06

Особенности структуры и оптические свойства номинально чистых кристаллов LiNbO₃, выращенных из шихты, содержащей B₂O₃

© Р.А. Титов, В.М. Воскресенский, Н.В. Сидоров, Н.А. Теплякова, М.Н. Палатников

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Федерального исследовательского центра "Кольский научный центр РАН", 184209 Апатиты, Мурманская обл., Россия e-mail: n.tepliakova@ksc.ru

Поступило в Редакцию 29 апреля 2020 г. В окончательной редакции 29 апреля 2020 г. Принято к публикации 22 июня 2020 г.

Показано, что применение B_2O_3 в качестве флюса позволяет получать номинально чистые композиционно однородные кристаллы LiNbO₃, обладающие повышенным упорядочением структурных единиц катионной подрешетки, близким к стехиометрическим кристаллам, повышенным сопротивлением лазерному излучению. Расчетами установлено, что элемент бор может встраиваться в грани кислородных тетраэдров кристаллической структуры LiNbO₃. Следовые количества бора в структуре кристалла LiNbO₃: В в значительной степени подавляют образование точечных дефектов Nb_{Li}. В то же время бор заметно искажает кислородный каркас структуры кристалла LiNbO₃ и тем самым изменяет поляризуемость кислородных октаэдров, которая определяет нелинейно-оптические свойства кристалла.

Ключевые слова: кристалл ниобата лития, оксид бора, ИК-спектроскопия поглощения, комбинационное рассеяние света, компьютерное моделирование.

DOI: 10.21883/JTF.2021.01.50274.151-20

Введение

Кристаллы ниобата лития (LiNbO₃) стехиометрического (R = Li/Nb = 1) и близкого к стехиометрическому составов обладают низким значением напряженности коэрцитивного поля,¹ что делает их более перспективными материалами (по сравнению с конгруэнтными кристаллами (R = 0.946) для преобразования лазерного излучения на периодически поляризованных доменных структурах микронных и субмикронных размеров [1]. Однако стехиометрические кристаллы, традиционно выращиваемые из расплава Nb2O5-Li2O с содержанием Li2O 58.6 mol.% (LiNbO_{3 stoich}), характеризуются более высокими неоднородностью показателя преломления вдоль оси роста и эффектом фоторефракции (opticaldamage), чем кристаллы конгруэнтного состава (LiNbO_{3 cong}) [2], что во многих случаях делает их непригодными для изготовления оптических элементов. Добиться повышения оптической однородности и стойкости стехиометрических кристаллов LiNbO3 к повреждению лазерным излучением в настоящее время возможно двумя способами. Стехиометрические и близкие к ним кристаллы LiNbO3 высокой композиционной однородности, обладающие эффектом фоторефракции, близким к таковому в конгруэнтных кристаллах, можно вырастить из шихты конгруэнтного состава методом HTTSSG (High temperature top speed solution growth) с добавлением

 $\sim 6 \text{ wt.}\%$ флюса K₂O (кристаллы LiNbO₃:K₂O) [3] или из шихты конгруэнтного состава с применением флюса B₂O₃ (кристаллы LiNbO₃:B) [4–8].

Подход к получению номинально чистых кристаллов LiNbO3 с применением флюса B2O3 является сравнительно новым и малоисследованным. В этом направлении опубликовано лишь несколько работ [4-8]. Особенно мало информации о тонких особенностях структуры кристаллов (вторичной структуры). В то же время хорошо известно, что для кислородно-октаэдрических фаз переменного состава, к которым принадлежит и кристалл LiNbO3, особенности вторичной структуры, которая, в частности, обусловливает такое явление, как концентрационные пороги, часто оказывают кардинальное влияние на физические свойства [2,9,10]. В настоящее время не вполне ясно, какие именно особенности вторичной структуры кристаллов LiNbO3: В повышают их композиционную однородность и уменьшают эффект фоторефракции. С применением флюса В2О3 при определенных концентрациях В2О3 в шихте можно выращивать кристаллы высокой композиционной однородности (близкой к таковой для конгруэнтных кристаллов). В то же время по упорядочению структурных единиц катионной подрешетки кристаллы LiNbO3: В близки к кристаллу стехиометрического состава LiNbO3 stoich, но обладают значительно меньшим эффектом фоторефракции [4-8]. Состав кристаллов LiNbO₃: B, полученных с применением флюса B_2O_3 , является промежуточным между конгруэнтным и стехиометрическим составом, т.е. 0.946 < R = Li/Nb < 1. При этом, несмотря на высокое содержание В2О3 в

 $^{^1}$ Величина коэрцитивного поля в стехиометрическом кристалле LiNbO3 составляет $\sim 3\,kV/mm,$ в конгруэнтном кристалле — $\sim 223\,kV/mm.$

шихте (до $\sim 2.0 \,\text{mol}\%$), концентрация бора в кристалле LiNbO₃ : $B \le 4 \cdot 10^{-5} - 4 \cdot 10^{-4}$ mol.% B₂O₃ [4–8]. То есть она находится на уровне следовых количеств для неконтролируемых примесей. Такие значения концентраций примеси на 3-4 порядка ниже пороговой концентрации легирующих металлических "нефоторефрактивных" добавок, вызывающих аналогичное увеличение стойкости кристалла LiNbO3 к повреждению лазерным излучением [2]. Существенно отметить то, что в спектре комбинационного рассеяния света (КРС) кристаллов LiNbO3:В было обнаружено значительное уширение линий, соответствующих колебаниям кислородного каркаса кристалла [5-7]. Этот факт свидетельствует о заметном искажении кислородного каркаса (октаэдров О₆) в кристаллах, выращенных с применением флюса В2О3, по сравнению с кислородным каркасом номинально чистых кристаллов LiNbO₃, полученных другими известными способами. Причина такого искажения в настоящее время также остается невыясненной.

По-видимому, влияние бора на физические свойства кристалла LiNbO₃ заключается в его способности быть активным комплексообразователем, формирующим в расплаве химически активные комплексы. Кроме того, вследствие малого ионного радиуса бор способен встраиваться в тетраэдрические пустоты кристалла LiNbO₃, тем самым заметно искажая кислородные октаэдры структуры и, следовательно, изменяя их поляризуемость. В то же время металлические примеси (Mg, Zn, Gd, Sc, In...), обладающие существенно большим ионным радиусом, чем бор, могут встраиваться только в гораздо более крупные октаэдрические пустоты кристалла LiNbO₃ [2].

В настоящей работе рассмотрены некоторые особенности формирования вторичной структуры кристалла LiNbO3:В и выполнено компьютерное моделирование электростатического взаимодействия точечных зарядов в структуре кристалла, содержащего малые концентрации элемента бора в составе группы [ВО₃]³⁻. Для подтверждения интерпретации результатов моделирования выполнены экспериментальные исследования тонких особенностей структуры кристаллов LiNbO3:В (0.55-0.83 mol.% В2О3 в шихте) методами спектроскопии КРС и ИК-спектроскопии поглощения, чувствительными к изменению взаимодействий между структурными единицами кристалла. Необходимо отметить, что спектроскопические характеристики атома водорода, неизбежно присутствующего в структуре кристаллов LiNbO₃, выращенных в воздушной атмосфере, и связанного водородной связью с атомом кислорода октаэдров О₆, чрезвычайно чувствительны к изменению кристаллического поля. По параметрам линий в спектре ИК-поглощения, соответствующих валентным колебаниям ОН-групп, рассчитана концентрация ОН-групп и точечных структурных дефектов (Nb_{Li}, V_{Li}). Результаты для кристаллов LiNbO3 : В сравнивались с результатами, полученными для номинально чистого стехиометрического (LiNbO_{3 stoich}) и конгрузнтного (LiNbO_{3 cong}) кристаллов. Результаты наших более ранних исследований кристаллов LiNbO₃: В приведены в работах [4–8].

1. Методика эксперимента

Кристаллы выращивались методом Чохральского в воздушной атмосфере на установке "Кристалл-2", снабженной системой автоматического контроля диаметра кристалла. Использовалась оригинальная гранулированная шихта ниобата лития с высокой насыпной плотностью, синтезированная в ИХТРЭМС КНЦ РАН [11]. Легирование шихты бором осуществлялось методом прямого твердофазного легирования [10], суть которого заключается в твердофазном синтезе смеси Nb₂O₅, Li₂CO₃ и Н₃ВО₃ с последующим получением гранулированной шихты в процессе прокаливания смеси в температурной области предплавления (1240-1250°С). Содержание примесей в выращенном кристалле не превышало $0.5 - 1.0 \cdot 10^{-4}$ wt.%. Содержание бора в выращенных кристаллах также находилось на уровне следовых количеств $\sim 10^{-4}$ wt.%. Номинально чистые конгрузнтный и стехиометрический кристаллы LiNbO3 выращивались из расплавов конгруэнтного состава (*R* = 0.946) и расплава с содержанием Li₂O равным 58.6 mol.% соответственно.

Образцы для исследований имели форму параллелепипедов с ребрами, параллельными кристаллографическим осям X, Y, Z. Ось Z совпадала по направлению с полярной осью кристалла. Грани параллелепипедов тщательно полировались. Регистрация ИК-спектров производилась с помощью спектрометра IFS 66v/s фирмы Bruker. Спектры КРС возбуждались линией 514.5 nm аргонового лазера SpectraPhysics (модель 2018-RM) и регистрировались спектрографом Т64000 производства фирмы HoribaJobinYvon с использованием конфокального микроскопа. Спектры регистрировались с разрешением 1.0 cm⁻¹. Обработка спектров производилась с использованием пакета программ HoribaLabSpec 5.0 и Origin 8.1. Точность определения частот, ширин и интенсивностей линий $\pm 1.0, \pm 3.0 \, \text{cm}^{-1}$ и 5% соответственно. Расчет суммарной энергия кулоновского взаимодействия точечных зарядов (U, eV)

взаимодеиствия точечных зарядов (U, ev)кислородно-октаэдрической структуры ниобата лития (Li^+, Nb^{5+}, O^{2-}) с B^{3+} , рассматриваемым в sp^2 гибридном состоянии в составе плоских треугольников $[BO_3]^{3-}$ был выполнен с использованием потенциала:

$$U = \frac{kq_1q_2}{r_{12}},$$
 (1)

где q_1 и q_2 — заряды в долях электрона, r_{12} — расстояние между центрами взаимодействующих зарядов [Å], k — константа, выражающаяся по формуле (eV · Å):

$$k = \frac{e^2}{4\pi\varepsilon_0 \cdot 10^{-10}} = 14.41971,\tag{2}$$

где e — заряд электрона, ε_0 — диэлектрическая посто-янная.

Рассмотренная нами система (кластер), состоящая из двух катионов Li⁺, двух катионов Nb⁵⁺, одного катиона В³⁺ и двадцати анионов кислорода О²⁻ не является электронейтральной. Мы рассматриваем только кластер, состоящий из шести кислородных октаздров О₆, "вырванных" из большой электронейтральной системы с целью изучения тенденции изменения энергии взаимодействия элемента B³⁺ с окружающим его фрагментом структуры кристалла LiNbO3 в зависимости от позиционирования В³⁺ в тетраэдрических пустотах. Изучение взаимодействия бора в большем фрагменте структуры нецелесообразно, поскольку в рамках работы рассматривается электростатическое взаимодействие точечных зарядов, для которого характерно сильное уменьшение вклада энергии с расстоянием. Позиции катионов Li⁺ и Nb⁵⁺ в октаэдрах соответствуют структуре сегнетоэлектрической фазы LiNbO3: литий смещен к нижней кислородной плоскости, ниобий — к верхней кислородной плоскости [2]. За основу расчетов были взяты структурные данные конгруэнтного кристалла LiNbO₃ [12]. В работе смоделированы два процесса. В первом случае рассчитывается энергия кулоновского взаимодействия элемента B³⁺ с фрагментом структуры конгруэнтного кристалла LiNbO₃ (6 октаэдров O₆). При этом координаты фрагмента структуры соответствуют координатам базиса ячейки, изменяющимся с ростом температуры, но с неизменными параметрами решетки: а и с = 5.1489 и 13.8631 Å соответственно [2]. Во втором случае рассчитывается энергия кулоновского взаимодействия элемента B^{3+} с тем же фрагментом структуры LiNbO₃, но с различными параметрами решетки а и с. Для этого была произведена нормировка параметров ячейки по температуре 297 К [13]. По причине аналогичных результатов, полученных при моделировании в первом и втором случаях, в дальнейшем будут обсуждаться только данные эксперимента с постоянными параметрами а и с.

2. Результаты и их обсуждение

Разнообразие кристаллохимии оксидных соединений бора определяется возможностью существования атома в гибридизации двух видов: *sp*²- и *sp*³-, которым соответствуют [ВО₃]³⁻ треугольники и [ВО₄]⁵⁻ тетраэдры соответственно [14]. Кристаллический радиус В³⁺ равен 0.15 Å для В(III) и 0.25 Å — для В(IV) [15]. В основном состоянии атом бора обладает двумя вакантными рорбиталями, благодаря которым посредством образования донорно-акцепторного взаимодействия координационное число бора может увеличиться с III до IV. Три угла тетраэдра [BO₄]⁵⁻ заняты атомами и атомными группами, в то время как в четвертом углу электрическое поле имеет более высокую напряженность, что объясняет ярко выраженную способность соединений бора образовывать прочные молекулярные комплексы [16]. При $s p^2$ -гибридном состоянии атома бора образуются

плоские треугольные структуры [ВО₃]³⁻ со средними длинами связей (В-О) и (О-О) равными 1.351-1.403 и 2.08–2.52 Å соответственно [14]. Угол связи (О-В-О) лежит в диапазоне 114-126°, среднее значение составляет 120°. В случае, если угол (О-В-О) меньше 120°, формируется так называемая зонтичная форма, в которой атом бора находится над плоскостью кислородной тройки [14]. В случае тетраэдрической координации [BO₄]⁵⁻ длины связей (B-O) в тетраэдре варьируются от 1.462 до 1.512 Å. При этом связь $\langle O{-}O \rangle$ равна 2.70 Å, а разброс значений углов (О-В-О) — от 104 до 115°, среднее значение угла $\sim 109.5^{\circ}$ [14]. В работе [17] отмечается, что борсодержащие тетраэдры могут быть как правильной, так и искаженной формы. В искаженных тетраэдрах одна из вершин может находиться на большем расстоянии от центра тетраэдра по сравнению с остальными (борацит — 1.78 Å против 1.39 Å; В₂О₃ -2.05 Å против 1.55 Å), но чаще всего различие в длинах связей не столь существенно [18].

При "классическом" механизме легирования кристалла LiNbO3 происходит встраивание легирующего металла Me^{*n*+} в литиевый, ниобиевый или вакантный кислородные октаэдры. Причем распределение основных (Nb⁵⁺ и Li⁺) и легирующих катионов по октаэдрам и механизм встраивания определяется особенностями и концентрацией легирующего катиона [2,9,10]. Основная роль легирующего металла проявляется в регулировании порядка чередования катионов вдоль полярной оси кристалла, а также в изменении концентрации глубоких и мелких ловушек электронов. В номинально чистом кристалле LiNbO3 наиболее глубокими ловушками электронов являются точечные дефекты Nb_{Li} (катионы Nb, находящиеся в позициях катионов Li идеальной стехиометрической структуры), а также следовые количества многозарядных катионов переходных металлов Fe, Cu и др. [2].

Флюс В2О3 демонстрирует широкий спектр возможностей для регулирования тонких особенностей структуры и свойств монокристалла LiNbO3, оказывая влияние, прежде всего, на структуру и физико-химические особенности расплава, из которого выращивается кристалл. Вследствие малого ионного радиуса элемент бор не способен встраиваться в кислородные октаэдры О₆ кристалла LiNbO₃. Но, проявляя свойства сильного комплексообразующего агента, элемент В³⁺ оказывает значительное влияние на ход твердофазного синтеза шихты и свойства расплава. Структурируя расплав и жестко связывая избыточный по отношению к литию ниобий, бор снижает концентрацию точечных дефектов NbLi и связанных с ними комплексных дефектов, обусловленных присутствием водородных связей, в структуре кристалла LiNbO3: В. При этом бор выравнивает и приближает к единице K_{Li} и K_{Nb} (коэффициенты распределения лития и ниобия в выращенном кристалле LiNbO₃: В). Это приводит к упорядочению структурных единиц катионной подрешетки кристалла LiNbO₃ [4-8]. Кроме того, как химически активная комплексообразующая добавка элемент бор снижает содержание в расплаве неконтролируемых многозарядных металлических примесей [7], тем самым дополнительно повышая степень чистоты кристалла и понижая эффект фоторефракции.

Согласено квазитройной диаграмме состояния системы Li₂O-Nb₂O₅-B₂O₃, фаза LiNbO₃ не имеет области растворимости с бором и его соединениями в твердом состоянии [18]. Анализ квазидвойных диаграмм LiNbO₃-LiBO₂ и LiNbO₃-Li₂B₄O₇, являющихся политермическими сечениями тройной фазовой диаграммы Li₂O-Nb₂O₅-B₂O₃, показывают что термодинамические условия весьма благоприятны для получения из расплава LiNbO3:В номинально чистого кристалла LiNbO₃ высокой степени структурного совершенства. Это обусловлено тем, что в системе Li₂O-Nb₂O₅-B₂O₃ фаза ниобата лития является единственной кристаллизующейся фазой [18]. В процессе кристаллизации захват расплава происходит в строго ограниченной зоне, поэтому кристаллизоваться, в первую очередь, будут те комплексы, для которых характерна наименьшая солидусная температура. В процессе кристаллизации происходит истощение расплава комплексами, необходимыми для роста композиционно однородного кристалла. Одновременно будет происходить рост концентрации элемента бора в расплаве, и как следствие — снижение температуры кристаллизации и резкое увеличение вязкости расплава [8], что ограничивает долю расплава, пригодного для выращивания композиционно однородного кристалла без ростовых дефектов.

Стехиометрические кристаллы LiNbO3 высокой композиционной однородности можно вырастить из расплава конгруэнтного состава методом HTTSSG путем добавления флюса K₂O на основе металла — калия $(\sim 6 \text{ wt.}\%)$ [19]. Вследствие большого ионного радиуса (1.38 Å) металлический элемент К не входит в структуру кристалла LiNbO3. При этом кристаллы LiNbO3 stoich: K2O (6 mol.%) оказываются гораздо более композиционно и оптически однородными, чем кристаллы LiNbO3 stoich, выращенные из шихты с избытком Li₂O — 56.8 mol.% [19]. Иная картина наблюдается в кристаллах, выращенных из шихты конгруэнтного состава, с использованием неметаллического флюса В₂О₃. Неметаллический элемент бор характеризуется иными механизмами химической связи по сравнению с металлами. Обладая маленьким ионным радиусом (в отличие от К⁺) и максимальной валентностью, равной четырем, элемент бор не способен входить в кислородные октаэдры O₆ кристалла LiNbO₃. По этой причине остается открытым вопрос о пространственном расположении следовых количеств катионов бора в структуре кристалла. Есть стерические основания полагать, что элемент бор в следовых количествах может присутствовать в структуре кристалла LiNbO₃ в тетраэдрических пустотах. Для подтверждения этой гипотезы нами были выполнены расчеты электростатического взаимодействия точечных

67

Рис. 1. Ниобиевый (Nb_1) , литиевый (Li_1) и вакантный (V_1) кислородные октаэдры структуры кристалла LiNbO₃, образующие тетраэдрическую пустоту. Второй слой кислородных октаэдров (Nb_2, Li_2, V_2) расположен выше.

Рис. 2. Суммарная энергия кулоновского взаимодействия точечных зарядов в кластере, состоящем из двух катионов Li⁺, двух катионов Nb⁵⁺, одного катиона B³⁺ и двадцати анионов кислорода O²⁻. Пара Nb₁-B³⁺ расположена в грани тетраэдра, граничащего с NbO₆ из первого слоя, пара V_1 -B³⁺ расположена в грани тетраэдра, граничащего с вакантным октаэдром первого слоя, и т.д. при постоянных параметрах *а* и *с. Т, K* = 297 (*1*), 523 (*2*), 773 (*3*), 1023 (*4*), 1273 (*5*), 1473 (*6*).

зарядов в структуре кристалла, содержащего малые концентрации элемента бора в составе группы $[BO_3]^{3-}$.

Фрагмент структуры (6 кислородных октаэдров), взятый для моделирования, представлен на рис. 1. Нами рассматривались 7 возможных расположений катиона бора: в центрах тетраэдрических граней первого и второго октаэдрических слоев, граничащих с соответствующими октаэдрами (литиевым, ниобиевым и вакантным), а также в плоскости кислородной тройки, разделяющей октаэдрические слои. При этом в расчетах не учитывалось замещение лития ниобием. Результаты расчетов представлены на рис. 2. Согласно рис. 2, максимальное значение энергий для обоих случаев соответствует нахождению катиона бора в составе группы [BO₃]³⁻, граничащей с ниобиевыми октаэдрами. Для остальных возможных расположений бора сумма энергии кулоновского взаимодействия значительно ниже, что может рассматриваться как теоретически возможное расположение катионов В³⁺ в структуре кристалла. Влияние бора, находящегося в тетраэдрической грани, на точечные заряды вне рассматриваемой системы нами не учитывалось, поскольку с расстоянием это влияние будет существенно уменьшаться. Необходимо отметить, что катион бора, встраиваясь в тетраэдрические пустоты структуры кристалла в процессе роста, привносит в систему избыточный положительный заряд. При этом для достижения минимума энергии системы бору будет выгодно занять позиции, прежде всего, в тетраэдрических пустотах, граничащих с литиевыми и с вакантными октаэдрами, либо кислородной плоскости, разделяющей кислородно-октаэдрические слои (рис. 2). Образование точечных дефектов NbLi при нахождении бора в тетраэдрической грани будет маловероятным, поскольку в данном случае это приведет к росту суммарной энергии из-за высокой локализации положительных зарядов. Таким образом, согласно расчетам, нахождение бора в структуре кристалла может препятствовать образованию глубокой ловушки электронов — Nb_{Li}, как минимум в пределах рассматриваемой нами системы. Полученные результаты свидетельствуют о том, что в отличие от "металлического" флюса К2О, когда элемент калий не входит в структуру выращенного кристалла, "неметаллический" флюс В2О3 оказывает заметное комплексное влияние на структурные особенности монокристаллов LiNbO₃. Флюс B₂O₃ определенным образом структурирует расплав, изменяя микроскопические механизмы кристаллизации, и тем самым выравнивает и приближает к единице коэффициентов распределения KLi и K_{Nb}. Кроме того, он уменьшает образование точечных дефектов NbLi, по меньшей мере, на количество катионов B³⁺, встроившихся в тетраэдрические пустоты структуры, соответствующего концентрации бора в кристалле LiNbO₃: В ($\sim 4 \cdot 10^{-4}$ mol.%).

Как показано выше, в системе Li₂O-Nb₂O₅-B₂O₃ отсутствуют области гомогенности бора и его соединения с ниобатом лития, и единственной кристаллизующейся фазой должен быть только LiNbO3 cong. Однако по причине связывания в расплаве соответствующего состава избытка ниобия бором происходит увеличение доли лития в структуре растущего кристалла, что приближает структуру кристаллов LiNbO3: В к структуре стехиометрического кристалла. Это подтверждают данные спектроскопии КРС и ИК-поглощения: ширины линий в спектрах КРС и ИК-поглощения кристаллов LiNbO3: В меньше соответствующих линий в спектре кристалла LiNbO3 cong и близки к таковым в спектре кристалла LiNbO3 stoich (см. таблицу). В то же время увеличение содержания лития дополнительно подтверждается расчетом концентрации Li₂O в выращенных кристаллах по росту температуры Кюри для $LiNbO_{3 cong}$ и $LiNbO_{3}:B$ (0.83 mol.% B_2O_3 в шихте) — 1145 и 1189°C соответственно [20].

В кристаллах LiNbO3: В, согласно данным спектроскопии КРС, наблюдается повышенное упорядочение структурных единиц катионной подрешетки [4-7]. При легировании конгруэнтного кристалла LiNbO3 катионами металлов, входящими в кислородные октаэдры, также наблюдается повышенное упорядочение структурных единиц катионной подрешетки в определенном диапазоне концентраций легирующего элемента [2,21]. Однако в кристаллах LiNbO3:В такое упорядочение не может быть обусловлено вхождением бора в октаэдры О₆. Бор не входит в кислородные октаэдры, но, входя в малых количествах в тетраэдрические пустоты кристалла, согласно нашим расчетам, изменяет длины О-О-связей, тем самым изменяя размеры кислородных октаэдров О6 и распределение катионов Nb5+ и Li+ по октаэдрам. Вследствие чего в кристалле устанавливается более энергетически выгодное распределение катионов по октаэдрам, при котором порядок расположения катионов вдоль полярной оси повышается. Действительно, анионная подрешетка структуры кристалла LiNbO3: В оказывается более искаженной по сравнению с подрешеткой конгрузнтного кристалла [4-8]. При этом поляризуемость кислородных октаэдров, определяющая нелинейно-оптические свойства кристалла, изменяется. Этот факт уверенно проявляется в спектре КРС кристаллов LiNbO₃: В: линии с частотами 576 и $630 \,\mathrm{cm}^{-1}$, отвечающие соответственно дважды вырожденным Е(ТО) и полносимметричным A₁(TO) колебаниям атомов кислорода кислородных октаэдров О₆, испытывают существенное уширение (в ~2 раза) по сравнению с аналогичными линиями в спектре кристаллов LiNbO_{3 stoich} и LiNbO_{3 cong} (см. таблицу). Этот факт может свидетельствовать о том, что следовое содержание бора, находящегося в тетраэдрических пустотах кристалла, оказывает сильное влияние на кислородный каркас кристалла LiNbO₃, аналогично тому, которое происходит при существенно более высоких концентрациях металлических элементов Zn²⁺, Mg²⁺ [2,8,9,21]. Плавное увеличение ширин линий, отвечающих колебаниям атомов кислорода кислородных октаэдров в кристаллах LiNbO₃: Zn и LiNbO₃: Mg и более резкое их увеличение в спектре кристаллов LiNbO3: В, возможно объяснить следующим: тетраэдрические пустоты структуры кристалла LiNbO₃ выступают в качестве своеобразного "буфера", т.е. выступают в качестве пустот, компенсирующих деформационные изменения кислородного каркаса структуры [22]. Они компенсируют собой различные влияния на анионную подрешетку, в том числе и искажение кислородных октаэдров из-за наличия в них катионов металлов (Zn, Mg и др.). В случае с кристаллами LiNbO₃:В часть тетраэдров получается уже заполненной катионами бора, что отрицательно сказывается на "буферной" способности тетраэдрических пустот компенсировать возможные деформации кислородных

Значения частот (ν , cm⁻¹), ширин (S, cm⁻¹) и интенсивностей (I, rel.u.) некоторых линий в спектре КРС, в ИК-спектре поглощения, концентрация OH-групп ($C[OH^-]/cm^{-3}$), стехиометрия (R = [Li][Nb]) и концентрация структурных дефектов (Nb_{Li} и V_{Li} , mol.%) в кристаллах LiNbO_{3 stoich}, LiNbO_{3 cong}, LiNbO₃ : В (0.55, 0.69 и 0.83 mol.%) В₂O₃ в шихте)

LiNbO3 stoich			LiNbO _{3 cong}			LiNbO ₃ : В (0.55 mol.% В ₂ О ₃ в шихте)				LiNbO ₃ : В (0.69 mol.% В ₂ О ₃ в шихте)				LiNbO ₃ : В (0.83 mol.% В ₂ О ₃ в шихте)			
Параметры ИК-спектров поглощения																	
N	Ι	S	νΙ		S	ν	I S			ν	Ι		S	ν	Ι	S	
3465	0.14	4.28	3470	0.12	16.4	3466	0.14	12.5		3466	0.10	0.10 16.2		3467	0.14	12.5	
3480	0.11	5.37	3483	0.49	24.8	3480	0.08	17.7		3481	0.13	0.13 20.1		3480	0.12	19.9	
3488	0.07	8.18	3486	0.33	27.1	3485	0.33	27.7		3485	0.10	0 22.6		3485	0.29	27.2	
								C[OH	[-]/cm	-3							
$1.6\cdot10^{17}$			$3.3\cdot10^{17}$			$6.4 \cdot 10^{17}$				$3.4\cdot10^{17}$				$6.3 \cdot 10^{17}$			
Параметры спектров КРС																	
ν		S		Ν		S		ν			ν		S		ν	S	
156		7	156			12		156		,	155		9		155	9	
240		9	240			11		241	41 9		241		11		240	10	
268		10		268		14		270		3	271 1		12		270	13	
434		10	434			14		432	9)	432		10		432	11	
576		16		576		15		75	32	2	576		33		576	33	
626		20	626			25	626		41		628		42		626	46	
876		20		876		30		875 25		5	877		25		875	26	
								R =	[Li]/[Nt)]							
1			0.942			0.96		67		0.977			0.970				
					Ко	щентра	ция ст	руктурны	ых дефе	ектов (георети	ическа	яя)				
Nb _{Li}		V _{Li}	Nb _{Li}			$V_{\rm Li}$		Nb _{Li}		Li	Nb _{Li} V _{Li}		V _{Li}		Nb_{Li}	V _{Li}	
0		0 0.976 3.904 0.553		2.2	12	0.38	35	1.540		0.503	2.010						

октаэдров, что и объясняет резкое увеличение в спектре КРС ширин линий с частотами 576 и $630 \, {\rm cm}^{-1}$.

Из таблицы видно, что ширина линии с частотой 880 сm⁻¹ в спектрах КРС кристаллов LiNbO₃:В, соответствующая валентным мостиковым колебаниям атомов кислорода $A_1(LO)$ типа симметрии вдоль полярной оси в мостике Me–O–Me (Me–Li⁺, Nb⁵⁺, примесный катион), занимает промежуточное значение между ширинами этой линии в спектре кристаллов LiNbO_{3 stoich} и LiNbO_{3 cong} — 25(26), 20 и 30 сm⁻¹ соответственно. Уменьшение ширины линии с частотой 880 сm⁻¹ в спектре кристаллов LiNbO₃:В может быть связано с повышением упорядочения катионной подрешетки данных кристаллов. Выравнивание коэффициентов распределения K_{Li} и K_{Nb} в процессе роста кристалла объясняет приближение отношения Li/Nb к 1 в кристаллах LiNbO₃:В, а наличие бора в кислородных

тетраэдрах ограничивает образование структурного дефекта — Nb_{Li}. Таким образом, упорядочение катионной подрешетки кристалла проявляется в спектре КРС не только в диапазоне $200-300 \,\mathrm{cm}^{-1}$, соответствующем колебаниям катионов металлов в кислородных октаэдрах вдоль полярной оси, но также косвенно прослеживается по параметрам линии 880 cm⁻¹. Согласно полученным данным, можно заключить, что бор, встраиваясь в кислородные тетраэдры структуры кристалла LiNbO₃ даже в следовых количествах, заметно искажает анионный каркас, что приводит к заметной асимметрии кислородных октаэдров (по сравнению с таковой в кристаллах LiNbO3 cong) и изменению их поляризуемости. Деформация и поляризуемость кислородных октаэдров О₆, в свою очередь, определяют электрооптические свойства кристалла LiNbO₃ [2,23] При этом катионная подрешетка кристаллов LiNbO3: В, напротив, оказывается более упорядоченной по сравнению с катионной подрешеткой кристалла LiNbO_{3 cong}, что также подтверждается данными КРС (см. таблицу).

Флюс В2О3 оказывает заметное влияние также на локализацию атомов водорода в структуре кристалла LiNbO₃. Присутствие ОН-групп в кристалле LiNbO₃ повышает проводимость, эффект фоторефракции и понижает величину коэрцитивного поля. Из таблицы видно, что в ИК-спектре поглощения кристаллов LiNbO3: В интенсивности и ширины линий, соответствующие валентным колебаниям ОН-групп меньше, чем в спектре конгрузнтного кристалла. Концентрация ОН-групп, рассчитанная из ИК-спектров поглощения по методу Клавира [24], минимальна для кристалла LiNbO3 stoich и максимальна для кристаллов LiNbO3: В (0.55 и 0.83 mol.% В2О3 в шихте), при этом для кристаллов LiNbO3 cong и LiNbO3 : В (0.69 mol.% В2О3 в шихте) концентрация ОН-групп различается незначительно (см. таблицу). По формулам, предложенным в [25], мы рассчитали отношение Li/Nb и концентрацию собственных дефектов в исследуемых кристаллах ниобата лития (см. таблицу). Согласно модели компенсации Li-вакансий, в кристаллической решетке конгруэнтного кристалла LiNbO3 существует 1 mol.% дефектов Nb_{Li} и 4 mol.% дефектов V_{Li} [26,27]. В идеальном стехиометрическом кристалле дефекты Nb_{Li} отсутствуют. Согласно полученным данным, для кристаллов LiNbO3: В отношение Li/Nb и концентрация точечных структурных дефектов NbLi и VLi принимают промежуточные значения между значениями этих концентраций для кристаллов LiNbO_{3 stoich} и LiNbO_{3 cong} (см. таблицу). Интересно отметить, что из серии исследованных кристаллов, выращенных с использованием флюса В₂О₃, концентрация ОН-групп минимальная для кристалла LiNbO₃: В (0.69 mol.% В₂О₃ в шихте). Полученное значение концентрации хорошо согласуется со значением концентрации структурных дефектов, минимальной для того же кристалла ($C[OH^-] = 3.4 \cdot 10^{17} \,\mathrm{cm}^{-3}, \, C[Nb_{\mathrm{Li}}]$ и $[V_{\rm Li}] = 0.385$ и 1.540 mol.% соответственно). Поскольку наличие глубокой ловушки электронов (Nb_{Li}) и OHгрупп в кристалле отвечают за эффект фоторефракции, кристалл LiNbO₃: В (0.69 mol.% В₂O₃ в шихте) обладает наибольшим сопротивлением повреждению лазерным излучением (см. таблицу). Эти данные хорошо согласуются с результатами исследования фотоиндуцированного рассеяния света (ФИРС) и лазерной коноскопии, полученными для данных кристаллов [6]. Сравнительный коноскопический анализ исследованных кристаллов при использовании лазерного излучения мощностью 1 и 90 mW, а также исследование ФИРС позволили заключить, что оптическая однородность кристаллов LiNbO3:В сравнима с таковой для кристалла LiNbO3 cong, но при этом значительно выше оптической однородности кристалла LiNbO3 stoich [6]. Необходимо отметить также, что эффект фоторефракции в кристалле LiNbO3 stoich существенно больше, чем в конгрузнтном кристалле и в кристаллах LiNbO3: В (0.55-0.83 mol.% В₂О₃ в шихте). Для кристалла LiNbO_{3 stoich} характерен

также более значительный угол θ раскрытия спеклструктуры индикатрисы ФИРС (56°) в отличие от кристаллов LiNbO₃: В (0.55–0.83 mol.% В₂O₃ в шихте), для которых угол θ не превышает 22° [6].

Заключение

Рассмотрено влияние неметаллического элемента бора на структурные и некоторые оптические свойства монокристаллов LiNbO₃: В. Применение B₂O₃ в качестве флюса позволяет получать номинально чистые композиционно однородные кристаллы LiNbO3, обладающие повышенным упорядочением структурных единиц катионной подрешетки, близкой к таковой для стехиометрических кристаллов, повышенным сопротивлением лазерному излучению, а также пониженной концентрацией глубоких ловушек электронов (дефектов Nb_{Li}), в значительной степени определяющих величину эффекта фоторефракции в номинально чистых кристаллах LiNbO₃. Расчетами установлено, что элемент бор может встраиваться в грани кислородных тетраэдров кристаллической структуры LiNbO₃, граничащие с литиевым или с вакантным кислородными октаэдрами, либо встраиваться в кислородную плоскость, разделяющую кислороднооктаэдрические слои. Следовые количества бора в структуре кристалла LiNbO₃: В, по-видимому, подчиняясь определенному механизму встраивания в кислородные тетраэдры, подобно пороговым механизмам для легирующих металлов, привносят в систему дополнительный положительный заряд, тем самым предотвращая образование точечных дефектов NbLi. С другой стороны, встраиваясь в кислородные тетраэдры, бор заметно искажает анионный каркас структуры кристалла и изменяет поляризуемость кислородных октаэдров, которая определяет нелинейно-оптические свойства кристалла. Причем при искажении октаэдров О6 одновременно происходит упорядочение структурных единиц катионной подрешетки вдоль полярной оси. Таким образом, в работе осуществлен новый подход к получению номинально чистых монокристаллов LiNbO3 по составу и, отчасти, структуре приближающихся к стехиометрическим, когда составляющая флюса в следовых количествах оказывает многоэтапное и комплексное влияние на структурные и оптические свойства монокристаллов.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации, научная тема № 0226-2019-0038 (регистрационный № АААА-А18-118022190125-2) и Российским фондом фундаментальных исследований (РФФИ), грант № 19-33-90025-Аспиранты.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- V.A. Shur, A.R. Akhmatkhanov, I.S. Baturin. Appl. Phys. Rew., 2 (4), 040604 (2015). https://doi.org/10.1063/1.4928591
- [2] Н.В. Сидоров, Т.Р. Волк, Б.Н. Маврин, В.Т. Калинников. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны (Наука, М., 2003) 255 с.
- [3] K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfavi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, K. Polgar. Appl. Phys. Rew., 2 (4), 040601 (2015). https://doi.org/10.1063/1.4929917
- [4] Н.В. Сидоров, М.Н. Палатников, А.А. Яничев, Р.А. Титов, Н.А. Теплякова. Опт. и спектр., **121** (1), 40 (2016). DOI: 10.7868/S0030403416070199 [N.V. Sidorov, M.N. Palatnikov, А.А. Yanichev, R.A. Titov, N.A. Teplyakova. Opt. Spectr., **121** (1), 1024 (2016). DOI: 10.1134/S0030400X16070195]
- [5] Н.В. Сидоров, М.Н. Палатников, А.А. Яничев, Р.А. Титов, Н.А. Теплякова. ЖПС., 83 (5), 707 (2016). [N.V. Sidorov, M.N. Palatnikov, А.А. Yanichev, R.A. Titov, N.A. Teplyakova. J. Appl. Spectr., 83 (5), 750 (2016). DOI: 10.1007/s10812-016-0358-2]
- [6] Н.В. Сидоров, Н.А. Теплякова, Р.А. Титов, М.Н. Палатников. Сиб. физ. журн., **13** (2), 70 (2018). DOI 10.25205/2541-9447-2018-13-2-70-79
- [7] H.B. Сидоров, H.A. Теплякова. P.A. Титов, Палатников. ЖТФ., 88 (12), 1820 M.H. (2018).DOI: 10.21883/JTF.2018.12.46783.39-18 [N.V. Sidorov. N.A. Teplyakova, R.A. Titov, M.N. Palatnikov. Tech. Phys., **63** (12), 1758 (2018). DOI: 10.1134/S1063784218120198
- [8] М.Н. Палатников, Н.В. Сидоров, Р.А. Титов, Н.А. Теплякова, О.В. Макарова. Персп. матер., 6, 5 (2018). DOI: 10.30791/1028-978X-2018-6-5-15
- [9] Т.С. Черная, Т.Р. Волк, И.А. Верин, В.И. Симонов. Кристаллогр., 53 (4), 612 (2008).
- [10] М.Н. Палатников, Н.В. Сидоров, О.В. Макарова, И.В. Бирюкова. Фундаментальные аспекты технологии сильно легированных кристаллов ниобата лития (Изд-во КНЦ РАН, Апатиты, 2017) 241 с.
- [11] М.Н. Палатников, Н.В. Сидоров, И.В. Бирюкова, О.Б. Щербина, В.Т. Калинников. Персп. Матер., 2, 93 (2011).
- [12] S.C. Abrahams, H.J Levinstein, J.M. Reddy. J. Phys. Chem. Sol., 27,(6–7), 1019 (1966). https://doi.org/10.1016/0022-3697(66)90074-6
- [13] H. Lehnert, H. Boysen, F. Frey, A.W. Hewat.
 Zeitschrift für Kristallographie, 212 (10), 712 (1997).
 DOI: 10.1524/zkri.1997.212.10.712
- [14] Т.Б. Беккер. докт. дисс. г.-м. наук (Новосибирск, Институт геологии и минералогии им. В.С. Соболева СО РАН, 2015) 279 с.
- [15] R.D. Shannon. Acta Cryst. A32, 751 (1976).
 DOI: 10.1107/S0567739476001551
- [16] Н.В. Белов. Очерки по структурной минералогии (Недра, М., 1976) 344 с.
- [17] Р.С. Бубнова, С.К. Филатов. Высокотемпературная кристаллохимия боратов и ортосиликатов (Наука, СПб., 2008) 760 с.
- [18] C. Huang, S. Wang, N. Ye. J. All. Comp., 502 (1), 211 (2010). DOI: 10.1016/j.jallcom.2010.04.146
- [19] Н.В. Сидоров, М.Н. Палатников, Л.А. Бобрева.
 Журн. структ. химии., 60 (9), 1434 (2019).
 DOI: 10.26902/JSC_id46180 [N.V. Sidorov, M.N. Palatnikov,
 L.A. Bobreva. J. Struct. Chem., 60 (9), 1375 (2019).
 DOI: 10.1134/S0022476619090026]

[20] Н.В. Сидоров, Н.А. Теплякова, Р.А. Титов, М.Н. Палатников. В сб.: Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов, под ред. В.М. Самсонова, Н.Ю. Сдобнякова. (Тверь, Твер. гос. ун-т, 2019) с. 223. DOI: 10.26456/pcascnn/2019.11.223

71

- [21] N.V. Sidorov, Y.A. Serebryakov. Vib. Spectrosc., 6 (2), 215 (1994). https://doi.org/10.1016/0924-2031(94)85008-9
- [22] D. Xue, K. Kitamura, J. Wang. Opt. Mater., 23 (1–2), 399 (2003). https://doi.org/10.1016/S0925-3467(02)00326-9
- [23] Ю.С. Кузьминов. Электрооптический и нелинейнооптический кристалл ниобата лития (Наука, М., 1987) 264 с.
- [24] S. Klauer, M. Wöhlecke, S. Kapphan. Phys. Rev. B, 45, 2786 (1992). https://doi.org/10.1103/PhysRevB.45.2786
- [25] М.И. Саллум, О.С. Грунский, А.А. Маньшина, А.С. Тверьянович, Ю.С. Тверьянович. Изв. РАН. Сер. хим., 73 (11), 2162 (2009). [М.Ү. Salloum, O.S. Grunsky, А.А Man'shina, A.S. Tver'yanovich, Y.S. Tver'yanovich. Russ. Chem. Bull., 58, 2228 (2009). DOI: 1066_5285/09/5811_2228]
- [26] N. Iyi, K. Kitamura, F. Izumi, J.K. Yamamoto, T. Hayashi,
 H. Asano, S. Kimura. J. Sol. Stat. Chem., **101** (2), 340 (1992).
 DOI: 10.1016/0022-4596(92)90189-3
- [27] J. Blümel, E. Born, Th. Metzger. J. Phys. Chem. Sol., 55 (7), 589 (1994). https://doi.org/10.1016/0022-3697(94)90057-4