Влияние подслоя Ba_{0.2}Sr_{0.8}TiO₃ на структуру и электрофизические характеристики пленок цирконата-титаната свинца на подложке Si(001)

© С.П. Зинченко, Д.В. Стрюков, А.В. Павленко, В.М. Мухортов

Федеральный исследовательский центр Южный научный центр РАН, Ростов-на-Дону, Россия E-mail: tres-3@mail.ru

Поступило в Редакцию 21 июля 2020 г. В окончательной редакции 21 августа 2020 г. Принято к публикации 22 августа 2020 г.

Методом высокочастотного катодного распыления получены гетероструктуры металл-сегнетоэлектрик-полупроводник $Pb(ZrTi)O_3/Ba_{0.2}Sr_{0.8}TiO_3/Si(001)$. Установлено, что пленки $Pb(ZrTi)O_3$ являются однофазными, текстурированными, при этом степень преобладания одной кристаллографической ориентации над другой (110 или 001) определяется толщиной подслоя $Ba_{0.2}Sr_{0.8}TiO_3$. Показано, что за счет вариации толщины подслоя и/или амплитуды одного периода внешнего двухполярного полевого воздействия возможно создание различных электрофизических состояний структуры, что может служить основой для создания ячейки памяти, в частности многоуровневой.

Ключевые слова: тонкие пленки, сегнетоэлектрик, цирконат-титанат свинца, подслой.

DOI: 10.21883/PJTF.2020.23.50348.18476

В настоящее время актуальной задачей является интеграция сегнетоэлектрических пленок в кремниевую технологию. К таким материалам, нашедшим применение при создании нового поколения микроэлектромеханических устройств и ячеек памяти, относятся тонкие пленки поликристаллического цирконата-титаната свинца Pb(ZrTi)O₃ (PZT) [1,2]. Одна из основных проблем, возникающих при синтезе наноразмерных пленок РZТ вакуумными методами (магнетронное распыление и т.д.), заключается в том, что на первом этапе при осаждении тонких слоев материала непосредственно на кремниевую подложку в результате взаимной диффузии компонентов или недостатка свинца формируется полностью или частично аморфный слой в виде несегнетоэлектрической фазы пирохлора. Следующим этапом является отжиг выращенного слоя, в процессе которого происходит переход из первоначальной пирохлорной фазы в перовскитовую. Одним из наиболее успешных вариантов решения этой проблемы является формирование в гетероструктуре сегнетоэлектрик-полупроводник промежуточного подслоя, который препятствовал бы взаимной диффузии компонентов и по своим структурным характеристикам способствовал бы кристаллизации сегнетоэлектрика в фазе перовскита. В качестве таких подслоев используются оксид или карбид кремния, металлы, их простые и сложные оксиды (TiAlO₃, SrTiO₃, SrRuO₃ и т.д.).

В настоящей работе представлены результаты исследования гетероструктур металл-сегнетоэлектрик-полупроводник Al/PZT/Ba_{0.2}Sr_{0.8}TiO₃/Si, осажденных на кремниевую подложку Si (001) методом высокочастотного распыления [3]. В качестве подслоя использовался $Ba_{0.2}Sr_{0.8}TiO_3$ (BST₀₂), во-первых, из соображений оптимального совпадения параметров его решетки с параметрами осаждаемых тонких пленок PZT, а во-вторых, такие переходные слои обладают более высоким значением диэлектрической проницаемости, чем простые оксиды, и, как следствие, на них существенно снижается падение напряжения, что приводит к уменьшению управляющего напряжения.

Гетероструктуры PZT/BST₀₂/Si создавались на двух установках высокочастотного распыления керамических мишеней соответствующего состава в режиме сильноточного γ -разряда (> 100 W/cm²) при высоких давлениях кислорода (> 0.5 Torr). В качестве подложки использовался монокристаллический кремний *p*-типа с удельным сопротивлением 12 Ω · cm (КДБ12) среза (001) толщиной 0.35 mm (МТІ Согрогаtion, USA). Процесс подготовки кремниевых подложек состоял в удалении оксидного слоя в плавиковой кислоте (2 min) с предварительной очисткой в горячем (75–80°С) ацетоне на водяной бане, промывании в бидистиллированной воде и травлении в 2% растворе фтористоводородной кислоты (HF).

Формирование подслоя BST_{02} осуществлялось в камере газоразрядного напыления при давлении кислорода 0.5 Тогг. Стартовая температура подложки (перед включением разряда) составляла 400°С. После включения разряда через 12–15 s температура достигала значения 630°С. Напыление подслоя длилось от 2 до 15 min. Затем подложка охлаждалась до температуры < 100°С и помещалась в камеру для напыления PZT толщиной ~ 200 nm при тех же температурных условиях, что и напыление BST₀₂.

Структурное совершенство многослойных пленок и их фазовый состав при комнатной температуре уста-

Рис. 1. Дифрактограммы (a) и коэффициент текстуры f (b) гетероструктур PZT/BST₀₂/Si(001) с различной толщиной подслоя BST₀₂.

навливались рентгенографированием на дифрактометре ДРОН-4-07 (θ -2 θ -метод, Си K_{α} -излучение). Для проведения диэлектрических измерений гетероструктуры PZT/BST₀₂/Si на поверхность пленки PZT через маску с отверстиями диаметром $\sim 180{-}200\,\mu m$ осаждались электроды Al с подслоем Cr методом термического испарения в вакууме. Измерения вольт-фарадных характеристик (ВФХ) осуществлялись с помощью автоматизированного измерительного комплекса на базе LCR-метра "Е7-20" на частоте измерительного сигнала $f_m = 0.5 \,\text{MHz}$ при измерительном напряжении $U_m = 40 \,\mathrm{mV}$, частота пилообразного смещающего сигнала $f_U = 0.007$ Hz. Период развертки смещающего напряжения длительностью 140 s выбирался с учетом времени жизни короткоживущих заряженных дефектов и времени релаксации поляризованного состояния в пленке. Амплитуда внешнего напряжения варьировалась в диапазоне 0 ± 7.0 V.

Результаты рентгенодифракционных исследований гетероструктур приведены на рис. 1, а. Использование в качестве подслоя BST_{02} позволило полностью исключить возникновение в пленках РZT примесной фазы пирохлора, при этом сами пленки РZT являлись поликристаллическими текстурированными с преобладающими ориентациями (110) или (001). Их соотношение зависит от толщины подслоя BST: с ее ростом доля ориентации (110) снижается, а ориентации (001) растет, что отражает поведение коэффициента текстуры f_{hkl} (рис. 1, *b*):

$$f_{hkl} = \frac{I_{hkl} / \sum I_{hkl}}{I_{hkl}^0 / \sum I_{hkl}^0},$$
 (1)

где I_{hkl} — измеренная интенсивность, а I_{hkl}^0 — относительная интенсивность соответствующей линии объемного материала. Исходя из угловых положений линий определены параметры элементарной ячейки слоя PZT, которые в псевдокубическом приближении равны $a = 0.405 \pm 0.001$ nm независимо от толщины подслоя BST₀₂. Параметры элементарной ячейки слоя BST равны $a = 0.399 \pm 0.001$ nm.

На рис. 2 приведены ВФХ гетероструктур с различной толщиной подслоя BST_{02} , полученные в результате воздействия одного периода внешнего двухполярного смещающего напряжения $(0 \rightarrow +V \rightarrow 0 \rightarrow -V \rightarrow 0$, ход обозначен на рис. 2). На рисунке C_1 — емкость до внешнего полевого воздействия, C_2 — после одного периода двухполярного полевого воздействия. С целью исключения вклада предыстории и эффектов памяти перед диэлектрическими измерениями образцы нагревались до $T = 400^{\circ}$ С (выше ожидаемой температуры Кюри), выдерживались при этой температуре в течение 30 min и далее охлаждались до комнатной температуры.

ВФХ для всех гетероструктур PZT/BST₀₂/Si по виду идентичны высокочастотным ВФХ, свойственным структурам металл-сегнетоэлектрик-полупроводник при использовании полупроводника *p*-типа проводимости. До полевого воздействия все гетероструктуры характеризо-

Рис. 2. ВФХ гетероструктур $PZT/BST_{02}/Si$ с различной толщиной подслоя BST_{02} .

Рис. 3. ВФХ гетероструктуры PZT/BST₀₂(25 nm)/Si с различной амплитудой положительного внешнего воздействия.

вались низкой емкостью ($C_1 < 10 \, \mathrm{pF}$), величина которой практически не зависела от толщины BST₀₂. Это свидетельствует о нахождении поверхности кремниевой подложки в режиме обеднения или инверсии, т.е. после осаждения в таких гетероструктурах наблюдается устойчивый эффект поля без внешнего полевого воздействия, обусловленный униполярностью сегнетоэлектрической пленки, что имело место и в [4,5]. Униполярность в нашем случае определяется не столько условиями экранирования поляризации, сколько деформационными полями в пленке. Под действием положительного напряжения происходит дополнительная поляризация сегнетоэлектрической пленки и увеличение униполярности в доменном строении, и, как следствие, емкость структуры сохраняется низкой и практически не изменяется. При смене полярности внешнего поля при $U \approx -1 \,\mathrm{V}$ в области, где фиксируется резкое изменение емкости (поверхность кремния переходит из обедненного основными носителями заряда состояния в обогащенное), абсолютная величина поляризации принимает нулевое значение, а при более низких напряжениях изменяет знак, в пользу чего свидетельствуют предварительные исследования зависимости пьезоотклика гетероструктур от напряжения по аналогии с [4].

После воздействия полного периода внешнего поля для всех образцов фиксировался гистерезис, ширина которого уменьшалась по мере увеличения толщины слоя BST_{02} , однако при этом фиксировалось существенное изменение емкости структуры в нулевом поле $\Delta C = C_2 - C_1$. Наибольшего значения ΔC достигает при толщине подслоя в области 20–30 nm, при этом в кристаллической структуре присутствуют обе ориентации текстуры (110) и (001), а при дальнейшем росте толщины подслоя BST_{02} имеет место преобладание ориентации (001) над (110) и ΔC стремится к нулю. Таким образом, можно сделать вывод, что окно памяти отсутствует в пленках с текстурой только по направлению (001), а его наличие мы связываем с обязательным присутствием в кристаллической структуре также и ориентации (110).

На рис. 3 приведены ВФХ при различных амплитудах двухполярного внешнего полевого воздействия для гетероструктуры PZT(200 nm)/BST₀₂(25 nm)/Si (001). Величина амплитуды положительной полярности практически не влияет на состояние C_1 , однако при этом существенно меняются ширина гистерезиса ВФХ (с 0.25 до 1.5 V) и C_2 (с 5 до 60 pF). С учетом того, что во всех случаях фиксируется гистерезис поляризационного типа, с нашей точки зрения, наблюдаемое поведение ВФХ главным образом обусловлено спецификой переключения поляризации в двухслойной структуре PZT/BST₀₂.

Существующие сегнетоэлектрические ячейки памяти основаны на двухуровневой емкости хранения со стандартной двоичной логикой и уже достигают своих фундаментальных ограничений [6]. В работах [7,8] отмечено, что использование многозначных логических единиц, реализованных как многоуровневые ячейки памяти, уменьшает потери энергии и позволяет упаковывать беспрецедентную информацию высокой плотности. В связи с этим в литературе рассматриваются сегнетоэлектрические мультибитовые (многоуровневые) ячейки, использующие способность многоосных сегнетоэлектрических материалов, присущую, в частности, оксидам со структурой перовскита, определять поляризацию и соответственно последовательность мультистабильных состояний [9].

Полученные нами результаты свидетельствуют о том, что, манипулируя величиной положительного воздействия в случае двухслойных гетероструктур PZT/BST₀₂, можно дискретно перестраивать величину C_2 от 5–10 pF до практически максимального значения (65 pF), что в перспективе может позволить формировать несколько уровней в сегнетоэлектрической ячейке памяти. Можно предположить, что присутствие кристаллитов ориентации (111), не обнаруженной в исследуемой структуре, также будет способствовать расширению ее многобитности и соответственно возможностей ячеек памяти.

Таким образом, с использованием метода высокочастотного катодного распыления мишени в атмосфере кислорода получены гетероструктуры PZT/BST₀₂/Si в фазе перовскита. Исследования их кристаллографических и электрофизических свойств показали, что пленки PZT являются поликристаллическими, а преобладание одной фазы над другой определяется толщиной подслоя BST₀₂. При толщинах подслоя до 30–40 nm имеет место преобладание ориентации (110) над (001). В подобных гетероструктурах за счет вариации толщины подслоя или амплитуды одного периода внешнего двухполярного полевого воздействия возможно создание различных электрофизических состояний структуры, что может служить основой для создания многобитовой ячейки памяти.

Финансирование работы

Работа выполнена в рамках реализации государственного задания ЮНЦ РАН по проекту № 0120-1354-247.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Yan L., Li J.-F., Cao H., Viehland D. // Appl. Phys. Lett. 2006.
 V. 89. P. 262905. DOI: 10.1063/1.2425016
- [2] Серегин Д.С., Воротилов К.А., Сигов А.С., Зубкова Е.Н., Абдуллаев Д.А., Котова Н.М., Вишневский А.С. // ФТТ. 2015. Т. 57. В. 3. С. 487–490.
 DOI: 10.1134/S1063783415030300
- [3] Мухортов В.М., Юзюк Ю.И. Гетероструктуры на основе наноразмерных сегнетоэлектрических пленок: получение, свойства и применение. Ростов н/Д: ЮНЦ РАН, 2008. 224 с.
- [4] Павленко А.В., Стрюков Д.В., Мухортов В.М., Бирюков С.В. // ЖТФ. 2018. Т. 88. В. 3. С. 418–421. DOI: 0.21883/JTF.2018.03.45600.2223
- [5] Стрюков Д.В., Мухортов В.М., Бирюков С.В., Головко Ю.И. // Наука Юга России. 2017. Т. 13. В. 1. С. 18–24. DOI: 10.23885/2500-0640-2017-13-1-18-24
- [6] Baudry L., Lukyanchuk I., Vinoku V.M. // Sci. Rep. 2017. V. 7.
 P. 42196. DOI: 10.1038/srep42196
- [7] Torelli G., Lanzoni M., Manstretta A., Ricco B. Multilevel flash memories // Flash memories. Boston: Springer, 1999.
 P. 361–397. DOI: 10.1007/978-1-4615-5015-0_6
- [8] Shyu Y, Lin J, Huang C, Lin C, Lin Y, Chang S. // IEEE Transact. Very Large Scale Integr. (VLSI) Syst. 2013. V. 21. N 4. P. 624–635. DOI: 10.1109/TVLSI.2012.2190535
- Xu R., Liu S., Saremi S., Gao R., Wang J.J., Hong Z., Lu H., Ghosh A., Pandya S., Bonturim E., Chen Z.H., Chen L.Q., Rappe A.M., Martin L.W. // Nature Commun. 2019. V. 10.
 P. 1282. DOI: 10.1038/s41467-019-09207-9