The diagram of p-n junction formed on the n-GaAs surface by 1.5 keV Ar $^+$ ion beam

© V.M. Mikoushkin¹, E.A. Makarevskaya¹, A.P. Solonitsyna¹, M. Brzhezinskaya²

12489 Berlin, Germany

E-mail: M.Mikoushkin@mail.ioffe.ru, makareka@mail.ru, Anna.Solonitsina@mail.ioffe.ru, maria.brzhezinskaya@helmholtz-berlin.de

Received June 23, 2020 Revised July 23, 2020 Accepted for publication July 27, 2020

The core-level and valence band electronic structure of the n-GaAs (100) has been studied by synchrotron-based high-resolution photoelectron spectroscopy after irradiation by an Ar^+ ion beam with energy $E_i=1500\,\mathrm{eV}$ and fluence $Q=1\cdot10^{15}\,\mathrm{ions/cm^2}$. Conversion of the conductivity type of the surface layer and formation of a p-n structure have been observed. The p-surface layer thickness ($d\sim5.0\,\mathrm{nm}$) and band structure were experimentally determined from the Ga3d photoelectron spectrum by separation and analysis of the low intense n-type bulk contribution from deeper layers. A band diagram of the p-n junction formed on the n-GaAs-surface by Ar^+ ion bombardment was reconstructed. The p-n junction proved to be unexpectedly narrow compared to the extended tail of the implanted ion depth distribution.

Keywords: GaAs, p-n junction, band structure, ion irradiation, Ar^+ ion beam.

Full text of the paper will appear in journal SEMICONDUCTORS.

¹ loffe Institute,

¹⁹⁴⁰²¹ St. Petersburg, Russia

² Helmholtz-Zentrum Berlin for Materials and Energy,