02 Люминесценция Pd и Pt бензогидропорфиразинов в ближнем ИК диапазоне

© П.П. Першукевич¹, Д.И. Волкович¹, Е.А. Макарова², Е.А. Лукьянец², К.Н. Соловьёв¹¶

¹ Институт физики им. Б.И. Степанова НАН Беларуси,

220072 Минск, Беларусь

² Научно-исследовательский институт органических полупродуктов и красителей (НИОПИК),

123995 Москва, Россия

¶e-mail: solovyov@imaph.bas-net.by

Поступила в редакцию 25.03.2020 г. В окончательной редакции 25.03.2020 г. Принята к публикации 07.07.2020 г.

Исследована фосфоресценция в ближнем ИК диапазоне при стационарном ламповом возбуждении новых трех палладиевых и трех платиновых комплексов бензоконденсированных гидропорфиразинов — аналогов фталоцианина, в молекуле которого один или два изоиндольных фрагмента замещены на гидрированное пиррольное кольцо, что дает макроциклы типа хлорина, бактериохлорина и изобактериохлорина — аналогов фотосинтетических пигментов. Впервые зарегистрированы спектры фосфоресценции комплексов трансдибензотетрагидропорфиразинов (и для платины, и для палладия), которые долгое время не удавалось обнаружить вследствие рекордного удаления 0–0-полос от видимой области (1.67 и 1.52 μ m для Pd и Pt), а также из-за малого квантового выхода фосфоресценции. Обнаружена также флуоресценция этих комплексов в ближнем ИК диапазоне. На основе сопоставления результатов эксперимента с собственными и литературными данными для палладиевых комплексов ряда тетрапирролов показана приближенная аддитивность влияния структурных факторов — гидрирования пиррольных колец, азазамещения и бензозамещения — на энергию нижнего триплетного состояния T_1 . Полученные сведения существенны для целенаправленного создания излучателей в ближнем ИК диапазоне (1.0–1.7 μ m).

Ключевые слова: палладиевые и платиновые комплексы бензогидропорфиразинов, трансдибензотетрагидропорфиразин, аналоги фталоцианина, ближний ИК диапазон, спектр поглощения, спектр фосфоресценции, квантовый выход фосфоресценции, нижнее триплетное состояние, люминесценция синглетного кислорода.

DOI: 10.21883/OS.2020.11.50169.119-20

Введение

В плане изучения связи физических свойств со строением молекул тетрапирролов и поиска путей их практических применений в ИК диапазоне нами были синтезированы Pd- и Pt-комплексы на основе новых аналогов фталоцианина и гидропорфиразинов — бензогидропорфиразинов. Ареногидропорфиразины [1-4] и их производные [5] — новый подкласс тетрапиррольных соединений с интенсивным поглощением в ближнем ИК диапазоне (БИК, NIR). Спектрально-люминесцентные свойства бензогидропорфиразинов — цинковых комплексов [6] и соответствующих свободных оснований [6,7] — исследовались нашей научной группой. В работе [8] была зарегистрирована БИК-фосфоресценция комплексов палладия и платины с тетраметилтрибензодигидропорфиразином и октаметилдибензотетрагидропорфиразином с соседним расположением гидрированных пиррольных колец. В настоящей работе, чтобы избежать использования громоздких сокращений и длинных названий химических соединений, мы применили (по всему тексту) обозначения: Pd1 и Pt1 — для комплексов замещенного трибензодигидропорфиразина; Рd2 и Pt2 — для комплексов замещенного дибензотетрагидропорфиразина с противоположным расположением гидрированных пиррольных колец (транс-); Pd3 и Pt3 — для их изомеров с соседним расположением гидрированных колец (цис-). Иными словами, аналоги хлоринов обозначены цифрой 1, бактериохлоринов — 2, изобактериохлоринов — 3; в работе [8] — ТБТАХ, ДБТАБХ, ДБТАиБХ соответственно.

В работе [8] не удалось обнаружить фосфоресценцию молекул Pd2 и Pt2 (симметрия сопряженной системы D_{2h}) ни при стационарном возбуждении на установке, охарактеризованной в [9,10]), ни при лазерном возбуждении на установке, описанной в [11]. В настоящей работе представлены результаты изучения фосфоресценции Pd2 и Pt2 при стационарном возбуждении с использованием новой техники — модульного спектрофлуориметра Fluorolog-3 производства фирмы HORIBA Scientific, а также — специально настроенной под задачу применявшейся ранее техники эксперимента [9,10]. Зарегистрирована флуоресценция этих объектов; её спектры расположены также в БИК диапазоне. Выборочно исследовано влияние внешней среды на параметры люминесценции. Получены дополнительные данные о спектрах фосфоресценции Pd1, Pt1, Pd3 и Pt3, а также сведения о фотостабильности.

Объекты и методы эксперимента

Синтез всех полученных комплексов палладия и платины подробно описан в работе [8]. Комплексы бензогидропорфиразинов были специально синтезированы для исследования фосфоресценции, однако в принципе они могут быть использованы как сенсибилизаторы для разных целей.

Структура объектов исследования показана на схеме, в которой (и далее по тексту) М-металл (Pd, Pt и другие металлы).

Измерения скорректированных спектров люминесценции (фосфоресценции — PS и флуоресценции — FS) и спектров возбуждения люминесценции (PES и FES) проводились на многофункциональном спектрофлуориметре модели Fluorolog-3 с Т-канальной оптикой производства фирмы HORIBA Scientific (Япония, США, Франция), а также на модернизированном спектрофлуориметрическом комплексе СДЛ-2 (ЛОМО, СССР), основанном на монохроматорах возбуждения и регистрации соответственно МДР-12 и МДР-23 [9,10]. В дальнейшем используются краткие названия этих комплексов соответственно Fluorolog-3 и Люмоскан (Lumoscan).

В комплексе Fluorolog-3 в качестве источника возбуждения использовалась стационарная ксеноновая лампа мощностью 450 W, свет от которой пропускался через двойной монохроматор. Спектры фосфоресценции и спектры возбуждения фосфоресценции регистрировались в стандартной 90-градусной геометрии расположения осей монохроматоров, но при возбуждении, осуществляемом системой зеркал, под углом 22° к нормали передней грани кюветы ("на отражение"), с помощью дифракционного спектрометра iHR320-FAS (HORIBA Scientific) и охлаждаемой жидким азотом InGaAs линейной матрицы FL-1100-05 (800–1700 nm) в качестве детектора. При этом спектры обоих типов регистрировались в специальном режиме развертки по длинам волн возбуждения и регистрации фосфоресценции с получением в конечном итоге матрицы возбуждениярегистрации (Excitation-Emission Matrix, EEM). Затем из EEM выбирались кривые, соответствующие максимумам в спектре фосфоресценции или спектре возбуждения фосфоресценции.

На комплексе Lumoscan при измерении спектров фосфоресценции в БИК диапазоне (в отличие от обычной геометрии измерения спектров люминесценции под углом 90° к направлению распространения возбуждающего света) был использован продольный вариант возбуждения с соосным расположением системы регистрации. Возбуждение образца осуществлялось излучением ксеноновой лампы ДКсШ-120 мощностью 120 W, сфокусированным с помощью двухлинзового конденсора, через стопу из четырех или пяти стеклянных фильтров. Образец располагался в точке совпадения фокусов задней линзы возбуждения и передней линзы системы регистрации. Максимумы полос пропускания фильтров, расположенные вблизи 560 и 500 nm с полуширинами около 200 и 100 nm, показаны на рис. 1, а. При описанном продольном варианте возбуждения, кроме увеличения мощности возбуждения примерно на порядок, в поле зрения передней собирающей линзы попадало значительно большее количество возбужденных молекул, чем при поперечном. Как установлено экспериментально, в широком диапазоне регистрации (900-1700 nm) низкий уровень помех от возбуждающего и рассеянного света позволил получить надежные данные по спектрам фосфоресценции, в частности, в области 1600-1700 nm. В качестве фотоприемника использовался InGaAs-фотодиод IGA-050-ТЕ2-Н с приемной площадкой диаметром 5 mm фирмы "Electro-Optical Systems Inc" (Канада, США). Предварительно усиленный сигнал с фотодиода подавался на основной усилитель с синхродетектором Lock-in nanovoltmeter type 232В (Польша, США).

Рис. 1. Спектры поглощения растворов в МТГФ: a - Pd1(1), Pd2 (2) и Pd3 (3); b - Pt1(1), Pt2 (2) и Pt3 (3) при 293 K; 4 и 5 — полосы пропускания стеклянных фильтров, через которые проходило возбуждающее излучение при продольном возбуждении образцов в Lumoscan.

При комнатной температуре в отличие от низкой (77 K) приведенные на рисунках спектры в большинстве случаев были получены "сшиванием" спектров, записанных на обоих приборах: вблизи максимума полосы контуры брались с Lumoscan, в остальной спектральной области — с Fluorolog-3. На Lumoscan спектры измерялись в узкой области (100–150 nm) в течение 2–3 min (во избежание фоторазложения при возбуждении мощным излучением), на Fluorolog-3 спектры записывались в широкой спектральной области (~ 760 nm) в течение 20–30 s. Регистрация осуществлялась при спектральной ширине щелей 14.0 nm на Fluorolog-3, 11.0 nm — на Lumoscan.

Контуры спектров фосфоресценции, записанные на обоих приборах при 77 К в широкой области

(900-1600 nm), совпадали с погрешностью не более 3-5%, что свидетельствовало о правильности методик коррекции спектров, несмотря на разницу в оборудовании, применявшемся для коррекции, а также различие способов возбуждения и регистрации.

Электронные спектры поглощения растворов, а также спектры пропускания фильтров регистрировались на спектрофотометре Cary-500 Scan UV-Vis-NIR (Varian, CША, Австралия). Квантовые выходы фосфоресценции φ_p прозрачных растворов при 293 и 77 К оценивались относительным методом. В качестве эталона был принят раствор Pt3 в 2-метилтетрагидрофуране (МТГФ) (при 293 и 77 К значения $\varphi_p = 0.053$ и 1.68% из [8]).

В качестве основного растворителя для спектральнолюминесцентных исследований использовался МТГФ фирмы Aldrich, хорошо растворяющий многие тетрапирролы и образующий прозрачное стекло при 77 К. Дополнительно использовались растворители толуол, диметилсульфоксид (ДМСО) и диметилформамид (ДМФА).

Экспериментальные результаты

На рис. 1 представлены спектры поглощения исследованных соединений в МТГФ при 293 К. Спектры нормированы к 1 в максимуме длинноволновой полосы. Спектры поглощения всех трех исследованных комплексов Рt представлены в работе [8] в виде рисунков (в МТГФ, толуоле и ДМСО) и в виде численных данных $(\lambda_{\max}, \lg \varepsilon)$ — в хлорбензоле и гексане. В [8] приведены также данные для комплексов Pd в хлорбензоле, а в работе [6] — для Zn1 в толуоле; спектры поглощения последнего комплекса в ДМСО даны там в рисунках. Эта информация позволяет оценить влияние на абсорбционные спектры растворителя и природы металла. Из данных по lg є следует, в частности, что рис. 1 достаточно хорошо качественно представляет абсолютную интенсивность полос. Величина lg є для длинноволновой полосы в хлорбензоле близка к 5.2, отклоняясь до 5.16 у Pt1 и до 5.37 у Pt3 (в гексане).

В случае металлокомплексов типа 1 спектры в толуоле и хлорбензоле близки, МТГФ и ДМФА дают небольшой гипсохромный сдвиг (~ 5 nm) полос в видимой области. Здесь уместно отметить, что в работе [12] для алюминиевых комплексов фталоцианина (Pc) показана связь положения полос поглощения с донорным числом Гутмана (DN, см. [13–15]) растворителя, а в шкале DN тетрагидрофуран имеет меньшее значение, что коррелирует с нашими данными по спектрам поглощения в МТГФ (метильная группа слабо влияет на DN).

В области аналога полосы Соре ситуация несколько сложнее и сдвиги больше, особенно в шкале частот, но всё же различия небольшие.

Замена одного изоиндольного фрагмента в молекуле металлофталоцианина (MPc) на гидрированное пиррольное кольцо приводит к понижению симметрии сопряженной системы молекулы от D_{4h} , точной или прибли-

женной (в зависимости от структурных факторов), и снятию двукратного вырождения возбужденного состояния $S_{1,2}$ (обычно обозначаемого $Q_{1,2}$ или просто Q), ответственного за интенсивную длинноволновую полосу Q(0-0) MPc, и расщеплению её на две компоненты Q_1 и Q₂, или Q_x и Q_y, при наличии приближенной симметрии C_{2v} .

В ряду Zn1, Pd1 и Pt1 имеет место повышение уровня $S_1(Q_x)$ от 13870 cm⁻¹ (721 nm) на 380 cm⁻¹ (до 702 nm) и на 620 cm⁻¹ (до 690 nm). Уровень Q_{ν} соответственно повышается от $16780 \, {\rm cm}^{-1}$ на $520 \, {\rm cm}^{-1}$ и на 860 cm⁻¹. Для М2 и М3 соответственно из данных рис. 1 получаются аналогичные сдвиги при переходе от Рd к Pt: 290 cm⁻¹ (Q_x) , 410 cm⁻¹ (Q_y) и 340 cm⁻¹ (Q_x) , $390 \,\mathrm{cm}^{-1} (Q_v).$

В спектрах поглощения Zn1 полоса Q_v имеет сложную структуру, что интерпретировано как проявление сложного вибронного аналога резонанса Ферми ([6] и ссылки там). Данные рис. 1 для Pd1 и Pt1 показывают, что этот эффект здесь значительно слабее — полоса Q_{ν} уширена несильно, усиление соседних полос незначительно. Причиной этого является возрастание энергетического интервала $Q_y - Q_x$, ΔE_{Oxy} , — система как бы выходит из резонанса при замене атома Zn атомами Pd и Pt. Значения ΔE_{Qxy} составляют соответственно 2910 (Zn1), 3060 (Pd1) и 3140 cm⁻¹ (Pt1).

Такое же гидрирование второго, противоположного, пиррольного кольца (приближенная симметрия D_{2h}) приводит к батохромным сдвигам $Q_x(0-0)$ полос на 99 nm, т.е. 1760 cm⁻¹ (Pd) и на 93 nm (1720 cm⁻¹) (Pt) и к возрастанию ΔE_{Oxy} до 6640 cm⁻¹ (т. е. на 3580 cm⁻¹) для Pd2 и до 6760 cm⁻¹ (т.е. на 3620 cm⁻¹) для Pt2. Гидрирование соседнего пиррольного кольца (приближенная симметрия C_{2v}), наоборот, приводит к гипсохромным сдвигам $Q_x(0-0)$ полос на 51 nm, т.е. 1120 сm $^{-1}~({\rm Pd3})$ и на 53 nm $(1210\,{\rm cm}^{-1})~({\rm Pt3})$ и уменьшению ΔE_{Qxy} до 2500 cm⁻¹ (Pd3) и 2550 cm⁻¹ (Pt3) по данным для растворов в МТГФ. Если интенсивность $Q_x(0-0)$ полос остается высокой, то интенсивность $Q_{\rm v}(0-0)$ полос уменьшается, особенно у M3.

Описанные изменения аналогичны наблюдаемым при гидрировании пиррольных колец у металлопорфиринов.

В области аналога полосы Соре у комплексов гидропорфиразинов регистрируется диффузная полоса с двумя максимумами. Для Zn1 измерения поляризации флуоресценции выявили частичную поляризацию этих близких полос по осям х и у, но различия в значениях степени поляризации невелики [6]. Это интерпретировано как проявление здесь нескольких электронных переходов с различной поляризацией. Квантово-химический расчет молекулы Mg1 также выявил в этой области несколько электронных переходов [6].

Как следовало из оценок [8], основанных на влиянии структурных факторов на величину интервала $S_1 - T_1(\Delta E_{ST})$, 0-0-полоса фосфоресценции Pt2 должна была иметь $\lambda_{max} \sim 1500$ nm. В соответствии с этим предположением вначале с помощью Fluorolog-3 при исполь-

1670 900 1000 1100 1200 1300 1400 1500 1600 1700 Wavelength, nm 15 b 3 ñ ntensity, 10^5 arb. units 1063 10 1166 1655 5 ×10 1218 1280 0 900 1000 1100 1200 1300 1400 1500 1600 1700

Рис. 2. Спектры фосфоресценции растворов Pd1 (1), Pd2 (2) и Pd3 (3) в МТГФ при 293 K (a) и 77 K (b); $\lambda_{\text{exc}} = 578$ (1), 523 (2) и 560 nm (3).

зовании матричного InGaAs-детектора, охлаждаемого жидким азотом, был зарегистрирован спектр с полосой $\lambda_{max} = 1520 \, nm$ для раствора Pt2 в толуоле при 293 K. Однако впоследствии по ряду причин мы вынуждены были для получения спектров фосфоресценции использовать и Lumoscan. Этими причинами были: затруднения с получением на Fluorolog-3 полосы Pd2, ожидаемой из подобных оценок в области 1600-1700 nm, из-за высокого уровня рассеянного и возбуждающего света; более высокая точность определения максимумов полос в области 1000-1100 nm и лучше отлаженная методика сравнения пиковых интенсивностей при 293 и 77 К на Lumoscan, чем на Fluorolog-3. В связи с применением новой техники эксперимента естественным развитием работы был повтор исследований остальных бензоконденсированных гидропорфиразинов, изучавшихся в работе [8] и при стационарном, и при лазерном импульсном возбуждении.

На рис. 2 и 3, а также в табл. 1 представлены основные результаты исследований, сопоставлены спектры

Рис. 3. Спектры фосфоресценции растворов Pt1 (1), Pt2 (2) и Pt3 (3) в МТГФ при 293 K (a) и 77 K (b); $\lambda_{\text{exc}} = 567$ (1), 512 (2) и 550 nm (3).

фосфоресценции исследованных палладиевых и платиновых комплексов в МТГФ при комнатной и низкой температурах (293 и 77 К). Приведенные на рис. 2 и 3 спектры построены в единой шкале и, таким образом, по ним можно сравнивать пиковые интенсивности каждого из образцов при условии одинаковой интенсивности возбуждения (значения оптической плотности (D) растворов, соответствующие λ_{exc} , различались не более чем в 2 раза). Как можно легко убедиться, благодаря применению новой техники эксперимента даже при стационарном возбуждении удалось получить спектры фосфоресценции более высокого качества и в более широком спектральном диапазоне, чем в [8].

Главным результатом настоящего исследования является то, что удалось зарегистрировать полосы слабой фосфоресценции и Pt2 (1520 nm), и особенно 0–0полосу Pd2, расположенную еще дальше в БИК диапазоне (1670 nm). Как уже сказано, сначала в стандартном варианте комплектации на Fluorolog-3 была зарегистрирована полоса 1520 nm, а затем (в специаль-

Оптика и спектроскопия, 2020, том 128, вып. 11

ном нестандартном варианте) на Lumoscan — полоса 1670 nm. Одна из трудностей при регистрации полосы 1670 nm, кроме помехи от неотфильтрованной части возбуждающего и рассеянного света, заключалась в резком падении чувствительности InGaAs-детекторов в области 1600—1700 nm. Подтверждением того факта, что полоса 1520 nm принадлежит именно 0—0-фосфоресценции Pt2, служит хорошее совпадение PES и спектра поглощения Pt2 в МТГФ (рис. 4). Отметим, что и для всех остальных исследуемых соединений, кроме Pd2, наблюдалось достаточно близкое совпадение PES и электронных спектров поглощения.

Из-за технических трудностей PES Pd2 нам не удалось получить. Однако можно привести ряд соображений в пользу того, что полоса испускания при 1670 nm действительно является 0–0-полосой фосфоресценции Pd2. Во-первых, положение этой полосы хорошо согласуется с указанными выше оценками, давшими верный результат для Pt2; во-вторых, при переходе от 293 к 77 К 0–0-полоса фосфоресценции Pt2 и рассматриваемая полоса Pd2, имея близкие значения полуширин, почти одинаково гипсохромно смещаются (соответственно на 12 и 15 nm), а также сужаются. В-третьих, эта полоса не связана с неотфильтрованной частью возбуждающего и рассеянного света, что проверено при использовании в качестве образца чистого растворителя.

Из рис. 2, а и 3, а видно, что спектр люминесценции Рt2 и, особенно Рd2, в МТГФ при 293 К характеризуется уширенной полосой при λ < 900 nm, которая, как оказалось впоследствии, принадлежит флуоресценции. Последнюю мы позднее подробно исследовали (только при комнатной температуре). Для остальных четырех соединений полос флуоресценции ни при 293 К, ни при 77 К в области λ короче 900 nm мы не обнаружили. Что касается этих соединений, то следует отметить, что общей закономерностью для них является присутствие в их спектрах при 293 К полосы люминесценции синглетного кислорода 1270 nm, возникающей при переходе из состояния ¹Д_g. Для платиновых комплексов интенсивность полосы 1270 nm ниже, чем полосы 0-0-фосфоресценции, а для палладиевых комплексов, наоборот, — несколько выше. При понижении температуры этих растворов до 77 К полосы люминесценции синглетного кислорода исчезают, что свидетельствует о контролируемом поступательной диффузией переносе электронной энергии на молекулы кислорода.

Из рис. 2, *а* и 3, *а* также видно, что спектры фосфоресценции Pd1, Pd3, Pt1 и Pt3 представляют собой узкие 0–0-полосы со слабо выраженными вибронными полосами с длинноволновой стороны, перекрывающимися с полосами люминесценции синглетного кислорода. Максимумы 0–0-полос спектра фосфоресценции комплексов Pt (1127, 1520, 1030 nm) гипсохромно сдвинуты относительно аналогичных значений для комплексов Pd (1212, 1670, 1083 nm). Наибольшей интенсивностью при 293 К характеризуется 0–0-полоса фосфоресценции Pt3,

Рис. 4. Спектры поглощения (*1*) и возбуждения фосфоресценции (*2*) ($\lambda_{mon} = 1520 \text{ nm}$) раствора Pt2 в МТГФ при 293 К (построены по точкам с интервалом 20 nm).

наименьшей — Pd2. При 293 К расположение соединений в порядке убывания интенсивности 0–0-полосы: Pt3, Pt1, Pd3, Pt2, Pd1, Pd2. В конкретных условиях наших экспериментов интенсивность 0–0-полос спектров фосфоресценции на рис. 2 и 3 качественно передает соотношение квантовых выходов фосфоресценции, φ_p , у разных соединений. Численные значения φ_p , измеренные нами, представлены в табл. 1.

При понижении температуры от 293 до 77 К (рис. 2, *b* и 3, *b*) квантовый выход значительно возрастает: в большей степени для Pd1, Pd3, чем Pt1, Pt3, а для Pt2 и Pd2 возрастание невелико — ~ 3 раза (табл. 1); происходит гипсохромный сдвиг и сужение главных полос, а также усиление колебательной структуры. При 77 К расположение соединений в порядке убывания интенсивности несколько изменяется и имеет вид: Pt3, Pd3, Pt1, Pd1, Pt2, Pd2. Наибольшими абсолютными значениями φ_p характеризуются Pt3 и Pd3 (табл. 1) — соответственно 1.68 и 1.17%, наименьшими — Pt2 и Pd2 при 293 К (0.0007 и 0.0014%).

Минимальные значения φ_p для Pt2 и Pd2 компенсируются, как уже упоминалось, наличием флуоресценции у этих комплексов, которая не зарегистрирована для четырех остальных исследуемых соединений. На рис. 5, а и 5, b сопоставлены нормированные спектры: поглощения, возбуждения флуоресценции (FES) и флуоресценции (FS) растворов Pd2 и Pt2 в МТГФ при 293 K. FES на рис. 5 хорошо согласуются со спектрами поглощения. Это свидетельствует о том, что зарегистрированные полосы с максимумами 814 и 799 nm являются именно флуоресценцией, а также о достаточно высокой чистоте веществ. Спектры флуоресценции лишь приближенно зеркально симметричны области перехода $G \to Q_x$ спектра поглощения. Значения полуширины спектра флуоресценции трехкратно превышают аналогичные параметры спектра поглощения. Значения стоксовых сдвигов

составляют для Pd2 и Pt2 соответственно 14 и 16 nm. Нарушение зеркальной симметрии спектров поглощения и флуоресценции свидетельствует о перестройке молекулы в возбужденном *S*₁-состоянии.

В ходе проводимых исследований были накоплены некоторые сведения о фотостабильности и растворимости исследуемых комплексов, а также о влиянии растворителей на эти свойства для четырех растворителей: МТГФ, толуол, ДМСО и ДМФА. По убыванию фотостабильности исследуемые платиновые и палладиевые комплексы располагаются следующим образом: Pt1, Pt2, Pt3 и Pd1, Pd2, Pd3, а по снижению степени растворимости — Pt3, Pt1, Pt2 и Pd3, Pd1, Pd2. При этом соответствующие платиновые комплексы более фотостабильны, чем палладиевые. По растворимости МТГФ, толуол примерно одинаковы, ДМФА, ДМСО примерно одинаковы. По зависимости фотостабильности от растворителя в порядке её снижения: толуол, МТГФ, ДМФА, ДМСО. Замечено, что растворимость в ДМФА и ДМСО сильно зависит от содержания в них воды,

Рис. 5. Нормированные спектры поглощения (1), возбуждения флуоресценции (2) и флуоресценции (3) растворов в МТГФ при 293 К: a - Pd2 ($\lambda_{mon} = 900$ nm, $\lambda_{exc} = 523$ nm); b - Pt2 ($\lambda_{mon} = 880$ nm, $\lambda_{exc} = 512$ nm).

Вещество	Растворитель	Т, К	$\lambda_{Qx}, \lambda_{Qy}, nm$	λ_p^{00} , nm	$\varphi_p, \%$	Δ_{λ}^{T} , nm	Δ_V^T , cm ⁻¹
Pd1	ΜΤΓΦ	293 77	702, 578	1212 1166	0.0013 0.043	46	325
Pd2	ΜΤΓΦ	293 77	801, 523	1670 1655	0.0007 0.0021	15	54
Pd3	ΜΤΓΦ	293 77	651, 560 -	1083 1063	0.0023 1.17	20	173
Pt1	ΜΤΓΦ	293 77	690, 567 —	1127 1104	0.0154 0.126	23	185
Pt2	ΜΤΓΦ	293 77	783,512	1520 1508	0.0014 0.0045	12	52
Pt3	ΜΤΓΦ	293 77	637, 548	1030 1013	0.053 1.68	17	163
Pt2	толуол	293	784, 512	1517	0.0016	_	_

Таблица 1. Фотофизические характеристики комплексов бензозамещенных гидропорфиразинов с Pd и Pt, измеренные при стационарном возбуждении

уменьшаясь с его увеличением. МТГФ вместо толуола нами выбран только по причине его способности образовывать хорошее стекло при замораживании.

Обсуждение результатов

Как отмечено выше, главный результат работы — обнаружение фосфоресценции комплексов Pd и Pt с дибензогидропорфиразинами в средней части ближней ИК области, с аксимумами 0—0-полос (λ_p^{00}) около 1650 и 1500 nm соответственно, что является, насколько нам известно, рекордными значениями для молекулярной фосфоресценции тетрапирролов. Для сравнения приведем λ_p^{00} для молекул Pd- и Pt-фталоцианинов: 990 nm [16–18] (PdPc) и 945 nm (PtPc) [18] (при 77 K), а также для комплексов октабутокси-2,3-нафталоцианина (Nc(OBu)₈) [19] (при 293 K) — 1343 и 1265 nm для Pd и Pt комплексов соответственно.

Вместе с тем полученные результаты с учетом литературных данных позволяют проследить на примере палладиевых и некоторых платиновых комплексов ряда тетрапирролов влияние структурных факторов на энергию состояния T_1 . В молекулах бензогидропорфиразинов сочетаются три фактора, способные существенно влиять на электронную структуру и физико-химические свойства при сохранении в молекуле внутреннего 16членного кольца сопряженных связей: гидрирование пиррольных колец, азазамещение и бензозамещение (в более общем случае — аренозамещение).

Следует также отметить, что в предыдущей работе [8] для трех соединений: Pd1, Pd3 и Pt1 фосфоресценция не была зарегистрирована при стационарном возбуждении (была зарегистрирована при импульсном лазерном возбуждении). В данной работе этот пробел заполнен, причем результаты двух методов (стационарного и импульсного) хорошо согласуются между собой.

Спектры фосфоресценции в МТГФ измерены при комнатной температуре и 77 К. Как обычно, при 77 К 0-0-полосы фосфоресценции сужены и смещены в коротковолновую сторону. В табл. 1 приведены величины этих сдвигов (Δ_{λ}^{T} в nm и в сm⁻¹). Для аналогов бактериохлорина они значительно меньше, чем для хлоринов и изобактериохлоринов. В первом случае молекулы исследованных тетрапирролов имеют приближенную симметрию D_{2h} , и их дипольный момент близок к нулю, а во втором случае (симметрия C_{2v}) дипольный момент молекул может быть ненулевым. Как известно, молекулы люминофора, обладающие ненулевым дипольным моментом, в возбужденном электронном состоянии могут претерпевать понижение энергии в результате сольватационных эффектов, если дипольный момент изменяется в результате перехода в возбужденное состояние (другие виды межмолекулярных взаимодействий проявляются слабее). В замороженных твердых (rigid) средах этот эффект не имеет места. Поэтому полученные данные о слабом влиянии температуры на спектры фосфоресценции молекул Pd2 и Pt2 можно связывать с отсутствием у них дипольного момента. Для Pd1 сдвиг больше, чем для Pt1, что может быть связано с меньшим радиусом атома Pd. В остальных случаях сдвиги для комплексов Pd и Pt близки.

Обсуждение влияния молекулярной структуры на фосфоресценцию комплексов тетрапирролов с Pd и Pt следует начать с общего замечания. В предыдущих наших работах основное внимание обращалось на величину интервала S_1-T_1 , ΔE_{ST} . Такой подход оправдан, когда для некоторых из исследуемого ряда соединений спектр фосфоресценции не зарегистрирован и является предметом поиска. Однако большее значение и четкий

Рис. 6. Трехуровневые диаграммы (уровни S_0 , T_1 , S_1) для комплексов молекул тетрапирролов с палладием и платиной. Ссылки на литературные данные приведены в тексте, полные названия соединений даны в табл. 2.

физический смысл имеет величина энергии состояния T_1 . Именно эта величина в первую очередь определяет способность вещества участвовать в межмолекулярных фотопроцессах. В настоящей работе основное внимание обращается на величину E_{T_1} .

Первые исследования низкотемпературной фосфоресценции хлорофиллоподобных молекул были выполнены Кальвинои и Дорафом, обнаружившими фосфоресценцию хлорофилла *b* и металлокомплексов тетрафенилпорфина [20,21]. В работах Беккера и Эллисон [22,23] было изучено влияние природы центрального атома металла на интенсивность фосфоресценции металлопорфиринов и найдено, что наибольшей интенсивностью обладают комплексы палладия и платины. Комплексы этих металлов предпочтительны для поиска фосфоресценции конкретного макроцикла, что и было сделано в настоящей работе, как и в работе [8]. Отметим, что фосфоресценция свободных оснований порфиринов менее интенсивна, чем у комплексов с легкими металлами [24,25].

На рис. 6 результаты наших исследований Рd и Рt бензогидропорфиразинов представлены в виде трехуровневых диаграмм. Вместе с литературными данными для родственных структур использованы опубликованные данные для Pd-порфина [26,27], Pd-тетрабензопорфина [17], Pd-хлорина [27], Pd-октаэтилизобактериохлорина [28], Pd-феофитина *a* [29], Pd-бактериофеофитина *a* [29], Pd-тетраазапорфина [30], Pd-фалоцианина [16–18], Pt-фталоцианина [18], Pd-норборненотетраазахлорина [31].

Данные об энергии состояния T_1 для палладиевых и некоторых платиновых комплексов тетрапирролов с различной молекулярной структурой макроциклов (табл. 2) показывают, что в случае молекул тетрапирролов с углеродными метиновыми мостиками тетраазазамещение приводит к понижению уровня T_1 на 2100 сm⁻¹. Такой же сдвиг дает гидрирование одного пиррольного кольца (переход от Pd-порфина к Pd-хлорину). Влияние гидрирования второго пиррольного кольца можно определить по данным [28] для Pd-октаэтилхлорина и Pd-октаэтилизобактериохлорина — уровень T_1 повышается на 250 сm⁻¹. Гидрирование второго, противоположного, пиррольного кольца понижает уровень T_1 на 2800 сm⁻¹, как показывают данные для Pd-феофитина *a* и Pd-бактериофеофитина *a*.

В случае молекул с азотными мостиками (тетраазазамещенных) наблюдаются сопоставимые сдвиги. Так, у Рd-тетраазапорфина энергия уровня T_1 на 2750 cm⁻¹меньше, чем у Рd-порфина. Бензозамещение (переход к PdPc) понижает его ещё на 2250 cm⁻¹. Такова же величина сдвига при гидрировании пиррольного кольца (полная аналогия с тетрапирролами, у которых мостики метиновые!).

Для бензогидропорфиразинов нельзя ожидать полной аналогии с дигидро- и тетрагидропорфиразинами, так как у последних отсутствуют бензольные кольца, входящие в сопряженную систему макроцикла. Как следует из результатов настоящей работы, замена одного изоиндольного фрагмента на гидрированное пиррольное кольцо понижает уровень T_1 на 1500 сm⁻¹, замена ещё одного, противоположного, изоиндольного фрагмента (транс- изомер) понижает энергию T_1 уровня ещё на 2550 сm⁻¹. Это значение сопоставимо с понижением уровня T_1 у бактериофеофитина на 2800 сm⁻¹. Для цисизомера получается повышение уровня T_1 на 800 сm⁻¹ относительно Pd1.

На основании накопленной информации о спектрах фосфоресценции Pd-тетрапирролов и частично Ptтетрапирролов можно сделать вывод о приближенной аддитивности влияния азазамещения, бензозамещения и гидрирования пиррольных колец на энергию уровня T_1 .

Как видно из табл. 2, данные по смещению для комплексов платины — объектов настоящего исследова-

Таблица 2	2. Энергия	уровня	T_1 для	комплексов	палладия	И
платины с м	иолекулами	тетрапи	арролов	при 77 К		
						_

Вещество	$E_{T1}, {\rm cm}^{-1}$	Литература
Рd-порфин	15750	[26,27]
Рt-порфин	16350	[26]
Pd-тетрабензопорфин	13000	[17]
Рd-хлорин	13000	[27]
Pd-октаэтилхлорин	12750	[28]
Pd-октаэтил-	13000	[28]
изобактериохлорин		
Рd-феофитин <i>а</i>	11650	[29]
Pd-бактериофеофитин а	8850	[29]
Pd-тетраазапорфин	12350	[30]
Pd-фталоцианин	10100	[16–18]
Рt-фталоцианин	10600	[18]
Pd-норборненотетразахлорин	10100	[31]
Pd1	8600	
Pt1	9050	
Pd2	6050	
Pt2	6650	
Pd3	9400	
Pt3	9900	

ния — аналогичны таковым для комплексов палладия. Спектры фосфоресценции Pt-бензогидропорфиразинов смещены в коротковолновую сторону, S-T-интервал несколько уменьшен. Имеем соответственно для Pd1 $\Delta E_{ST} = 5670 \text{ cm}^{-1}$, для Pt1 $\Delta E_{ST} = 5440 \text{ cm}^{-1}$; для Pd2 и Pt2 — 6440 cm⁻¹ и 6140 cm⁻¹; для Pd3 и Pt3 — 5950 cm⁻¹ и 5830 cm⁻¹. Для комплексов фталоцианина аналогичный S-T-интервал составляет: PdPc — 5100 cm⁻¹ [16–18], PtPc — 4800 cm⁻¹ [18].

Рd-порфирины ранее считались нефлуоресцирующими, но в работе [32] слабая флуоресценция была обнаружена. Флуоресценция РdРс была зарегистрирована в [18], для Pd-феофитина *a* и Pd-бактериофеофитина в [29], замещенного Pd-тетраазахлорина — в [33]. Данные о флуоресценции PtNc(OBu)₈ и комплексов других переходных металлов с Nc(OBu)₈ представлены в [19].

На рис. 5 представлены спектры БИК-флуоресценции основных объектов нашего исследования — Pd2 и Pt2. Они отличаются от типичных спектров флуоресценции металлокомплексов фталоцианинов и гидропорфиразинов небольшим уширением спектральных полос. Стоксов сдвиг (200–260 ст⁻¹) несколько больше, чем для PdPc и Pd-бактериофеофитина a (~ 150 ст⁻¹).

Эти результаты можно сравнивать с данными работы [19] по БИК-флуоресценции PdNc(OBu)₈) и PtNc(OBu)₈ ($\lambda_A^{00} = 827$ и 811 nm). Значения λ_F^{00} — соответственно 873 и 879 nm, стоксов сдвиг — 652 и 954 сm⁻¹. Спектры флуоресценции значительно шире Q(0-0)-полосы поглощения. Авторы [19] связывают возрастание стоксова сдвига у комплексов Pt с изменением геометрии молекулы в состоянии S_1 (один из двух вариантов объяснения). Однако узость Q(0-0)-полосы

поглощения показывает, что в "франк-кондоновском" S_1 -состоянии геометрия молекулы сохраняется, а изменения геометрии происходят в этом состоянии в результате межмолекулярных взаимодействий. У наших объектов стоксовы сдвиги значительно меньше.

Заключение

Применение современных методов регистрации электромагнитного излучения в БИК диапазоне позволило получить спектры ранее не наблюдавшейся фосфоресценции комплексов палладия и платины с трансоктаметилдибензогидропорфиразином — структурным аналогом бактериохлорофилла — при 77 и 293 К. Определен квантовый выход фосфоресценции. Получены также спектры флуоресценции этих комплексов — тоже в ближнем ИК диапазоне.

С использованием результатов предшествующей работы [8] и литературных данных прослежено влияние структурных факторов на энергию нижнего триплетного уровня палладиевых и некоторых платиновых комплексов тетрапирролов. Сделан обобщающий вывод о приближенной аддитивности вкладов структурных факторов: тетраазазамещения, тетрабензозамещения, гидрирования одного пиррольного кольца и второго пиррольного кольца (как противоположного первому, так и соседнего с ним) — в энергию уровня T_1 . Результаты работы имеют теоретическое значение для физики молекул класса тетрапирролов и создают необходимую основу для создания системы знаний, способной предсказывать фотофизические свойства новых химических соединений.

Практическому использованию фосфоресценции Pd и Рt металлокомплексов фталоцианина и его производных препятствует крайне низкий выход свечения (~ 1% даже у Pt-фталоцианина) [18], которая неизбежно уменьшается с продвижением в БИК область в силу возрастания вероятности безызлучательного размена энергии состояния Т1 на колебания молекул в основном состоянии. Впрочем, необходимо отметить как положительный момент в этом плане, что выход фосфоресценции Pt3 (1.68%) выше, чем Рt-фталоцианина, несмотря на длинноволновый сдвиг 0-0-полосы от 945 nm у Ptфталоцианина до 1013 nm у Pt3, т.е. на 710 cm $^{-1}$. Для Pd3 выход возрастает ещё больше относительно Pdфталоцианина: 1.17% против 0.3% (в четыре раза). Значения λ_p^{00} соответственно 1063 nm и 990 nm, т.е. получается сдвиг на 700 ст⁻¹ (табл. 1, 2 и [18]). Вместе с тем область БИК диапазона 1.0-1.7 µm весьма актуальна для практических применений в области оптоэлектроники и в биомедицинских исследованиях [34].

Следует отметить, что подавляющее большинство практических применений с участием комплексов Pd и Pt с тетрапирролами имеет место в области, где $\lambda < 1000$ nm. Успехи в применении подобных комплексов в области $\lambda > 1000$ nm намного скромнее, так как

для достижения этой цели, кроме высокого квантового выхода, нужно обеспечить еще и высокую фотостабильность. Среди исследованных нами комплексов самым фотостабильным оказался Pt1. Анализ результатов настоящей работы, а также [8,34] и других авторов однозначно свидетельствует, что путем подбора внешних факторов (растворитель, матрица) и химической модификации можно значительно повысить квантовый выход и фотостабильность фосфоресценции металлокомплексов на основе тетрапирролов. Но удастся ли довести отмеченные характеристики до требуемых значений для практических приложений в области БИК диапазона $1.0-1.7\,\mu$ т остается пока неясным.

Финансирование работы

Результаты были получены в рамках выполнения задания 1.4.02 Государственной программы научных исследований Республики Беларусь "Фотоника, опто- и микроэлектроника".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Макарова Е.А., Королева Г.В., Лукьянец Е.А. // ЖОХ. 2001. Т. 71. 5 С. 874; Makarova E.A., Koroleva G.V., Luk'yanets E.A. // Russian J. General Chemistry. 2001. V. 71. N 5. P. 821. doi 10.1023/A:1012398427529
- [2] *Макарова Е.А., Королева Г.В., Лукьянец Е.А. //* Патент РФ 2188200, 2002.
- [3] Fukuda T., Makarova E.A., Luk'yanets E.A., Kobayashi N. // Chem. Eur. J. 2004. V. 10. N 1. P. 117. doi 10.1002/chem.200305363
- [4] Makarova E.A., Fukuda T. Luk'yanets E.A., Kobayashi N. // Chem. Eur. J. 2005. V. 11. N 4. P. 1235. doi 10.1002/chem.200400845
- [5] Makarova E.A., Dzyuina E.V., Fukuda T., Kaneko H., Hashimoto N., Kikukawa Y., Kobayashi N., Lukyanets E.A. // Inorg. Chem. 2009. V. 48. N 1. P. 164. doi 10.1021/ic801552u
- [6] Першукевич П.П., Волкович Д.И., Гладков Л.Л., Дудкин С.В., Кузьмицкий В.А., Макарова Е.А., Соловьев К.Н. // Опт. и спектр. 2017. Т. 123. С. 518; Pershukevich P.P., Volkovich D.I., Gladkov L.L., Dudkin S.V., Kuzmitsky V.A., Makarova E.A., Solovyev K.N. // Opt. Spectrosc. 2017. V. 123. P. 535. doi 10.1134/S0030400X17100198
- [7] Арабей С.М., Гало Ж.-П., Ступак А.П., Павич Т.А., Макарова Е.А., Соловьев К.Н. // ЖПС. 2009. Т. 76. № 3.
 С. 376; Arabei S.M., Galaup J., Stupak A.P., Pavich T.A., Makarova E.A., Solovyov K.N. // J. Appl. Spectrosc. 2009.
 V. 76. N 3. P. 352. doi 10.1007/s10812-009-9187-x
- [8] Першукевич П.П., Галиевский В.А., Сташевский А.С., Макарова Е.А., Лукьянец Е.А., Соловьев К.Н. // ЖПС. 2010. Т. 77. № 6. С. 852; Pershukevich P.P., Galievsky V.A., Stasheuski A.S., Makarova E.A., Luk'yanets E.A., Solovyov K.N. // J. Appl. Spectrosc. 2011. V. 77. N 6. P. 790. doi 10.1007/s10812-011-9404-2

- Kuzmitsky V.A, Makarova E.A., Pershukevich P.P., Shushkevich I.K., Solovyov K.N., Tusov V.B. // Chem. Phys. 2004.
 V. 298. P. 1. doi 10.1016/j.chemphys.2003.10.039
- [10] Воропай Е.С., Самцов М.П., Радько А.Е., Каплевский К.Н., Першукевич П.П., Бельков М.В., Ермалицкий Ф.А. // Лазерная и оптико-электронная техника: сб. науч. ст. / Под ред. Манакая И.С. В. 10. Минск, Акад. Упр. При Президенте РБ, 2006. С. 200.
- [11] Галиевский В.А., Сташевский А.С, Киселев В.В, Шабусов А.Н, Бельков М.В., Джагаров Б.М. // ПТЭ. 2010. Т. 53. С. 109.
- [12] Ou Z., Shen J., Kadish K.M. // Inorg. Chem. 2006. V. 45.
 P. 9569. doi 10.1021/ic061072f
- [13] Gutmann V. // The Donor-Acceptor Approach in Molecular Interactions. NY.: PlenumPress, 1978.
- [14] Фиалков Ю.Я. // Растворитель как средство управления химическим процессом. Л.: Химия, 1990.
- [15] Cataldo F. // Eur. Chem. Bull. 2015. V. 4. P. 92. doi 10.17628/ecb.2015.4.92-97
- [16] Соловьёв К.Н., Машенков В.А., Качура Т.Ф. // ЖПС. 1967. Т. 7. С. 773.
- [17] Соловьёв К.Н., Машенков В.А., Качура Т.Ф. // Опт. и спектр. 1969. Т. 27. С. 50.
- [18] Vincett P.S., Voigt E.M., Rieckhoff K.E. // J. Chem. Phys. 1971.
 V. 55. P. 4131.
- [19] Kim J., Soldatova A.V., Rodgers M.A., Kenney V.E. // Polyhedron. 2013. V. 57. P. 64. doi 10.1016/j.poly.2013.04.022
- [20] Calvin M., Dorough G.D. // Science. 1947. V. 105. P. 433.
- [21] Calvin M., Dorough G.D. // J. Am. Chem. Soc. 1948. V. 70. P. 699.
- [22] Allison J.B., Becker R.S. //J. Chem. Phys. 1960. V. 32. P. 1410.
- [23] Becker R.S., Allison J.B. // J. Phys. Chem. 1965. V. 67. P. 2662.
- [24] Цвирко М.П., Соловьёв К.Н, Градюшко А.Т., Дворников С.С. // ЖПС. 1974. Т. 20. С. 1528.
- [25] Цвирко М.П., Соловьёв К.Н., Градюшко А.Т., Дворников С.С. // Опт. и спектр. 1975. Т. 38. С. 705.
- [26] Eastwood D., Gouterman M. // J. Mol. Spectrosc. 1970. V. 35. P. 359.
- [27] Егорова Г.Д., Машенков В.А., Соловьёв К.Н, Юшкевич Н.А. // ЖПС. 1973. Т. 19. С. 838.
- [28] Градюшко А.Т., Соловьёв К.Н., Туркова А.Е., Цвирко М.П. // Биофизика. 1975. Т. 20. С. 602.
- [29] Лосев А.П., Кнюкшто В.Н., Кочубеева Н.Д., Соловьёв К.Н. // Опт. и спектр. 1990. Т. 69. С. 97.
- [30] Машенков В.А., Соловьёв К.Н., Туркова А.Е., Юшкевич Н.А. // ЖПС. 1974. Т. 21. С. 73.
- [31] Бельков М.В., Грищук А.А., Дудкин С.В., Макарова Е.А., Першукевич П.П., Соловьёв К.Н. // ЖПС. 2010. Т. 77. № 2. С. 230; Belkov M.V., Grishchuk А.А., Dudkin,S.V., Makarova E.A., Pershukevich P.P., Solovyov К.N. // J. Appl. Spectrosc. 2010. V. 77. P. 213. doi 10.1007/s10812-010-9317-5.
- [32] Callis J.B., Gouterman M., Jones Y.M., Henderson B.H. // J. Mol. Specrosc. 1971. V. 39. P. 410.
- [33] Першукевич П.П., Шушкевич И.К., Макарова Е.А., Соловьёв К.Н. // ЖПС. 2008. Т. 75. № 5. С. 700; Pershukevich P.P., Shushkevich I.K., Makarova E.A., Solovyev K.N. // J. Appl. Spectrosc. 2008. V. 75. N 5. P. 706. doi 10.1007/s10812-008-9098-2
- [34] Ibrahim-Ouali M., Dumur F. // Molecules. 2019. V. 24. N 7.
 P. 1412. doi 10.3390/molecules24071412