Collective spin glass state in nanoscale particles of ferrihydrite

© S.V. Stolyar^{1,2,3}, R.N. Yaroslavtsev^{1,2}, V.P. Ladygina², D.A. Balaev^{1,3}, A.I. Pankrats^{1,3}, R.S. Iskhakov¹

 ¹ Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
²Krasnoyarsk Scientific Center, Federal Research Center KSC, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
³ Siberian Federal University, 660041 Krasnoyarsk, Russia
E-mail: stol@iph.krasn.ru

Received June 23, 2020 Revised July 23, 2020 Accepted for publication July 27, 2020

Ferromagnetic resonance was used to study three types of ferrihydrite nanoparticles: nanoparticles formed as a result of the cultivation of microorganisms *Klebsiella oxytoca*; chemically ferrihydrite nanoparticles; chemically prepared ferrihydrite nanoparticles doped with Cu. It is established from the ferromagnetic resonance data that the frequency-field dependence (in the temperature range $T_P < T < T^*$) is described by the expression: $2\pi\nu/\gamma = H_R + H_{(T=0)}^A \cdot (1 - T/T^*)$, where γ is the gyromagnetic ratio, H_R is the resonance field. The induced anisotropy H^A is due to the spin-glass state of the near-surface regions. T_P temperature characterizes the energy of the interparticle interaction of nanoparticles.

Keywords: nanoparticles, ferrihydrite, magnetic anisotropy, magnetic resonance.

Full text of the paper will appear in journal SEMICONDUCTORS.