19,04,06

Исследование высокотемпературной теплоемкости $PbSiO_3$ и Pb_2SiO_4

© В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 13 апреля 2011 г. В окончательной редакции 28 июня 2011 г.)

Получены данные по темлоемкости PbSiO₃ и Pb₂SiO₄ в температурном диапазоне 390-850 К.

1. Введение

Оксидные соединения PbO–SiO₂ используются в технике в качестве основы для оптических преобразователей типа микроканальных пластин [1]. Их свойства существенно зависят от содержания PbO, а концентрационные зависимости некоторых свойств имеют ряд особенностей в области составов 45–50 mol.% [2]. По данным разных авторов в системе PbO–SiO₂ четко установлено наличие соединений 1:1 (PbSiO₃) и 2:1 (Pb₂SiO₄) [3–5]. Для других соединений (3:1 и 4:1) получены противоречивые сведения.

Твердые растворы Pb₅(Ge_{1-x}Si_x)₃O₁₁ проявляют ярко выраженные сегнетоэлектрические свойства с точкой Кюри T_C , понижающейся от 450 до 220 К при содержании кремния до ~ 70 at.% [6]. Отмечено, что имеется много работ, посвященных изучению их структуры, электрофизических, механических и других свойств, тогда как сведений по термодинамическим свойствам явно недостаточно. Такие сведения по теплоемкости получены для PbO-GeO₂ [7]; Pb₅(Ge_{1-x}Si_x)₃O₁₁ при x = 0; 0.39 и 0.45 в области 5–300 К [1]; PbO-SiO₂ экспериментально только при низких температурах ($T \le 300$ К) [8]. Используя последние данные по температурной зависимости C_p до 300 К в [9] рассчитана зависимость $C_p = f(T)$ до 1000 К.

Целью настоящей работы является исследование высокотемпературной теплоемкости оксидных соединений PbSiO₃ и Pb₂SiO₄.

2. Эксперимент

Измерение теплоемкости C_p стекол PbSiO₃ и кристаллов Pb₂SiO₄ проводилось по методике, описанной ранее [10]. Изучаемые образцы PbSiO₃ представляли собой рентгеноаморфные визуально прозрачные стекла. Соединение Pb₂SiO₄ было в кристаллическом состоянии. Эти соединения синтезировали из PbO и SiO₂ особой чистоты. При этом учитывали особенности получения свинецсодержащих соединений [7].

3. Результаты и их обсуждение

Температурная зависимость C_p стекол PbSiO₃ показана на рис. 1. Из этих данных следует, что в интервале температур 390–670 К значения C_p плавно увеличиваются. При дальнейшем росте температуры на кривой $C_p = f(T)$ наблюдается характерный максимум. Не исключено, что этот максимум связан с процессами расстекловывания. Отметим, что согласно [11], подобное изменение C_p на кривой $C_p = f(T)$ может быть связано с размягчением стекла, сопровождающимся эндометрическим тепловым эффектом.

На рис. 2 приведены экспериментальные зависимости $C_p(T)$ при низких температурах [8] и рассчитанные по этим результатам выскотемпературные значения C_p [9]. Здесь же приведены и наши результаты до температуры размягчения стекла. Из рис. 2 следует, что получено согласие литературных данных и наших результатов.

Полученные нами значения $C_p = f(T)$ могут быть описаны уравнением

$$C_p = 109.47 + 24.5 \cdot 10^{-3}T - 23.72 \cdot 10^5 T^{-2} [\text{J}/(\text{mol} \cdot \text{K})].$$
(1)

Это позволяет определить изменения $H_T^0 - H_{298}^0$, J/mol и энтропии $S_T^0 - S_{298}^0$, J/(mol·K) по известным термодинамическим уравнениям. Результаты приведены в табл. 1.

На рис. 3 приведены температурные зависимости теплоемкости *C_p* для кристаллов Pb₂SiO₄. Видно, что

Рис. 1. Температурная зависимость C_p стекол PbSiO₃.

Рис. 2. Влияние температуры на теплоемкость $PbSiO_3$: I - [8], 2 - [9], 3 — наши данные.

Рис. 3. Температурная зависимость C_p кристаллов Pb₂SiO₄: I - [8], 2 - [9], 3 — наши данные.

Рис. 4. Влияние состава SiO₂-PbO на стандартное значение теплоемкости: *1* — [12], *2* — [13], *3* — наши данные.

Таблица 1. Сглаженные значения молярной теплоемкости и рассчитанные по ним термодинамические свойства PbSiO₃

<i>Т</i> ,К	$C_p, J/(\text{mol}\cdot K)$	$H_T - H_{298}^0, \text{J/mol}$	$S_T^0 - S_{298}^0$, J/(mol·K)
298	90.06	0.00	0.00
350	98.68	7287.80	15.21
400	104.45	14067.82	28.78
450	108.78	20720.84	41.34
500	112.23	27303.32	52.99
550	115.10	32851.22	63.83
600	117.58	40388.49	73.95
650	119.78	46931.72	83.45

Таблица 2. Сглаженные значения C_p и рассчитанные по ним значения $H_T^0 - H_{298}^0$ и $S_T^0 - S_{298}^0$ для Pb₂SiO₄

T, K	C_p , J/(mol·K)	$H_T - H_{298}^0, J/mol$	$S_T^0 - S_{298}^0, J/(mol \cdot K)$
298	136.50	0.00	0.00
350	146.93	10346.86	22.83
400	153.80	19993.75	42.92
450	158.88	29464.66	61.35
500	162.85	38830.25	78.30
550	166.10	48135.45	93.98
600	168.86	57410.25	108.55
650	171.27	66675.38	122.16
700	172.43	75945.68	134.94
750	175.40	85232.00	146.97
800	177.22	94542.50	158.35
850	178.94	103883.41	169.14

и в этом случае полученные нами величины C_p неплохо согласуются с данными работ [8,9]. Полученные нами результаты могут быть аппроксимированы уравнением

$$C_p = 162.82 + 23.8 \cdot 10^{-3}T - 29.67 \cdot 10^5 T^{-2}, \qquad (2)$$

с использованием которого определены термодинамические функци
и $H^0_T-H^0_{298}$ и $S^0_T-S^0_{298}$ (табл. 2)

Влияние состава SiO₂-PbO на стандартное значение теплоемкости показано на рис. 4 (взяты согласованные значения C_p^0). Можно отметить, что значения C_p^0 этом случае меняются в зависимости от состава В так же, как и для системы GeO2-PbO [2]. Тем не менее следует подчеркнуть, что для системы SiO₂-PbO в области 45-50 mol.% РbO реализуется трансформация структуры, а именно, переход от силикатной стеклообразующей сетки к свинцовокислородной, происходящей с изменением типа ближнего порядка [1,2,14]. Иными словами, свинец в структуре силикатных стекол играет двойную роль: модификатора при малых концентрациях и стеклообразователя при высоких [11]. На рис. 4 представлены данные при содержании в оксидах \geq 50 mol.% PbO, т.е. все указанные соединения (PbSiO₃, Pb₂SiO₄, Pb₄SiO₆) имеют в качестве сеткообразователя оксид свинца.

4. Заключение

Исследованы температурные зависимости теплоемкости и определены термодинамические функции стекол $PbSiO_3$ и кристаллов Pb_2SiO_4 в интервале температур от 390 до 850 К.

Список литературы

- [1] О.М. Канунникова, О.Ю. Гончаров. ЖПС 76, 2, 209 (2009).
- [2] И.А. Ванштейн, А.Ф. Защепин, В.С. Кортов, Ю.В. Щапова. ФТТ 42, 2, 224 (2000).
- [3] Н.А. Торопов, В.П. Барзаковский, В.В. Лапин, Н.Н. Курцева. Диаграммы состояния силикатных систем. Справочник. Вып. 1. Двойные системы. Наука, М.–Л. (1965). 546 с.
- [4] Н.А. Торопов, В.П. Барзаковский, В.В. Лапин, Н.Н. Курцева. Диаграммы состояния силикатных систем. Справочник. Вып. 1. Двойные системы. Наука, Л. (1969). 822 с.
- [5] S. Chen, B. Zhao, P.C. Hayes, E. Jak. Met. Mater. Trans. B. 328, 997 (2001).
- [6] А.А. Буш, Е.А. Попова. ФТТ 46, 5, 875 (2004).
- [7] В.М. Денисова, Л.Т. Денисова, Л.А. Иртюго. ФТТ 53, 4, 642 (2011).
- [8] E.G. King. J. Amer. Chem. Soc. 81, 799 (1959).
- [9] M.V. Chase, C.A. Davies, D.J. Frurip, R.A. Mac Donald, A.N. Syverud. JANAF. Thermochemical Tables / J. Phys. Chem. Ref. Data 14. Suppl. 1 (1985). 1856 p.
- [10] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ **52**, *7*, 1274 (2010).
- [11] А.А. Аппен. Химия стекла. Химия, М. (1970), 352 с.
- [12] Физико-химические свойства окислов. Справочник / Под ред. Г.В. Самсонова. Металлургия, М. (1970). 352 с.
- [13] O. Knacke, O. Kubaschewski, K. Hesselmann. Thermochemical properties of inorganic substances. V. 2. Verlag Stahleisen, Dusseldorf; Springer-Verlag, Berlin, N.Y. (1991). 2412 p.
- [14] О.Ю. Гончаров, О.М. Канунникова. ЖФХ 82, 12, 2205 (2009).