01.1;05.2;12.1;15.1;15.2

Метод расчета взаимной индуктивности системы катушек с использованием модели аксиально намагниченного цилиндра

© А.К. Андреев

Московский авиационный институт (Национальный исследовательский университет), Москва, Россия E-mail: alexande_andreev@yahoo.com

Поступило в Редакцию 19 сентября 2019 г. В окончательной редакции 30 июля 2020 г. Принято к публикации 30 июля 2020 г.

Предложен метод расчета взаимной индуктивности системы катушек с плотной намоткой через энергию аксиально намагниченных цилиндров. Получены формулы для расчета 3D-полей цилиндра и катушек, выраженные через эллиптические интегралы. Показано, что средний по объему размагничивающий фактор цилиндра равен коэффициенту Нагаока для собственной индуктивности коротких катушек.

Ключевые слова: взаимная индуктивность, 3D-поля, размагничивающий фактор, коэффициент Нагаока.

DOI: 10.21883/PJTF.2020.21.50198.18042

Методы расчета индуктивности катушек были разработаны Максвеллом (Maxwell, 1873 г.) и Лоренцем (Lorenz, 1879 г.). Обширная информация о методах определения индуктивностей и взаимных индуктивностей, а также ссылки на первоисточники приведены в [1]. На практике при расчетах используются аппроксимирующие формулы либо графоаналитические методы [1,2]. В настоящей работе представлен новый альтернативный аналитический метод определения индуктивностей сложной системы катушек. Метод основан на равенстве внутренних энергий катушек и эквивалентных им аксиально намагниченных цилиндров. Задача сводится к расчету энергии и взаимной энергии *п* цилиндров *E_{ni}*, имитирующих систему катушек. Энергии вычисляются через 3D-поля цилиндров $\mathbf{H}(r, z) = -\Delta \varphi(r, z)$, где $\varphi(r, z)$ — суммарный магнитостатический потенциал торцевых дисковых "зарядов" цилиндра.

Схема расчета $\varphi(r, z)$ показана на рис. 1. В скалярной записи связь между M_z , j_s и σ определяется соотношениями [3]:

$$M_z = j_s, \qquad \sigma = M_z. \tag{1}$$

При расчете индуктивностей задаются геометрические параметры катушки: длина h, диаметр 2a, а также число круговых витков w и ток I [A/turn]. Плотность поверхностного тока катушки j = wI/h определяет эквивалентную намагниченность цилиндра $M_z = j$ (рис. 1). Влияние неплотности намотки катушки (шага намотки) на корректность модели определено в [4].

При однородной намагниченности M_z размагничивающее поле равно

$$H_p(\mathbf{r}) = -M_z N(\mathbf{r}), \qquad (2)$$

где $N(\mathbf{r})$ — размагничивающий фактор, безразмерная величина, зависящая от формы образца ($0 \le N \le 1$).

 $N(\mathbf{r})$ связывает компоненты поля в объеме цилиндра с его намагниченностью: $H_i = -N_{iz}M_z$, i = r, z. Вне цилиндра $N(\mathbf{r})$ есть коэффициент, по которому рассчитывается поле рассеяния. Размагничивающие факторы $N_{zz}(r, z)$ и $N_{rz}(r, z)$ часто определяются через функции

Рис. 1. Схема расчета $\varphi(r, z)$. \mathbf{H}_p — размагничивающее поле цилиндра, \mathbf{B} — индукция цилиндра и катушки, q(r', z') точка источника поля, a(r, z) — точка наблюдения, \mathbf{M}_z намагниченность цилиндра, $\mathbf{j}_s = \mathbf{M}_z \mathbf{n}$ — плотность поверхностного тока катушки, $\sigma = \mathbf{M}_z \mathbf{n}$ — плотность торцевых "магнитных зарядов", \mathbf{n} — вектор нормали к поверхностям цилиндра.

Энергия	И	индуктивность	магнитных	систем
---------	---	---------------	-----------	--------

Номер цилиндра	Радиус цилиндра <i>a</i> (<i>n</i>), ст	Энергия цилиндра <i>E</i> _n , 10 ³ J	Индуктивность катушки <i>L</i> _n , 10 ³ Н	Размагничи- вающий фактор Л	Коэффициент Нагаока k(n)	Взаимная энергия цилиндров <i>E_{ni}</i> , 10 ³ J	Взаимная индуктивность катушек <i>M_{ni}</i> , 10 ⁴ Н
1	2.5	7.175	0.574	0.128	0.872	$E_{12} = 6.542$	$M_{12} = 5.233$
2	3.8	15	1.211	0.182	0.818	$E_{13} = 6.015$	$M_{13} = 4.811$
3	5	25	2.026	0.23	0.77	$E_{23} = 0.014$	$M_{23} = 11.04$

Рис. 2. К расчету взаимной индуктивности. Длины цилиндров h = 15 cm, диаметры цилиндров: $2a_1 = 5$ cm, $2a_2 = 7.6$ cm, $2a_3 = 10$ cm.

Бесселя [5]. Однако при использовании этой модели возникают проблемы при численном расчете [6].

Как показано в [7], коэффициенты $N_{zz}(r, z)$ и $N_{rz}(r, z)$ могут быть выражены через эллиптические интегралы. В [8] с учетом [7] определены размагничивающие факторы в объеме цилиндра

$$N_{zz}(r,z) = \left[1 - \frac{zk_1K_C(k_1)}{4\pi\sqrt{ar}} - \frac{\Lambda_0(\alpha_1,\beta_1)}{4} - \frac{(h-z)k_2K_C(k_2)}{4\pi\sqrt{ar}} - \frac{\Lambda_0(\alpha_2,\beta_2)}{4}\right], \quad 0 \le z \le h, \quad (3)$$

$$N_{rz}(r,z) = \left(\frac{1}{\pi}\right) \sqrt{\frac{a}{r}} \left\{ \left(\frac{1}{k_1}\right) \left[\left(1 - \frac{k_1^2}{2}\right) K_C(k_1) - E_C(k_1) \right] - \left(\frac{1}{k_2}\right) \left[\left(1 - \frac{k_2^2}{2}\right) K_C(k_2) - E_C(k_2) \right] \right\}, \quad 0 \le r \le a,$$
(4)

где

$$K_C(k) = \int_{0}^{\pi/2} (1 - k^2 \sin^2 \theta)^{-1/2} d\theta,$$

$$E_C(k) = \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta} d\theta$$

 полные эллиптические интегралы первого и второго рода с модулями

$$k_1^2 = 4ar[z^2 + (a+r)^2]^{-1},$$

$$k_2^2 = 4ar[(h-z)^2 + (a+r)^2]^{-1},$$

$$\Lambda_0(\alpha,\beta) = \left(\frac{2}{\pi}\right) \left[E_C(k)F(\beta,\sqrt{1-k^2}) + K_C(k)E(\beta,\sqrt{1-k^2}) - K_C(k)F(\beta,\sqrt{1-k^2})\right]$$

— лямбда-функции Хеймана, полные эллиптические интегралы третьего рода [9],

$$F(\beta, m) = \int_{0}^{\beta} (1 - m^2 \sin^2 \theta)^{-1/2} d\theta,$$
$$E(\beta, m) = \int_{0}^{\beta} \sqrt{1 - m^2 \sin^2 \theta} d\theta$$

— неполные эллиптические интегралы первого и второго рода с дополнительными модулями *m* и амплитудами β:

$$m_1 = \sqrt{1 - k_1^2}, \quad m_2 = \sqrt{1 - k_2^2},$$
$$\beta_1 = \arcsin\left[z\left[z^2 + (a - r)^2\right]^{-1/2}\right],$$
$$\beta_2 = \arcsin\left[(h - z)\left[(h - z)^2 + (a - r)^2\right]^{-1/2}\right]$$

где β_1, β_2 — главные значения arcsin.

При расчетах полей вне цилиндрической области — полей рассеяния — необходимо переопределение формул (3), (4). Далее получены коэффициенты N_{zz} и N_{rz} , позволяющие вычислять 3D-поля во всем пространстве. Формулы записаны раздельно для характерных областей

4 Письма в ЖТФ, 2020, том 46, вып. 21

внутри и вне цилиндра в пределах диапазонов изменения z и r [6]:

$$\begin{split} & \left\{ \begin{bmatrix} 1 - \frac{zk_1K_C(k_1)}{4\pi\sqrt{ar}} - \frac{\Lambda_0(\alpha_1,\beta_1)}{4} - \frac{(h-z)k_2K_C(k_2)}{4\pi\sqrt{ar}} - \frac{\Lambda_0(\alpha_2,\beta_2)}{4} \end{bmatrix}, \text{ слн } (0 \leqslant z \leqslant h) \land (|r| \leqslant a) \\ & 0, \text{ слн } (0 \leqslant z \leqslant h) \land (r=0), \\ & - \frac{zk_1K_C(k_1)}{4\pi\sqrt{ar}} + \frac{\Lambda_0(\alpha_1,\beta_1)}{4} - \frac{(h-z)k_2K_C(k_2)}{4\pi\sqrt{ar}} - \frac{\Lambda_0(\alpha_2,\beta_2)}{4}, \text{ слн } (z < 0) \land (0 < |r|) < a, \\ & - \frac{zk_1K_C(k_1)}{4\pi\sqrt{ar}} - \frac{\Lambda_0(\alpha_1,\beta_1)}{4} - \frac{(h-z)k_2K_C(k_2)}{4\pi\sqrt{ar}} + \frac{\Lambda_0(\alpha_2,\beta_2)}{4}, \text{ слн } (z > h) \land (0 < |r|) < a, \\ & - \frac{zk_1K_C(k_1)}{4\pi\sqrt{ar}} - \frac{\Lambda_0(\alpha_1,\beta_1)}{4} - \frac{(h-z)k_2K_C(k_2)}{4\pi\sqrt{ar}} + \frac{\Lambda_0(\alpha_2,\beta_2)}{4}, \text{ слн } (0 < z < h) \land (|r| > a), \\ & - \frac{zk_1K_C(k_1)}{4\pi\sqrt{ar}} - \frac{\Lambda_0(\alpha_1,\beta_1)}{4} - \frac{(h-z)k_2K_C(k_2)}{4\pi\sqrt{ar}} + \frac{\Lambda_0(\alpha_2,\beta_2)}{4}, \text{ слн } (0 < z < h) \land (|r| > a), \\ & - \frac{zk_1K_C(k_1)}{4\pi\sqrt{ar}} - \frac{\Lambda_0(\alpha_1,\beta_1)}{4} - \frac{(h-z)k_2K_C(k_2)}{4\pi\sqrt{ar}} + \frac{\Lambda_0(\alpha_2,\beta_2)}{4}, \text{ слн } (z < 0) \land (|r| > a), \\ & - \frac{zk_1K_C(k_1)}{4\pi\sqrt{ar}} + \frac{\Lambda_0(\alpha_1,\beta_1)}{4} - \frac{(h-z)k_2K_C(k_2)}{4\pi\sqrt{ar}} - \frac{\Lambda_0(\alpha_2,\beta_2)}{4}, \text{ слн } (z > h) \land (|r| > a), \\ & - \frac{1}{2} \left[\frac{h-z}{\sqrt{(h-z)^2}+a^2} + \frac{z}{\sqrt{z^2+a^2}} - \frac{h-z}{|h-z|} - \frac{z}{|z|} \right], \text{ слн } r = 0, \\ & 0 \text{ везде,} \\ & \left\{ \left(\frac{1}{2}\right) \left(\sqrt{\frac{a}{2}}\right) \left\{ \left(\frac{1}{2}\right) \left[\left(1 - \frac{k_1^2}{2}\right) K_C(k_1) - E_C(k_1) \right] \right\} \right\} \end{split}$$

$$N_{rz}(r, z) = \begin{cases} \left(\frac{1}{\pi}\right) \left(\sqrt{\frac{a}{r}}\right) \left\{ \left(\frac{1}{k_1}\right) \left\lfloor \left(1 - \frac{k_1}{2}\right) K_C(k_1) - E_C(k_1) \right\rfloor \\ - \left(\frac{1}{k_2}\right) \left\lfloor \left(1 - \frac{k_2^2}{2}\right) K_C(k_2) - E_C(k_2) \right\rfloor \right\}, \text{ если } r > 0, \\ - \left(\frac{1}{\pi}\right) \left(\sqrt{\frac{a}{r}}\right) \left\{ \left(\frac{1}{k_1}\right) \left\lfloor \left(1 - \frac{k_1^2}{2}\right) K_C(k_1) - E_C(k_1) \right\rfloor \\ - \left(\frac{1}{k_2}\right) \left\lfloor \left(1 - \frac{k_2^2}{2}\right) K_C(k_2) - E_C(k_2) \right\rfloor \right\}, \text{ если } r < 0, \end{cases}$$
(6)
0 везде.

Последняя строка в (5) определяет размагничивающий фактор на оси. С учетом (2) *z*- и *r*-компоненты поля и индукции цилиндра равны

$$H_z(r, z) = -M_z N_{zz}(r, z),$$
 (7)

$$H_r(r,z) = -M_z N_{rz}(r,z), \qquad (8)$$

$$\Big| \mu_0(H_z + M_z),$$
 если $(0 \leqslant z \leqslant h) \land (0 \leqslant |r| \leqslant a),$

$$B_z(r,z) = \left| \mu_0 H_z(r,z) \text{ везде,} \right|$$
(9)

$$B_r(r,z) = \mu_0 H_r(r,z).$$
 (10)

Расчет полей рассеяния через эллиптические интегралы обеспечивает получение стабильных численных результатов при любых параметрах магнитной системы. В модели не накладываются какие-либо ограничения на взаимное расположение цилиндров (катушек) и их геометрические и магнитные параметры. Программы расчета $N_{zz}(r, z)$ и $N_{rz}(r, z)$ опубликованы в [10]. В [11,12] получены аналитические выражения для полей цилиндра при произвольной ориентации намагниченности.

Далее приведена схема расчета взаимной индуктивности в системе трех соосных катушек (n = 3). На рис. 2 представлены конфигурация системы и используемые расчетные параметры. Равные намагниченности и длины цилиндров были введены для демонстрации работоспособности модели на простом примере. Расчеты выполнены в соответствии с формулами (5), (9). Суть метода заключается в расчете взаимной энергии между всеми парами цилиндров. Понятие "индуктивность цилиндра" не имеет физического смысла. Вычисление же энергии цилиндра есть важнейший промежуточный

этап при расчете взаимной индуктивности катушек. Цилиндры нумеруются с присвоением номера (индекса) для каждого параметра и формулы. Задавая равные токи в моделируемых катушках I(n) = 5 A/turn, получаем $M_z(n) = 6.667$ A/m. Энергия *n*-го цилиндра радиусом a(n) в поле *i*-го цилиндра радиусом a(i) равна

$$E_{cyl}(n,i) = 2\pi \int_{0}^{h} \int_{0}^{a(n)} \frac{M_z(n)B_z(i,r,z)}{2} r \, dr \, dz.$$
(11)

Коэффициент взаимной индуктивности с учетом (11) определяется по формуле

$$M_{ni} = \frac{2E_{cyl}(n,i)}{I(n)I(i)}.$$
 (12)

Учитывая равенство взаимных энергий цилиндров, расчеты M_{ni} достаточно проводить только для одной пары системы. Энергию *n*-го цилиндра и собственную индуктивность *n*-й катушки *L* вычисляем по формулам (11), (12), полагая n = i.

Собственная индуктивность катушки L определяется также через коэффициент Нагаока $k1_L$ [13] с помощью соотношения

$$L = (\mu_0 w^2 \pi (2a)^2 / 4h) k \mathbb{1}_L \quad (0 \le k_L \le 1).$$

Выражение в скобках есть индуктивность участка длиной *h* бесконечно длинного соленоида. Из (5) (строки 1,7) аналог $k1_L$ следует из среднего по объему размагничивающего фактора цилиндра \overline{N}_z :

$$k_{L} = 1 - \frac{2\pi}{\pi a^{2}h} \int_{0}^{h} \int_{0}^{a} N_{zz}(r, z) dr dz = 1 - \overline{N}_{z}.$$
 (13)

Результаты расчетов параметров магнитных систем при *n* = 3 суммированы в таблице.

Тестовые расчеты M_{ni} основных схем взаимного расположения катушек по приведенной модели соответствуют результатам, полученным в [2].

Независимость размагничивающих факторов цилиндров от внешних полей позволяет применять "энергетический подход" для расчета сложных систем, составленных из отдельных элементов. Существуют и другие области применения полученных в настоящей работе результатов. Например, по известной взаимной энергии цилиндров можно определить пондеромоторные силы в системе катушек, минуя стадию расчета индуктивности.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] http://coil32.ru/; http://g3ynh.info/zdocs/magnetics/
- [2] *Калантаров П.Л., Цейтлин Л.А.* Расчет индуктивностей. Л.: Энергоатомиздат, 1986. 488 с.
- [3] Парселл Э. Электричество и магнетизм. М.: Наука, 1975. 440 с.
- [4] Андреев А.К. // Проблемы машиностроения и надежности машин. 2019. № 1. С. 34–43.
- [5] *Bateman H.* Partial differential equations of mathematical physics. N.Y.: Dover Publ., 1944. 556 p.
- [6] Андреев А.К. Магнитостатика ферромагнетиков. М.: Изд-во МАИ, 2011. 162 с.
- [7] Eason G., Noble B., Sneddon I.N. // Phil. Trans. Roy. Soc. Lond. A. 1955. V. 247. P. 529–551.
- [8] Joseph R.I., Schlömann E. // J. Appl. Phys. 1964. V. 36. P. 1579–1593.
- [9] Справочник по специальным функциям / Под ред. М. Абрамовица, И. Стиган. М.: Наука, 1979. 832 с.
- [10] Андреев А.К. Программы для ЭВМ. Свидетельство о госрегистрации № 2012614673. 2012. Бюл. № 3. Ч. 2. С. 378–379.
- [11] Taniguchi T. // J. Magn. Magn. Mater. 2018. V. 452. P. 464– 472.
- [12] Caciagli A., Baars R.J., Philipse A.P., Kuipers B.W.M. // J. Magn. Magn. Mater. 2018. V. 456. P. 423–432.
- [13] Nagaoka H. // J. Coll. Sci. 1909. V. 27. P. 18-33.