05.5

Сверхтонкие взаимодействия в узлах меди диэлектрических и сверхпроводящих металлооксидов меди

© Е.И. Теруков^{1,2}, А.В. Марченко³, А.А. Лужков³, П.П. Серегин^{3,¶}, К.Б. Шахович³

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия

³ Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург, Россия

[¶] E-mail: ppseregin@mail.ru

Поступило в Редакцию 13 сентября 2019 г. В окончательной редакции 30 июля 2020 г. Принято к публикации 1 августа 2020 г.

Методом мессбауэровской спектроскопии на изотопах 61 Cu(61 Ni) показано, что для диэлектрических металлооксидов двухвалентной меди наблюдается комбинированное квадрупольное и зеемановское взаимодействие ядер 61 Ni с локальными полями в узлах меди, тогда как для сверхпроводящих металлооксидов обнаружено только квадрупольное взаимодействие ядер 61 Ni. Для всех металлооксидов найден одинаковый по величине валентной вклад в тензор градиента электрического поля на ядрах 61 Ni ${}^{2+}$ и 63 Cu ${}^{2+}$.

Ключевые слова: высокотемпературные сверхпроводники, эмиссионная мессбауэровская спектроскопия, ЯМР, тензор градиента электрического поля.

DOI: 10.21883/PJTF.2020.21.50199.18037

Значительная часть высокотемпературных сверхпроводников (ВТСП) на основе металлооксидов меди была получена из антиферромагнитных соединений типа YBa₂Cu₃O₆ [1], La₂CuO₄ [2], Nd₂CuO₄ [3], Ca₂CuO₂ [4], SrCuO₂ [5], Ca₂CuO₂Cl₂ [6] и Sr₂CuO₂Cl₂ [7] путем гетеровалентного замещения (например, переход от La₂CuO₄ к La_{2-x}Sr_xCuO₄) или изменения степени окисления атомов меди (например, переход от YBa₂Cu₃O₆ к YBa₂Cu₃O_{7-x}). Все эти соединения представляют интерес в плане изучения возможной связи между магнетизмом и сверхпроводимостью.

Мессбауэровская спектроскопия широко используется для изучения ВТСП на основе металлооксидов меди [8]. В частности, для исследования комбинированного магнитного и электрического квадрупольного взаимодействия в узлах меди решеток ВТСП целесообразно использовать эмиссионную мессбауэровскую спектроскопию на изотопах 61 Cu(61 Ni), поскольку в этом случае зонд 61 Ni²⁺, образующийся после радиоактивного распада 61 Cu, оказывается в узлах меди. В настоящей работе метод эмиссионной мессбауэровской спектроскопии на изотопах 61 Cu(61 Ni) используется для исследования сверхпроводящих и диэлектрических соединений Ca_{1-x}Sr_xCuO₂, Ca₂CuO₂Cl₂, SrCuO₂, Sr₂CuO₂Cl₂, YBa₂Cu₃O_{7-x}, La_{2-x}Sr_xCuO₄ и Nd_{2-x}Ce_xCuO₄.

Поликристаллические образцы готовились по методикам, описанным в [1–7]. Однофазность образцов контролировалась рентгенофазовым анализом. Критические температуры для сверхпроводящих образцов YBa₂Cu₃O_{6.9}, La_{1.85}Sr_{0.15}CuO₄ и Nd_{1.85}Ce_{0.15}CuO₄ были равны 78, 37 и 22 К соответственно. Мессбауэровские источники готовились методом диффузии изотопа ⁶¹Cu в готовую керамику при температурах 500–650°C.

Мессбауэровские спектры 61 Cu(61 Ni) регистрировались при 80 K на спектрометре SM 4201 TerLab. Стандартным поглотителем служил сплав Ni_{0.86}V_{0.14}. Экспериментальные мессбауэровские спектры исследованных соединений представляют собой плохо разрешенные мультиплеты (рис. 1).

Для сверхпроводящих соединений следовало ожидать взаимодействия квадрупольного момента ядер ⁶¹Ni с тензором градиента электрического поля (ГЭП) в узлах меди, и поэтому экспериментальные спектры представляют собой плохо разрешенные квадрупольные квинтеты. Поскольку диэлектрические соединения представляют собой антиферромагнетики с высокими значениями температуры Нееля (~ 250-260 К для La₂CuO₄ [2,9,10], Nd₂CuO₄ [3,9,11], SrCuO₂ [5], $Ca_2CuO_2Cl_2$ [6,9] и $Sr_2CuO_2Cl_2$ [7,9], $\sim 418 \, \text{K}$ для $YBa_2Cu_3O_6$ [1,12] и ~ 540 К для Ca_2CuO_2 [4,13]), тонкую структуру их мессбауэровских спектров в области температур ниже 200 К следует рассматривать как результат проявления эффектов комбинированного зеемановского и квадрупольного взаимодействия ядер ⁶¹Ni с локальными полями.

В случае комбинированного магнитного и электрического взаимодействия собственные значения гамильтониана для каждого (основного и возбужденного) уровня ⁶¹Ni могут быть найдены из соотношения

$$E_m^I = mgH + [eQU_{zz}/4I(2I-1)] \\ \times [3m^2 - I(I+1)][(3\cos^2\theta - l)/2].$$
(1)

Здесь I — спин ядра, Q — квадрупольный момент ядра, H — магнитное поле на ядре, U_{zz} — главная компонента тензора ГЭП на ядре, θ — угол между

Рис. 1. Эмиссионные мессбауэровские спектры 61 Cu(61 Ni) сверхпроводящей керамики Nd_{1.85}Ce_{0.15}CuO₄ и диэлектрических керамик Nd₂CuO₄, Ca_{0.85}Sr_{0.15}CuO₂ и Ca₂CuO₂Cl₂. Сплошной линией показан расчетный спектр.

главной осью тензора ГЭП и направлением магнитного поля, т — магнитное квантовое число, д гидромагнитное отношение (для ядра ⁶¹Ni в основном состоянии $g = -0.070083 \text{ mm/(s} \cdot \text{T})$, в возбужденном состоянии $g_{ex} = 0.0268 \text{ mm/(s} \cdot \text{T})$ [8]). Расчетный спектр подгонялся к экспериментальному методом наименьших квадратов. Подгоночными параметрами были параметры гамильтониана *H* и $U_{zz}[(3\cos^2\theta - 1)/2]$, общие для обоих ядерных уровней, а также интенсивности линий. При этом множитель $(3\cos^2\theta - 1)/2$ был принят нами равным единице, поскольку главный вклад в ГЭП вносят валентные *d*-электроны зондов и для них *z*-ось тензора направлена вдоль спина, который в свою очередь ориентирован вдоль магнитного поля. Согласие расчетного и экспериментального спектров оценивалось по критерию χ^2 .

В результате обработки мессбауэровских спектров были получены величины постоянной квадрупольного взаимодействия $C_{\rm Ni} = eQ^{61}U_{zz}$, напряженности магнитного поля H, угла θ между главной осью тензора ГЭП и направлением магнитного поля и параметра асимметрии тензора ГЭП $\eta = (U_{yy} - U_{xx})/U_{zz}$, где x, y, z — главные оси тензора ГЭП на ядре-зонде, U_{xx} , U_{yy} ,

 U_{zz} — компоненты диагонализированного тензора ГЭП, Q^{61} — квадрупольный момент ядра ⁶¹Ni в основном состоянии. Для всех изученных соединений получено $\eta = 0$, для всех антиферромагнитных соединений $\theta = 0^{\circ}$ и величины *H* находились в пределах от 8.5 до 10.0 Т. Полученные значения $C_{\rm Ni}$ представлены на рис. 2, *a*.

Для центров 63 Cu²⁺ и замещающих их центров 61 Ni²⁺ тензор ГЭП на ядре-зонде создается ионами кристаллической решетки (тензор решеточного ГЭП) и несферической валентной оболочкой атома-зонда (тензор валентного ГЭП), причем, когда ориентация главных осей всех тензоров совпадает, имеем

$$eQU_{zz} = eQ(1-\gamma)V_{zz} + eQ(1-R)W_{zz},$$
 (2)

где eQ — квадрупольные моменты ядер ⁶¹Ni или ⁶³Cu, U_{zz}, V_{zz}, W_{zz} — главные компоненты тензоров суммарного, решеточного и валентного ГЭП для зонда, а γ и R — коэффициенты Штернхеймера для зонда.

Расчет параметров тензора решеточного ГЭП проводился в рамках модели точечных зарядов, а параметры элементарной ячейки для исследованных соединений были взяты из работ [14–17]. Для диэлектрических оксидов заряды атомов считались равными их традиционной валентности, а для сверхпроводящих оксидов выбор моделей основывался на данных [13]. Для всех соединений тензоры решеточных ГЭП в узлах меди оказались диагональными в кристаллографических осях,

Рис. 2. Зависимости постоянной квадрупольного взаимодействия для центров ⁶¹Ni в узлах меди C_{Ni} (*a*) и для центров ⁶³Cu в узлах меди $|C_{\text{Cu}}|$ (*b*) от главной компоненты V_{zz} тензора решеточного ГЭП в этих узлах. Данные для $|C_{\text{Cu}}|$ взяты из работ [18-20]. Обозначения узлов меди в решетках: $I - \text{La}_{1.85}\text{Sr}_{0.15}\text{CuO}_4$, 2 - Cu(2) в YBa₂Cu₃O_{6.9}, $3 - \text{La}_2\text{CuO}_4$, 4 - Cu(2) в YBa₂Cu₃O₆, $5 - \text{Sr}_2\text{CuO}_2\text{Cl}_2$, $6 - \text{Ca}_2\text{CuO}_2\text{Cl}_2$, $7 - \text{Nd}_{1.85}\text{Ce}_{0.15}\text{CuO}_4$, $8 - \text{Nd}_2\text{CuO}_4$, $9 - \text{SrCuO}_2$, $10 - \text{Ca}_{0.85}\text{Sr}_{0.15}\text{CuO}_2$.

 $\eta = 0$ и главные оси тензоров направлены по кристаллографической оси *c*.

На рис. 2, *а* приведена зависимость $C_{\rm Ni}$ для центров ⁶¹Ni²⁺ в узлах меди от V_{zz} в этих узлах для всех исследованных соединений. Зависимость на рис. 2, *а* линейна и определяется соотношением

$$C_{\rm Ni} = 49V_{zz} - 81$$
 (3)

(здесь и далее величины $C_{\rm Ni}$ приводятся в MHz, а V_{zz} — в $e/{\rm \AA}^3$).

Из соотношения (2) следует, что линейная зависимость (3) является следствием одинаковой величины валентной составляющей в ГЭП для зонда Ni²⁺ в узлах двухвалентной меди $eQ^{61}(1-R)W_{zz} = -81(2)$ MHz. Соотношение (3) свидетельствует также о противоположных знаках валентного и решеточного вкладов в формуле (2) для центров Ni²⁺ и выполнении соотношения $|(1-R)W_{zz}| > |(1-\gamma)V_{zz}|$ для этих центров.

Для сравнения на рис. 2, *b* приведена зависимость абсолютной величины постоянной квадрупольного взаимодействия для центров 63 Cu²⁺ ($C_{Cu} = eQ^{63}U_{zz}$, где Q⁶³ квадрупольный момент ядра 63 Cu) в узлах меди от значения V_{zz} в этих узлах. При построении этой зависимости использовались данные ядерного магнитного резонанса на изотопе 63 Cu [18–20]. Видно, что зависимость на рис. 2, *b* линейна и определяется соотношением

$$|C_{\rm Cu}| = -150V_{zz} + 153. \tag{4}$$

Из соотношения (2) следует, что линейная зависимость (4) является следствием одинаковой величины валентной составляющей в тензоре ГЭП для зонда Cu^{2+} в металлооксидах двухвалентной меди $eQ^{63}(1-R)W_{zz} = 153(2)$ МНz. Соотношение (4) также свидетельствует о противоположных знаках валентного и решеточного вкладов в формуле (2) для центров Cu^{2+} и выполнении соотношения $|(1-R)W_{zz}| > |(1-\gamma)V_{zz}|$ для этих центров.

Таким образом, для диэлектрических металлооксидов двухвалентной меди обнаружено комбинированное электрическое и магнитное взаимодействие ядер ⁶¹Ni с локальными полями в узлах меди, тогда как для сверхпроводящих металлооксидов спектры соответствуют взаимодействию квадрупольного момента ядер ⁶¹Ni с тензором ГЭП. Для всех металлооксидов меди наблюдаются линейные зависимости постоянных квадрупольного взаимодействия на ядрах ⁶¹Ni и ⁶³Cu от расчетных значений главной компоненты тензора решеточного ГЭП в узлах меди. Этот факт объясняется тем, что для зондов ⁶¹Ni²⁺ и ⁶¹Cu²⁺ величина вклада валентной составляющей в суммарный тензор ГЭП не зависит от состава металлооксида.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Khan M.Z., Malmivirta M., Zhao Y., Wu X., Jha R., Awana V.P.S., Huhtinen H., Paturi P. // Physica C. 2018. V. 555. P. 15–23.
- [2] Sukumar M., Kennedy L., Vijaya J., Al-Najar B., Bououdina M. // Ceram. Int. 2018. V. 44. P. 18113.
- [3] Horio M., Krockenberger Y., Yamamoto K., Yokoyama Y., Takubo K., Hirata Y., Sakamoto S., Koshiishi K., Yasui A. // Phys. Rev. Lett. 2018. V. 120. P. 257001.
- [4] Di Castro D., Ridolfi F., Aruta C., Tebano A., Yang N., Balestrino G. // Phys. Rev. Lett. 2015. V. 115. P. 147001.
- [5] Bounoua D., Saint-Martin R., Petit S., Bourdarot F. // Physica B. 2018. V. 536. P. 323–326.
- [6] Lebert B.W., Dean M.P.M., Nicolaou A., Pelliciari J., Dantz M., Schmitt T., Yu R. // Phys. Rev. B. 2017. V. 95. P. 155110.
- [7] Petersen J.C., Farahani A., Sahota D.G., Liang R., Dodge J.S. // Phys. Rev. B. 2017. V. 96. P. 115133
- [8] Seregin N, Marchenko A., Seregin P. Emission Mössbauer spectroscopy. Electron defects and Bose-condensation in crystal lattices of high-temperature supercomductors. Saarbrücken: LAP LAMBERT, 2015. 325 p.
- [9] Hechel D., Felner I. // Physica C. 1994. V. 235-240. P. 1601– 1602.
- [10] Keimer B., Aharony A., Auerbach A., Biegeneau R.J., Cassanho A., Endoh Y., Erwin R.W., Kastner M.A., Shirane G. // Phys. Rev. B. 1992. V. 45. P. 7430–7435.
- [11] Matsuda M., Yamada K., Kakarai K., Kadowaki H., Thurston T.R., Endoh Y., Hidaka Y., Birgeneau R.J., Kastner M.A., G'ehring P., Moudden A.H., Shirane G. // Phys. Rev. B. 1990. V. 42. P. 10098–10107.
- [12] Petigrand D., Collin G. // Physica C. 1988. V. 153-155. P. 192–193.
- [13] Vaknin D., Caignol E., Davies P.K., Fischer J.E., Johnston D.C., Goshorn D.P. // Phys. Rev. B. 1989. V. 39. P. 9122–9125.
- [14] Siegrist T., Zahurak S.M., Murphy D.W., Roth R.S. // Nature. 1988. V. 334. P. 231–232.
- [15] Yvon K., Francois M. // Z. Phys. D. 1989. V. 76. P. 413-444.
- [16] Zhou X., Wu F., Yin D., Liu W., Dong C., Li J., Zhu W., Jia S., Yao Y., Zhao Z. // Physica C. 1994. V. 233. P. 311–320.
- [17] Haas H., Correia J.G. // Hyperfine Interact. 2007. V. 176. P. 9–13.
- [18] Takatsuka T., Kumagai K., Nakajima H., Yamanaka A. // Physica C. 1991. V. 185-189. P. 1071–1072.
- [19] Yoshinari Y., Yasuoka H., Shimizu T., Takagi H., Tokura Y., Uchida S. // J. Phys. Soc. Jpn. 1990. V. 59. P. 36–39.
- [20] Shimizu T. // J. Phys. Soc. Jpn. 1993. V. 62. P. 772-778.