10,11

Удельная теплоемкость и температура Дебая сжатого кристаллического неона в модели деформируемых атомов

© Е.П. Троицкая¹, Е.А. Пилипенко^{1,¶}, Е.Е. Горбенко²

¹ Донецкий физико-технический институт им. А.А. Галкина, Донецк, Украина

² Луганский государственный педагогический университет, Луганск, Украина

[¶] E-mail: pilipenko.katerina@mail.ru

Поступила в Редакцию 14 августа 2020 г. В окончательной редакции 14 августа 2020 г. Принята к публикации 14 августа 2020 г.

> Представлены теоретические *ab initio* исследования термодинамических свойств сжатого кристалла Ne с учетом многочастичного взаимодействия в модели деформируемых атомов. В потенциале отталкивания наряду с трехчастичным взаимодействием, связанным с перекрытием электронных оболочек атома, учитывается деформация электронных оболочек атомов дипольного типа в парном и трехчастичном приближениях. С помощью динамической матрицы на основе неэмпирического короткодействующего потенциала отталкивания и интегрирования по десяти точкам главного значения метода Чади-Коэна проведены расчеты удельной теплоемкости и температуры Дебая в широком интервале давлений и температур. Показано, что вклады трехчастичных сил, связанных как с перекрытием электронных оболочек атомов, так и с деформацией электронных оболочек, увеличивают значение удельной теплоемкости сжатого ГЦК-Ne даже при нулевом давлении. Полученные температурные зависимости находятся в хорошем согласии с имеющимися экспериментальными данными и расчетами других авторов.

> Ключевые слова: кристаллы инертных газов, трехчастичное взаимодействие, деформация электронных оболочек, фононные частоты, удельная теплоемкость, температура Дебая, высокое давление.

DOI: 10.21883/FTT.2020.12.50217.170

1. Введение

Кристаллы инертных газов (КИГ) (кроме Не) образуют ГЦК-структуру с одним атомом в элементарной ячейке. Они являются простейшими молекулярными кристаллами, которые удерживаются сравнительно слабыми силами Ван-дер-Ваальса. Благодаря этому КИГ часто используют в качестве стандартных тестовых объектов во многих теоретических исследованиях [1–3].

В отличие от тяжелых кристаллов Ar, Kr и Xe, более легкий Ne проявляет свойства, отличные от других кристаллов инертных газов. Предсказано [4–7], что Ne имеет самую широкую энергетическую щель, самое высокое давление металлизации и противоположную зависимость плотности запрещенной щели от сжатия. Более того, Ne является первичной составляющей атмосфер звезд и планет [8,9]. Его поведение в экстремальных условиях важно для понимания внутренней структуры, формирования и эволюции этих астрофизических объектов. Таким образом, изучение термодинамических свойств Ne в условиях высоких давлений и температур представляет научный интерес.

Основная тенденция современных работ по *ab initio* расчетам на основе теории функционала плотности (density functional theory — DFT) заключается в стремлении как можно более точно описать слабосвязанные мо-

лекулярные комплексы системы инертных газов, видоизменяя обменно-корреляционный потенциал. В качестве тестовых величин выбраны энергия связи, постоянная решетки и объемный модуль [2,3,10]. Предполагается, что увеличение плотности заряда в результате сжатия приведет к улучшению используемых приближений. Наиболее адекватные результаты будут получаться для тяжелых кристаллов инертных газов (в то время, как кристаллический Ne будет описываться наименее точно, как показано в работе [11]). По мнению авторов [12,13] это связано с тем, что на основе DFT невозможно рассчитать с достаточной точностью два вида дисперсионных сил: дальнодействующее взаимодействие Ван-дер-Ваальса и эффекты перекрытия в короткодействующем потенциале отталкивания.

В связи с этим важно рассчитать широкий круг динамических и термодинамических характеристик сжатых КИГ из первых принципов, применяя единый подход, позволяющий описать как многочастичное взаимодействие в короткодействующем потенциале отталкивания, так и взаимодействие Ван-дер-Ваальса, которое представляет собой результат взаимного деформирующего и поляризующего действия атомов друг на друга.

В предыдущей работе [14] на основе неэмпирической версии квантово-механической модели деформируемых и поляризуемых атомов (модель Толпыго, см. [15] и ссылки там) построена динамическая матрица с учетом обоих видов трехчастичных взаимодействий: как за счет перекрытия электронных оболочек, так и за счет их деформации. Это позволило рассчитать для кристаллического Ne фононные частоты в нужных точках зоны Бриллюэна и, используя метод Чади–Коэна, энергию нулевых колебаний в широком интервале давлений.

Цель настоящей работы — рассчитать удельную теплоемкость и температуру Дебая сжатого кристаллического Ne и исследовать влияние трехчастичного взаимодействия в короткодействующем потенциале отталкивания и деформации электронных оболочек атомов в парном и трехчастичном приближениях на эти характеристики в широком интервале давлений и температур.

2. Термодинамические свойства с учетом трехчастичного взаимодействия и деформации электронных оболочек

Энергия связи кристалла E_{coh} и его решеточная теплоёмкость C_V в гармоническом приближении описываются формулами:

$$E_{coh} = \frac{N_A \Omega}{(2\pi)^3} \sum_{\lambda} \int d^3 k \hbar \omega_{\lambda}(\mathbf{k}) \left[\frac{1}{2} + n_{\lambda}(\mathbf{k}) \right],$$
$$n_{\lambda}(\mathbf{k}) = \left[\exp\left(\frac{\hbar \omega_{\lambda}(\mathbf{k})}{k_B T}\right) - 1 \right]^{-1}, \tag{1}$$

где N_A — число Авогадро, $\Omega = 2a^3$ — объем элементарной ячейки КИГ в ГЦК-фазе, a — параметр решетки, равный половине ребра куба, ω_{λ} — частота ветви λ , **k** безразмерный волновой вектор.

$$C_{V} = \frac{R\Omega}{(2\pi)^{3}} \sum_{\lambda} \int d^{3}k \left[\left(\frac{\hbar \omega_{\lambda}(\mathbf{k})}{k_{B}T} \right)^{2} n_{\lambda}(\mathbf{k}) (n_{\lambda}(\mathbf{k}) + 1) \right],$$
(2)

где *R* — универсальная газовая постоянная, *k*_{*B*} — постоянная Больцмана.

Для нахождения фононных частот в любой точке зоны Бриллюэна необходимо построить динамическую матрицу [14]. В используемой модели Толпыго помимо смещений остовов, описываемых компонентами дипольного момента $p_{\alpha} = eu_{\alpha}$, введены внутренние степени свободы **Р**, характеризующие состояния электронных оболочек. Поэтому для определения собственных частот $\omega_{\lambda k}$, имеются две группы уравнений:

$$M\omega_{\lambda \mathbf{k}}^{2} p_{\alpha} = \sum_{\beta} (A_{\alpha\beta} p_{\beta} + B_{\alpha\beta} P_{\beta}), \qquad (3)$$

$$m\omega_{\lambda\mathbf{k}}^{2}P_{\alpha} = \sum_{\beta} (B_{\beta\alpha}^{*}p_{\beta} + C_{\alpha\beta}P_{\beta}), \qquad (4)$$

где *М* — масса атома, *m* — некоторая "фиктивная" масса порядка массы электронной оболочки, введенная исключительно для удобства расчетов, т.к. диагонализация матрицы 6×6 технически более проста, чем процедура исключения всех компонент вектора **P** из второй группы уравнений при m = 0, как этого требует адиабатическое приближение. Таким образом, удобно ввести некоторую матрицу

$$D = \begin{pmatrix} D^{(1)} & D^{(2)} \\ D^{(2)} & D^{(3)} \end{pmatrix},$$
 (5)

каждый элемент, которой представляет собой матрицу 3×3 :

$$D^{(1)} = \begin{pmatrix} A_{11}(\mathbf{k}) & A_{12}(\mathbf{k}) & A_{13}(\mathbf{k}) \\ A_{21}(\mathbf{k}) & A_{22}(\mathbf{k}) & A_{23}(\mathbf{k}) \\ A_{31}(\mathbf{k}) & A_{32}(\mathbf{k}) & A_{33}(\mathbf{k}) \end{pmatrix}.$$
 (6)

Аналогично для матриц $D^{(2)}(B_{\alpha\beta}(\mathbf{k}))$ и $D^{(3)}(C_{\alpha\beta}(\mathbf{k}))$. Для получения частоты нужной размерности, каждый элемент матрицы нужно умножить на размерный множитель $2\lambda = \frac{e^2}{a^3}$ (*e* — заряд электрона). Тогда

$$A_{\alpha\beta}(\mathbf{k}) = \frac{e^2}{a^3} \begin{bmatrix} B\chi_{\alpha\beta}(\mathbf{k}) + \delta_{\alpha\beta} \left(H\mu(\mathbf{k}) + G\nu_{\alpha}(\mathbf{k}) + F\xi(\mathbf{k}) \right) \\ + E\xi_{\alpha}(\mathbf{k}) + V_t \vartheta_{\alpha}(\mathbf{k}) \right) + (1 - \delta_{\alpha\beta})G\tau_{\alpha\beta}(\mathbf{k}) \end{bmatrix};$$
(7)
$$B_{\alpha\beta}(\mathbf{k}) = \frac{e^2}{a^3} \left[\delta_{\alpha\beta} \left(h\mu(\mathbf{k}) + g\nu_{\alpha}(\mathbf{k}) \right) + (1 - \delta_{\alpha\beta})g\tau_{\alpha\beta}(\mathbf{k}) \right];$$
(8)

$$C_{\alpha\beta}(\mathbf{k}) = \frac{e^2}{a^3} \Big[\delta_{\alpha\beta} A^{-1} - \varphi_{\alpha\beta}(\mathbf{k}) \Big], \tag{9}$$

где $\delta_{\alpha\beta}$ — символ Кронекера;

$$\mu(\mathbf{k}) = 3 - \frac{1}{2} \sum_{\gamma \neq \delta} \cos k_{\gamma} \cos k_{\delta};$$

$$\begin{aligned} \nu_{\alpha}(\mathbf{k}) &= 2 - \cos k_{\alpha} \sum_{\gamma \neq \alpha} \cos k_{\gamma}; \quad \tau_{\alpha\beta}(\mathbf{k}) = \sin k_{\alpha} \sin k_{\beta}; \\ \xi(\mathbf{k}) &= 3 - \sum_{\gamma} \cos 2k_{\gamma}; \quad \xi_{\alpha}(\mathbf{k}) = 1 - \cos 2k_{\alpha}; \\ \vartheta_{\alpha}(\mathbf{k}) &= 1 - \cos k_{\alpha+1} \cos k_{\alpha+2}; \quad \mathbf{k} = a\mathbf{K} = \pi\mathbf{q}. \end{aligned}$$

Здесь $H = H_0 + \delta H$, $G = G_0 + \delta G$, где $H_0(a\sqrt{2})$ и $G_0(a\sqrt{2})$ являются первой и второй производными короткодействующего парного потенциала отталкивания для равновесных расстояний первых соседей; аналогично для вторых соседей $F = H_0(2a)$ и $E = G_0(2a)$; B определяет взаимодействие Ван-дер-Ваальса; h и g — параметры деформации электронных оболочек атомов дипольного типа в парном приближении; $\chi_{\alpha\beta}(\mathbf{k})$ — функции \mathbf{k} , происходящие от ван-дер-ваальсовских сил; $\varphi_{\alpha\beta}(\mathbf{k})$ — коэффициенты электрического поля, вызванного системой диполей \mathbf{P}^t ; A — безразмерная поляризуемость атома. Параметры δG , δH и V_t описывают трехчастичные короткодействующие силы, обусловленные перекрытием электронных оболочек (недеформированных) атомов (см. [15] и ссылки там).

Рис. 1. Температурная зависимость теплоемкости $C_V(T)/R$ кристаллического Ne: a — при давлении p = u = 0, b — при различных сжатиях от u = 0 до 0.7. I — наш расчет в модели MT₂, I' — расчет в модели M3a [20], I'' — расчет в модели M3 [20]. Эксперимент: 2 - [21], 2'' - [22]. 3 — расчет в классической модели Толпыго (M1) [19], 4 — расчеты на основе потенциала Леннард-Джонса (LJ) [23], 4' — расчеты ELJ [23] на основе расширенного (extended) потенциала LJ (ELJ). Температура плавления $T_{m0} = 24.6$ К (при p = 0) показана стрелкой.

В работе [16] были рассмотрены трехчастичные силы, возникающие за счет деформации электронных оболочек атомов. В дальнейшем мы будем учитывать эти силы путем переопределения параметров g и h. Таким образом, диагонализация динамической матрицы D даст нам фононные частоты с учетом трехчастичного взаимодействия и деформации электронных оболочек в любой точке зоны Бриллюэна.

Для вычисления интегралов по зоне Бриллюэна (1)-(2) можно использовать метод Чади-Коэна [17]. Сущность этого метода состоит в замене интеграла по зоне Бриллюэна суммой значений подинтегральной функции в особых точках (точках главного значения), найденных теоретико-групповыми методами [18]. Так, в работе [19] использовались 408 точек главного значения для расчета теплоемкости и тепловых колебаний решетки КИГ при нулевом давлении в классической модели Толпыго (параметры теории определяются из минимума среднеквадратичного отклонения для $\omega_{\lambda k}$). В работе [20] на основе двух точек главного значения метода Чади-Коэна [17] были проведены расчеты фононных частот для кристаллического Ne в моделях M3 (парное взаимодействие в короткодействующем потенциале отталкивания без учета деформации электронных оболочек атома) и МЗа (парное взаимодействие и учет деформации электронных оболочек атома в парном приближении). В недавней работе [14] были рассчитаны энергия фононов и энергии нулевых колебаний в двух и десяти точках для КИГ при различных сжатиях $u = \Delta V / V_0$ $(\Delta V = V_0 - V(p))$, где V_0 — объем при p = 0) на основе двух моделей: МТ₀ — с учетом трехчастичного взаимодействия за счет перекрытия электронных оболочек и без учета деформации электронных оболочек атома и в модели MT₂, которая учитывает трехчастичные силы за

счет перекрытия электронных оболочек и деформацию электронных оболочек атомов дипольного типа в парном и трехчастичном приближениях.

Для количественного анализа влияния трехчастичных сил и деформации электронных оболочек на термодинамические свойства кристаллического Ne проведем расчеты удельной теплоемкости и температуры Дебая во всех четырех моделях (MT₂, MT₀, M3, M3a) представленных выше.

3. Удельная теплоемкость и температура Дебая

На рис. 1, *а* приведены экспериментальные температурные зависимости теплоемкости $C_V(T)$ для Ne при нулевом давлении [21,22]. Кроме того, представлены наши результаты, полученные по формуле (2) с использованием моделей MT₂, M3a, расчеты в классической версии теории Толпыго (модель M1) [19], а также теоретические результаты других авторов [23].

Из рис. 1, *а* видно, что до $T \approx 10$ К все теоретические расчеты близки между собой и хорошо согласуются с экспериментом. В области температур от 10 К до температуры плавления T_{m0} наилучшее согласие с экспериментом дают расчеты в модели М1 (с параметрами из [19]) и наши расчеты в модели МТ₂. Также близки к эксперименту расчеты [23] на основе расширенного *ab initio* двухчастичного потенциала Леннард–Джонса (extended Lennard-Jones potential — ELJ) [24].

Как видно из наших результатов (рис. 1, a) величина $C_V(T)/R$, рассчитанная с учетом трехчастичных сил, возникающих за счет перекрытия электронных оболочек и деформации электронных оболочек атомов дипольного типа в парном и трехчастичном приближениях (MT₂)

450 400 b 350 95 Ne п 300 90 θ, Κ 85 250 80 \mathbf{M} 200 Θ. 75 150 70 100 65 50 60 20 30 40 50 70 8 60 10 12 14 102 4 6 16 *T*. K *T*. K

Рис. 2. Температурная зависимость $\theta(T)$ кристаллического Ne: *a* — при разных давлениях, *b* — при *p* = 0. 3, 3' — расчеты в модели M1 по 10 [20] и 408 [19] точкам в схеме Чади–Коэна, соответственно. Остальные обозначения как на рис. 1.

практически накладывается на расчет в модели M1 (графики пересекаются в нескольких точках), приближая его к экспериментальным значениям по сравнению с расчетами в модели M3a.

Лучшее согласие с экспериментом по теплоемкости должны давать теории, наиболее точно описывающие фононный спектр, так как $C_V(T)$ однозначно им определяется. Учет трехчастичных сил, обязанных своим появлением как перекрытию электронных оболочек атома, так и их деформации позволяет получить набор фононных частот [14], который дает лучшее согласие с экспериментом по теплоемкости, по сравнению с расчетами в модели M3a, где трехчастичное взаимодействие не учитывается [25,26].

На рис. 1, b представлена удельная теплоемкость Ne при $p \neq 0$ в зависимости от температуры, рассчитанная в моделях МТ₂ и МЗ [20]. Как видно из рис. 1, b, при увеличении давления значения С_V уменьшаются в соответствующих температурных интервалах, они не достигают предельного значения 3R, а также меняется вид кривой как в одной, так и в другой модели. Видно, что с ростом сжатия трехчастичное взаимодействие и деформация электронных оболочек атомов несколько повышают значения теплоемкости даже в недеформированном кристалле Ne (см. рис. 1, b). Так, например, при p = 0и $T = 160 \text{ K} - C_V^{(M3)} = 2.96R$ и $C_V^{(MT_2)} = 2.97R$; при u = 0.4 (p = 5.091 GPa) и $T = 160 \text{ K} - C_V^{(M3)} = 2.61R$ и $C_V^{(\text{MT}_2)} = 2.63 R$; при u = 0.7 (p = 174.86 GPa) и $T = 160 \,\mathrm{K} - C_V^{(M3)} = 0.68 R$ и $C_V^{(MT_2)} = 0.77 R$. Такой же эффект наблюдается и с ростом температуры как без давления на кристалл, так и в сжатом состоянии. Например, для u = 0.5 (p = 15.64 GPa) при T = 200 К —

 $C_V^{(M3)} = 2.48R$ и $C_V^{(MT_2)} = 2.51R$; при T = 400 К — $C_V^{(M3)} = 2.85R$ и $C_V^{(MT_2)} = 2.86R$; при T = 600 К — $C_V^{(M3)} = 2.93R$ и $C_V^{(MT_2)} = 2.94R$.

Удельная теплоемкость C_V мала при низких температурах $T \ll \theta_D \ (\theta_D$ — температура Дебая при T = 0) и пропорциональна T^3 . Поэтому для сравнения теории с экспериментом удобно рассчитывать величину

$$\theta(T) = \left(\frac{12\pi^4}{5}\right)^{1/3} T\left(\frac{R}{C_V}\right)^{1/3}.$$
 (10)

Нетрудно заметить, что при $T = 0 \ \theta(0) = \theta_D$.

Температурная зависимость температуры Дебая $\theta(T)$ Ne при разных давлениях, которая рассчитывалась по формуле (10), представлена на рис. 2, *a*. Сопоставление расчетных значений температуры Дебая $\theta(T)$ при нулевом давлении с экспериментальными данными [21] показывает правильность общего хода этой зависимости в достаточно широком температурном интервале 0-20 K (рис. 2, *a*, *b*). Это свидетельствует о том, что теория правильно предсказывает значения $\omega_{\lambda k}$ на начальном участке кривых, в первую очередь, для поперечных (низких) частот.

Однако относительная погрешность наших расчетов $\theta(T)$ в моделях MT₂, MT₀, M3a [20] и M3 по сравнению с экспериментом достаточно велика (см. таблицу) при низких температурах $T \leq 5$ К. Учет трехчастичных сил, связанных с перекрытием электронных оболочек и деформацией электронных оболочек атомов дипольного типа в парном и трехчастичном приближениях (MT₂) улучшает согласие с экспериментом и дает наименьшую погрешность (среднее значение $\gamma_{MT_2} = 9.15\%$), приближая кривую температуры Дебая к экспериментальным

<i>Т</i> , К	$ heta(T),\mathrm{K}$					γ, %				
	Эксп. [21]	MT ₂	MT ₀	M3a	M3	$\gamma_{\rm MT_2}$	$\gamma_{\rm MT_0}$	УМТ3а	γмз	
0	73.16	_	_	_	_	_	_	_	_	
3.01	72.39	84.052	84.057	89.028	89.008	16.11	16.11	22.98	22.95	
3.87	70.20	79.346	79.356	83.998	83.997	13.03	13.04	19.65	19.65	
5.891	66.15	73.965	73.989	78.530	78.554	11.82	11.86	18.72	18.76	
7.955	67.13	72.778	72.815	76.820	76.860	8.41	8.47	14.43	14.49	
10.148	70.20	75.072	75.118	78.593	78.645	6.94	7.00	11.95	12.03	
12.04	73.71	78.836	78.886	81.996	82.053	6.96	7.03	11.24	11.32	
14.018	79.74	83.869	83.920	86.720	86.780	5.18	5.25	8.76	8.83	
16.125	85.98	90.050	90.100	92.630	92.691	4.73	4.79	7.73	7.80	
							Среднее значение у, %			
						0.15	0 10	1// /3	1/1 / 8	

Температурная зависимость $\theta(T)$ кристаллического Ne при p = 0 и относительная погрешность γ_i

Примечание. $\gamma_i = (|\theta_i - \theta_{\exp}|/\theta_{\exp}) \cdot 100\%$

точкам (рис. 2, *b*). Модель, учитывающая трехчастичное взаимодействие за счет перекрытия электронных оболочек и не учитывающая деформацию электронных оболочек атома (МТ₀) имеет близкий к предыдущему результат со средним значением $\gamma_{\rm MT_0} = 9.19\%$. Средние значения погрешностей моделей МЗа и МЗ составляют 14.43% и 14.48% соответственно.

Большая погрешность рассчитанных нами значений $\theta(T)$ для Ne по сравнению с экспериментом при температуре $T \leq 5$ K объясняется недостаточным числом точек Чади–Коэна [19] (см., например, кривые 3, 3' на рис. 2, *a*). При температуре $T \geq 10$ K — это недостатки, связанные с приближениями моделей MT₂, MT₀, M3a и M3. Кроме того, необходимо принимать во внимание, что в неоне квантовые эффекты сравнительно велики,

Рис. 3. Зависимость температуры Дебая от объема. I — наши расчеты в модели МТ₂, I' — расчеты в модели МЗ [20], 2 — эксперимент [27]. Штриховой линией обозначена проведенная нами экстраполяция к экспериментальному значению $\theta_D = 75$ К при $V_0 = 22.234$ Å³/at.

и модель Дебая (10), хорошо описывающая свойства в классических кристаллах, недостаточна.

На рис. 3 представлена рассчитанная нами зависимость температуры Дебая от объема до сжатия u = 0.6 $(p = 44.67 \,\text{GPa})$ в модели МТ₂ и до сжатия u = 0.5 $(p = 14.3 \,\text{GPa})$ в модели МЗ [20]. Как видно, учет трехчастичного взаимодействия и деформации электронных оболочек дипольного типа в парном и трехчастичном приближениях улучшают согласие с экспериментом [27].

4. Заключение

Исследование роли трехчастичных сил и их влияния на свойства КИГ под давлением привлекает внимание многих исследователей (см., например, [12,28]). Ряд довольно важных результатов получили авторы [12], которые квантово-теоретическим методом исследовали влияние парных и трехчастичных сил, эффектов энергии нулевых колебаний и ангармонизма на уравнение состояния кристаллического Ne под давлением. В своей работе авторы [12], сравнивая результаты с экспериментальными значениями уравнения состояния, установили, что учет трехчастичного взаимодействия становится наиболее важным при высоких давлениях, а в области низкого давления доминируют энергии нулевых колебаний. Результаты [12] также подтверждают быструю сходимость разложения многочастичных сил для Ne даже при высоких давлениях. Влияние трехчастичных сил и ангармонических эффектов на энергию нулевых колебаний для КИГ в несжатом состоянии рассматривалось в работе [28]. Хотя авторы и не проводили сравнение своих результатов с экспериментальными, наилучший результат для Ne был получен в модели Эйнштейна при учете двух- и трехчастичных сил и полного учета ангармонических эффектов (погрешность при сравнении с экспериментом $\gamma = 3.1\%$).

В предыдущей работе [14] в модели деформируемых и поляризуемых атомов нами была построена динамическая матрица КИГ на основе неэмпирического короткодействующего потенциала отталкивания с учетом трехчастичного взаимодействия и деформации электронных оболочек атомов дипольного типа в парном и трехчастичном приближениях. Были проведены ab initio расчеты энергии фононов для сжатых кристаллов инертных газов в двух и десяти точках главного значения метода Чади-Коэна в широком интервале давлений. Для Ne было получено, что относительный вклад трехчастичных сил за счет перекрытия электронных оболочек по сравнению с парным имеет среднее значение 0.29% при u = p = 0 и 0.53% при u = 0.76 (ограничение сжатием u = 0.76 связано с абсолютной неустойчивостью ГЦК-решетки для Ne [29]). Учет деформации электронных оболочек дипольного типа в трехчастичном приближении наряду с трехчастичными силами, возникающими за счет перекрытия электронных оболочек, приводит к увеличению вклада обоих видов трехчастичных сил в короткодействующий потенциал отталкивания при больших сжатиях (5% при u = 0.76 для Ne).

В настоящей работе на основе полученных фононных частот для кристаллического неона как под давлением, так и без него рассчитаны температурные зависимости решеточной теплоемкости и температуры Дебая, а также исследовано влияние на них трехчастичного взаимодействия в короткодействующем потенциале отталкивания и деформации электронных оболочек атомов в парном и трехчастичном приближениях. Как видно из сравнения результатов расчетов в моделях MT₂ и M3a (рис. 1), вклад трехчастичных сил, обязанных своим возникновением как перекрытию, так и деформации электронных оболочек приводит к улучшению согласия с экспериментальными данными. Вклад трехчастичного взаимодействия и деформации электронных оболочек дипольного типа в парном и трехчастичном приближениях в Ne заметен даже при нулевом давлении, причем в том температурном интервале, где C_V еще не приняла значение 2.99*R*, а начиная со сжатия u = 0.4 (p = 5.1 GPa) во всем температурном интервале. Как показано в таблице, относительная погрешность полученных результатов по сравнению с экспериментальными данными уменьшается с увеличением температуры. Сравнение средних значений погрешностей разных расчетных моделей показывает, что вклад деформации в парном приближении уменьшает погрешность на 0.05% ($\gamma_{M3a}, \gamma_{M3}$), учет трехчастичного взаимодействия, связанного с перекрытием электронных оболочек, — на 0.04% (умт₂, умт₀), а вклад трехчастичных сил, как за счет перекрытия, так и связанных с деформацией ($\gamma_{MT_2}, \gamma_{M3a}$) — на 5.3%.

Таким образом, полученные нами результаты расчета удельной теплоемкости и температуры Дебая для ГЦК-Ne с учетом трехчастичных сил и деформации электронных оболочек атомов дипольного типа в парном и трехчастичном приближении хорошо согласуются с экспериментом и очень близки к результатам расчета в классической модели Толпыго.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- I. Kwon, L.A. Collins, J.D. Kress, N. Troullier. Phys. Rev. B 52, 15165 (1995).
- [2] T. Bucko, J. Hafner, S. Lebegue, J. Angyan. J.Phys. Chem. A 114, 11814 (2010).
- [3] F. Tran, L. Kalantari, B. Traore, X. Rocquefelte, P. Blaha. Phys. Rev. Mater. **3**, 063602 (2019).
- [4] J.C. Boettger. Phys. Rev. B 33, 6788 (1986).
- [5] N.D. Drummond, R.J. Needs. Phys. Rev. B 73, 024107 (2006).
- [6] Y. He, X. Tang, Y. Pu. Physica B 40, 4335 (2010).
- [7] J. Tang, B. Ao, L. Huang, X. Ye, Y. Gu, Q. Chen. J. Chem. Phys. 150, 111103 (2019).
- [8] J. Hughto, A.S. Schneider, C.J. Horowitz, D.K. Berry. Phys. Rev. E 82, 066401 (2010).
- [9] R.S. McWilliams, D.A. Dalton, Z. Konopkova, M.F. Mahmood, A.F. Goncharov. Proc. Natl. Acad. Sci. U.S.A. 112, 7925 (2015).
- [10] F. Tran, P. Kovacs, L. Kalantari, G.K.H. Madsen, P. Blaha. J. Chem. Phys. 149, 144105 (2018).
- [11] M.G. Medvedev, I.S. Bushmarinov, J. Sun, J.P. Perdew, K.A. Lyssenko. Science 355, 49 (2017).
- [12] P. Schwerdtfeger, A. Hermann. Phys. Rev. B 80, 064106 (2009).
- [13] P. Schwerdtfeger, K.G. Steenbergen, E. Pahl. Phys. Rev. B 95, 214116 (2017).
- [14] Е.П. Троицкая, Е.А. Пилипенко, Е.Е. Горбенко. ФТТ 61, 1890 (2019).
- [15] Е.П. Троицкая, Е.Е. Горбенко, Е.А. Пилипенко. ФНТ 42, 526 (2016).
- [16] Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, Е.А. Пилипенко. ФТТ **57**, 114 (2015).
- [17] D.J. Chadi, M.L. Cohen. Phys. Rev. B 8, 5747 (1973).
- [18] A. Baldereschi. Phys. Rev. B 7, 5212 (1973).
- [19] Е.В. Зароченцев, К.Б. Толпыго, Е.П. Троицкая. ФНТ 5, 11, 1324 (1979).
- [20] Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, Н.В. Кузовой. ФНТ 35, 8, 1041 (2009).
- [21] D.N. Batchelder, D.L. Losee, R.O. Simmons. Phys. Rev. B 162, 3, 767 (1967).
- [22] H. Fenichel, B. Serin. Phys. Rev. 142, 490 (1966).
- [23] G.E. Moyano, P. Schwerdtfeger, K. Rosciszewski. Phys. Rev. B 75, 2, 4101 (2007).
- [24] P. Schwerdtfeger, N. Gaston, R.P. Krawczyk, R. Tonner, G.E. Moyano. Phys. Rev. B 73, 6, 4112 (2006).
- [25] Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко. ФТТ 47, 8, 1683 (2005).
- [26] Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко. ФТТ 48, 4, 695 (2006).
- [27] A. Dewaele, F. Datchi, P. Loubeyre, M. Mezouar. Phys. Rev. B 77, 094106 (2008).
- [28] K. Rosciszewski, B. Paulus. Phys. Rev. B 66, 092102 (2002).
- [29] Е.П. Троицкая, Е.А. Пилипенко, Е.Е. Горбенко. ФТТ 61, 154 (2019).

Редактор Е.Ю. Флегонтова