Ballistic Conductance in a Topological 1T'-MoS₂ Nanoribbon

© V. Sverdlov¹, EA.-M. El-Sayed², H. Kosina², S. Selberherr²

¹ Christian Doppler Laboratory for Nonvolatile Magnetoresistive Memory and Logic at Institute for Microelectronics,

TU Wien, Austria

² Institute for Microelectronics,

TU Wien, Austria

E-mail: sverdlov@iue.tuwien.ac.at, elsayed@iue.tuwien.ac.at, kosina@iue.tuwien.ac.at, Selberherr@TUWien.ac.at

Received June 23, 2020 Revised July 23, 2020 Accepted for publication July 27, 2020

A MoS₂ sheet in its 1T' phase is a two-dimensional topological insulator. It possesses highly conductive edge states which due to topological protection, are insensitive to back scattering and are suitable for device channels. A transition between the topological and conventional insulator phases in a wide 1T'-MoS₂ sheet is controlled by an electric field orthogonal to the sheet. In order to enhance the current through the channel several narrow nanoribbons are stacked. We evaluate the subbands in a narrow nanoribbon of 1T'-MoS₂ by using an effective $\mathbf{k} \cdot \mathbf{p}$ Hamiltonian. In contrast to a wide channel, a small gap in the spectrum of edge states in a nanoribbon increases with the electric field. It results in a rapid decrease in the nanoribbon conductance with the field, making it potentially suitable for switching.

Keywords: topological insulators, topologically protected edge states, nanoribbons, subbands, k.p Hamiltonian, ballistic conductance.

Full text of the paper will appear in journal SEMICONDUCTORS.