруков, К.Б. Шахович. ФТП, **53**, 718 (2019).
- [7] T. Kato, K. Tanaka. Jpn. J. Appl. Phys., 44, 7340 (2005).
- [8] R.M. Shelby, S. Raoux. J. Appl. Phys., 105, 104902 (2009).
- [9] T. Siegrist, P. Jost, H. Volker. Nature Materials, 10, 202 (2011).
- [10] V. Sousa. Microelectronic Engin., 88, 807 (2011).
- [11] F. Ambe, S. Ambe. J. Chem. Phys., 73, 2029 (1980).

Редактор Л.В. Шаронова

LOCAL STRUCTURE OF GERMANIUM ATOMS AND ANTI-STRUCTUR DEFECTS OF TIN IN AMORPHOUS AND CRYSTALLINE Ge₂Sb₂Te₅ FILMS

A.V. Marchenko¹, E.I. Terukov^{2,3}, F.S. Nasredinov⁴, Yu.A. Petrushin¹, P.P. Seregin¹

 ¹ Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia
 ² Ioffe Institute, 194021 St. Petersburg, Russia

³ St. Petersburg Electrotechnical University "LETI",

197376 St. Petersburg, Russia

⁴ Peter the Great St.Petersburg Polytechnic University,

195251 St. Petersburg, Russia

Abstract The absorption Mössbauer spectroscopy on ¹¹⁹Sn impurity centers has shown that germanium atoms in the structure of amorphous and polycrystalline $Ge_2Sb_2Te_5$ films have different local symmetries (tetrahedral in the amorphous phase and octahedral in the crystalline phase). The emission Mössbauer spectroscopy at ^{119m}Sn impurity centers formed after radioactive decay of the ¹¹⁹Sb or ^{119m}Te parent atoms has allowed to identify tin anti-site defects at antimony and tellurium sites of crystalline $Ge_2Sb_2Te_5$ films.