02

Ап-конверсия инфракрасного излучения в щелочно-земельных фторидах, активированных Er³⁺

© Е.А. Раджабов, Р.Ю. Шендрик

Институт геохимии им. А.П. Виноградова Сибирского отделения РАН, 664033 Иркутск, Россия e-mail: eradzh@igc.irk.ru

Поступила в редакцию 22.01.2020 г. В окончательной редакции 30.07.2020 г. Принята к публикации 03.08.2020 г.

Изучены процессы ап-конверсии в кристаллах MeF₂–ErF₃ (Me — Ca, Sr, Ba) в интервале концентраций ErF₃ от 0.01 до 10 mol.% при возбуждении в инфракрасных полосах иона Er³⁺ излучением лазерных диодов 808, 978, 1542 nm. При возбуждении $\lambda = 1542$ nm в спектре свечения MeF₂–Er преобладает полоса ⁴ $I_{11/2}$ –⁴ $I_{15/2}$ при 990 nm, вклад полос в видимой области спектра составляет менее 0.1. Энергетический выход ап-конверсионного свечения MeF₂–10% ErF₃ при возбуждении 1542 nm с плотностью мощности около 1 W/cm² находится в интервале от 14 до 26%.

Ключевые слова: ап-конверсия, щелочно-земельные фториды, инфракрасное излучение.

DOI: 10.21883/OS.2020.11.50164.10-20

Введение

Поиск эффективных люминофоров, преобразующих ближнее инфракрасное излучение с длиной волны $1-2\mu$ m в свет с длиной волны менее 1μ m, остается актуальной задачей. Ион Er^{3+} в кристаллах характеризуется сильным поглощением в области $1.4-1.6\mu$ m, что открывает возможности повышения эффективности кремниевых солнечных батарей за счет регистрации излучения с энергией фотонов меньше ширины запрещенной зоны кремния [1].

Ионы Er³⁺ имеют подходящую для ап-конверсии систему электронных уровней и часто используются в паре с ионами Yb³⁺ во многих кристаллических и стеклообразных матрицах [2]. Впервые зеленые и красные полосы свечения Er^{3+} в кристаллах $\mathrm{BaF_2-5\%}$ ErF₃ при возбуждении в инфракрасной области обнаружены в работах Овсянкина и Феофилова [3-5] и интерпретированы как возникающие при двухфотонном $(\sim 980 \, \text{nm})$ и трехфотонном ($\lambda > 1200 \, \text{nm}$) поглощении. В CdF₂-ErF₃ интенсивность зеленой и красной полос свечения кубично увеличивалась с ростом интенсивности возбуждающего света [6,7]. Интенсивность зеленого свечения BaF₂-Er³⁺ увеличивалась как квадрат концентрации эрбия в интервале 0.5-8% при возбуждении в интервале 0.9–1.2 µm, что интерпретировано как последовательное поглощение двух фотонов ионом эрбия [4].

Помимо видимых полос свечения, возбуждение лазерным излучением $1.5 \,\mu$ m приводит к появлению свечения в области 990 nm (CdF₂-Er [6], CaF₂-Er [8]), интенсивность которого превышает интенсивности видимых полос. По этой причине некоторые фторидные материалы предлагались для повышения выхода кремниевых фотопреобразователей [1,8,9].

Целью наших исследований являлась изучение механизмов и измерение энергетического выхода апконверсии в кристаллах щелочно-земельных фторидов MeF₂—Er при возбуждении в инфракрасных полосах поглощения ионов Er³⁺.

Методика эксперимента

Кристаллы MeF₂ (Me — Ca, Sr, Ba) выращивались методом Стокбаргера в шестиствольном графитовом тигле в вакууме [10]. Несколько процентов CdF₂ добавлялось в сырье для очистки шихты от кислородных примесей. Были выращены кристаллы щелочно-земельных фторидов с ErF_3 (вводимая концентрация 0.01–10 mol.%), а также кристаллов с двойной активацией ErF_3 –YbF₃. В ряде кристаллов некоторая доля ионов Yb³⁺ (около 10%) при выращивании преобразовывалась в двухвалентную форму.

Для возбуждения антистоксовой люминесценции использовались полупроводниковые лазерные диоды с длиной волны излучения 808, 978 и 1542 nm с измеренными мощностями 400, 69 и 5 mW. Мощность лазерного излучения измерялась с помощью ИМО-2М. Спектры поглощения в области 190-3000 nm измерялись на спектрофотометре Perkin-Elmer Lambda-950. Спектры свечения в области 200-890 nm измерены с использованием фотомодуля Hamamatsu H6780-04. Спектры свечения в длинноволновой области измерялись охлаждаемым фотоумножителем ФЭУ83, фотоприемным устройством с охлаждаемым Ge-фотодиодом ФПУ-ФДГ ЛОМО-ФОТОНИКА (до 1700 nm) и охлаждаемым фотосопротивлением PbS-ФСВ19АА (до 2500 nm). Излучение регистрировалось через дифракционные монохроматоры МДР-2 и СДЛ-1 (ЛОМО).

Энергетический выход ап-конверсии щелочно-земельных фторидов измерен с помощью интегрирующей сферы. Приемником излучения являлся кремниевый фотодатчик TSL237 с диапазоном чувствительности 300–1100 nm. Интенсивность возбуждающего пучка измерялась как с помощью сферы, так и с помощью термопарного измерителя мощности лазерного излучения ИМО-2М. Диаметр лазерного пучка диода 1542 nm оценивался методом "ножа" (knife-edge method) [11]. Для этого интенсивность лазерного излучения измерялась германиевым фотодиодом при постепенном перекрытии пучка одной из сторон щели от монохроматора.

Результаты

В спектрах люминесценции кристаллов MeF_2-Er^{3+} при возбуждении 405 nm наблюдались наиболее интенсивные полосы Er^{3+} при 550 (${}^{4}S_{3/2}-{}^{4}I_{15/2}$), 660 (${}^{4}F_{9/2}-{}^{4}I_{15/2}$), 980 (${}^{4}I_{11/2}-{}^{4}I_{15/2}$) и 1550 nm (${}^{4}I_{13/2}-{}^{4}I_{15/2}$) с развитой структурой вследствие взаимодействия с кристаллическим полем (для SrF_2-Er^{3+}

Е.А. Раджабов, Р.Ю. Шендрик

Рис. 2. Спектры свечения кристаллов щелочно-земельных фторидов $MeF_2 - 0.1\% ErF_3$ при комнатной температуре при возбуждении 980 nm.

рис. 1, b). Все полосы свечения немного сдвинуты в красную сторону от полос поглощения (рис. 1, a).

Апконверсия при возбуждении 808, 980 nm

Структура видимых полос свечения при возбуждении 808 и 980 nm похожа на таковую при возбуждении лазером 405 nm. Наблюдается уменьшение доли зеленой полосы при 550 nm относительно красной полосы при 600 nm при переходе от CaF₂-Er к SrF₂-Er и BaF₂-Er (рис. 2). Суммарный цвет свечения кристаллов меняется от красного в CaF₂–Er к зеленому в BaF₂–Er. Можно полагать, что это явление обусловлено зависимостью вероятности многофононных переходов от числа участвующих фононов. Поскольку фононные частоты в ряду CaF₂–SrF₂–BaF₂ уменьшаются [12], то увеличивается число фононов, требуемых для безызлучательного переноса с уровня ${}^{4}S_{3/2}$ на нижележащий уровень ${}^{4}F_{9/2}$. Поскольку вероятность многофононного перехода экспоненциально уменьшается с ростом числа фононов от CaF₂ к BaF₂, то доля красной полосы в общем свечении также уменьшается в этом ряду (рис. 2).

При охлаждении до 80 К интенсивность красной полосы 660 nm уменьшается в 1.5-2 раза, в то время как интенсивность зеленой полосы около 550 nm увеличивается более чем в 10 раз. Очевидно, причиной этого является "вымораживание" многофононного перехода ${}^{4}S_{3/2} - {}^{4}F_{9/2}$.

Интенсивность видимых полос свечения в кристаллах CaF_2 —Ег квадратично увеличивается с ростом мощности излучения 980 nm (рис. 3), что указывает на двухфотонный механизм возбуждения (для BaF_2 —Ег см. также [4]). Интенсивность видимых полос свечения 540 и 660 nm в BaF_2 квадратично увеличивается с концентрацией эрбия в интервале 0.1—3 mol.%.

Ап-конверсия при возбуждении 1542 nm

При возбуждении кристаллов MeF₂-Er излучением лазера с длиной волны 1542 nm интенсивность полос свечения 550, 660 и 990 nm последовательно увеличивается (рис. 4). Соотношение между интенсивностями полос люминесценции при возбуждении лазерами с длинами волн 1542 и 405 nm отличается. При возбуждении в области 1542 nm наибольшую интенсивность имеет полоса 990 nm, а наименьшую — полоса с максимумом 550 nm (рис. 4) При возбуждении 405 nm различие в интенсивностях значительно меньше (рис. 1). Вклад инфракрасной полосы в общее ап-конверсионное свечение для кристаллов MeF₂-ErF₃ составляет более 90%. Подобный преобладающий вклад инфракрасного свечения 990 nm в общую ап-конверсию ионов Er³⁺ при возбуждении 1550 nm наблюдался также в кристаллах CaF_2-Y-Er [1], CaF_2-Er , $CaF_2-Er-Yb$ [8] и стеклах [13].

В простых случаях интенсивность ап-конверсионного свечения растет с мощностью возбуждения как интенсивность возбуждения в степени n, где n = 2, 3, ... число фотонов, необходимое для переноса электрона в излучательное состояние.

Интенсивность видимых полос свечения в кристаллах MeF_2-Er примерно квадратично увеличивается с ростом мощности излучения 1542 nm (рис. 3), хотя энергетические соотношения указывают на трехфотонный механизм возбуждения. Следует отметить, что коэффициент наклона больше для зеленой (550 nm) полосы,

Рис. 3. Зависимость интенсивности видимых полос CaF_2-ErF_3 и BaF_2-ErF_3 от мощности излучения лазера 980 (*a*) и 1542 nm (*b*). Интенсивность на графике (*b*) нормирована при малых мощностях для удобного представления, *K* — степенной показатель зависимости $I = AP^K$.

чем для красной полосы (660 nm). Это приводит к изменению цвета свечения кристаллов MeF₂-Er от красного к зеленому с увеличением плотности возбуждения. В то же время, коэффициент наклона зависимости для полосы 990 nm равен 1.2, что меньше 2 — ожидаемого значения, исходя из двухфотонного механизма возбуждения этой полосы.

Выход ап-конверсии

В общем случае энергетический выход люминофора определяется как отношение излученной мощности к поглощенной ($P_{\rm em}/P_{\rm abs}$). Для нахождения квантового выхода следует перейти к количеству фотонов в числителе и знаменателе. Поскольку ап-конверсия это нелинейный процесс, ее энергетический выход растет с увеличением

Рис. 4. Спектры свечения кристаллов $MeF_2-10\%$ ErF₃ при возбуждении излучением лазера 1542 nm. Вверху указаны относительные светосуммы полос для $BaF_2-10\%$ ErF₃.

поглощенной мощности. Поэтому для характеристики *п*-фотонной ап-конверсии предложена нормированная эффективность, в которой энергетический выход делится на мощность излучения (или поглощенную мощность) в степени (n-1), что приводит к единицам нормированной эффективности двухфотонного процесса cm²/W [2]. В то же время отмечено, что в эффективных порошковых материалах NaYF₄-Er, Gd₂O₂S-Er интенсивность ап-конверсии выходит на насыщение с ростом мощности излучения, что означает уменьшение нормированной эффективности с ростом мощности [14]. Отклонение показателя степени зависимости выхода ап-конверсии от плотности мощности возбуждения от значения (*n*-1) наблюдалось также в других работах [9]. Поэтому нормированная эффективность (или выход) ап-конверсии не позволяет однозначно сравнивать эффективности люминофоров между собой. Вследствие этого в публикациях вместе с выходом указывают падающую (или поглощенную) плотность мощности излучения.

Энергетический N_e (и квантовый N_q) выход ближнего инфракрасного свечения 990 nm при возбуждении в области 1550 nm (таблица) значительно больше выхода видимой ап-конверсии как MeF₂—Er (рис. 5) так и MeF₂—Ho—Yb [10]. Зная энергетический выход, квантовый выход свечения можно определить как $N_q = N_e hv$ (свечения)/hv (возбуждения) = $N_e \lambda$ (возбуждения)/ λ (свечения) (таблица).

Экспериментальные значения для энергетического (N_e) и квантового (N_q) выходов ап-конверсии при возбуждении лазерным диодом 1542 nm мощностью 5.0 mW и плотностью мощности сфокусированного пучка 1.2 W/cm^2

Кристалл	$N_e, \%$	N_q , %
$\begin{array}{c} CaF_2 {-}10\% \ ErF_3 \\ SrF_2 {-}10\% \ ErF_3 \\ BaF_2 {-}10\% \ ErF_3 \end{array}$	19.1 25.8 14.2	14.7 19.8 10.9

Обсуждение

В длинноволновой области наиболее интенсивными переходами в ионах эрбия Er^{3+} являются переходы из основного состояния на уровни ${}^{4}I_{13/2}$ (1530 nm) и ${}^{4}F_{9/2}$ (650 nm) (рис. 1, *a* и [15]), тогда как в спектрах фотолюминесценции преобладают переходы с уровней ${}^{4}I_{13/2}$ (1530 nm) и ${}^{4}I_{11/2}$ (990 nm) в основное состояние (рис. 1, *b*).

Энергетические оценки показывают, что для преобразования излучения 1550 nm в зеленое 550 nm или красное 660 nm свечение Er^{3+} необходимо сложение энергий трех фотонов. Действительно, в кристаллах $\mathrm{CdF}_2-\mathrm{Er}^{3+}$ (4%) наблюдалась зависимость интенсивности зеленого и красного свечения от мощности излучения 1507 nm с коэффициентом наклона, близким к 3, эффекты насыщения начинали наблюдаться при плотно-

Рис. 5. Схема уровней и оптических переходов в ионах Er^{3+} в кристаллах MeF₂. Возбуждение совершается излучением лазера 1542 nm. Справа приведен спектр поглощения кристалла SrF₂—Er при комнатной температуре. Схемы ап-конверсионных переходов при поглощении фотонов 1542 nm [6] указаны слева, при поглощении фотонов 980 nm — справа.

сти более 1 W/cm² [6]. В нашем случае при возбуждении 1542 nm для видимых полос наблюдается зависимость от интенсивности возбуждения с коэффициентом около 2 (рис. 3). Изменение цвета свечения кристалла с зеленоватого на красный хорошо видно глазом при смещении кристалла из фокуса лазерного пучка, когда при увеличении диаметра пучка уменьшается плотность возбуждения. Этот же эффект проявляется в виде разного наклона зависимостей интенсивностей красной и зеленой полос свечения от мощности возбуждения лазера 1542 nm (рис. 3, b). Изменение цвета свечения и различие показателей степенной зависимости указывают на разные процессы возбуждения двух видимых полос свечения. Этот эффект практически отсутствует при возбуждении MeF₂-Er лазерами 808 и 980 nm. При охлаждении кристаллов CaF2-0.3%ErF3, возбуждаемых светом 1542 nm, до 80 K интенсивность зеленой полосы увеличилась в ~2 раза, а красной полосы — уменьшилась в ~ 5 раз. Инфракрасная полоса около 1000 nm также в несколько раз ослабевает при охлаждении до 80 К. Очевидно, что процесс возбуждения ${}^{4}F_{9/2} - {}^{4}I_{15/2}$ красного свечения включает многофононный перенос ${}^{4}I_{9/2} - {}^{4}I_{11/2}$ электрона вниз (рис. 5), как это предполагается в работах [6,7]. Вероятность многофононного переноса электрона сильно уменьшается с понижением температуры кристалла. После такого перехода может произойти излучательный переход ${}^{4}I_{11/2} - {}^{4}I_{15/2}$ (980 nm) на основное состояние или ап-конверсионный переход вверх ${}^{4}I_{9/2} - {}^{4}F_{9/2}$ и последующее излучение красного свечения. С другой стороны, относительная доля зеленой полосы в MeF2 значительно уменьшается с

ростом концентрации Er^{3+} , что, по-видимому, связано с образованием агрегатов Er^{3+} .

Наблюдаемый энергетический выход ап-конверсионного свечения 990 nm при возбуждении в полосу 1550 nm весьма высок (таблица), тогда как для видимых полос свечения при возбуждении 980 и 1550 nm составляет доли процента (рис. 4 и [16]). Высокий выход свечения при 990 nm позволяет пытаться применить эти материалы для повышения эффективности кремниевых солнечных батарей. Такие исследования для материалов, содержащих Er³⁺, интенсивно проводятся последние годы [1,9,14]. Зависимость прироста тока Δi в кремниевом солнечном элементе от интенсивности С инфракрасного излучения солнца, конвертированного в излучение ~ 980 nm, описывается выражением $\Delta i = aC^b$, где коэффициент b равен 1.55 для β -NaYF₄ [9] и 1.59 для Gd₂O₂S [14]. Эти значения, так же как полученный нами коэффициент 1.2 (рис. 3), значительно меньше 2, ожидаемого для двухфотонной ап-конверсии.

Заключение

Спектр ап-конверсионного свечения MeF_2 —Er при возбуждении светом 1550 nm имеет сильную полосу при 990 nm, которая составляет более 90% всего излучения. Высокий энергетический выход ап-конверсии при возбуждении светом 1550 nm позволяет рассматривать MeF_2 —Er как перспективные люминофоры для повышения чувствительности кремниевых солнечных батарей.

Благодарности

В работе использовано оборудование центра коллективного пользования изотопно-геохимических исследований ИГХ СО РАН. Авторы благодарят В.А. Козловского за выращивание кристаллов.

Финансирование работы

Исследование проведено в рамках выполнения государственного задания по Проекту IX.125.3.2.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Pellé F., Ivanova S., Guillemoles J.F. // EPJ photovoltaics. 2011. V. 2. P. 20601.
- [2] Auzel F. // Chem. Rev. 2004. V. 104. P. 139.
- [3] Овсянкин В.В., Феофилов П.П. // Опт. и спектр. 1966. Т. 20. С. 526.
- [4] Feofilov P.P., Ovsyankin V.V. // Appl. Opt. 1967. V. 6. P. 1828.
- [5] Ovsyankin V.V., Feofilov P.P. // Luminescence of Crystals, Molecules, and Solutions / Ed. by Williams F. et al. N.Y.: Plenum Press, 1973. P. 64–77.
- [6] Jouart J.P., Mary G. // J. Luminesc. 1990. V. 46. P. 39.
- [7] Jouart J.P., Bisseux C., Mary G. // J. Luminesc. 1984. V. 29.
 P. 261.
- [8] Ivanova S., Pellé F., Tkachuk A. et al. // J. Luminesc. 2008.
 V. 128. P. 914.
- [9] Fischer S., Ivaturi A., Jakobb P. et al. // Opt. Mater. 2018.
 V. 84. P. 389.
- [10] Раджабов Е.А., Шендрик Р.Ю. // Изв. РАН сер. физ. 2019. Т. 83. С. 360.
- [11] Khosrofian J.M., Garetz B.A. // Appl. Opt.1983. V. 22. P. 3406.
- [12] Denham P., Field G.R., Morse P.L.R., Wilkinson G.R. // Proc. Roy. Soc. London A. 1970. V. 317. P. 55.
- [13] Ivanova S., Pellé F. // JOSA. B. 2010. V. 27. P. 1356.
- [14] Fischer S., Martin-Rodriguez R., Frohlich B. et al. // J. Luminesc. 2014. V. 153. P. 281.
- [15] Krupke W.F. // Phys. Rev. 1966. V. 145. P. 325.
- [16] Ляпин А.А., Рябочкина П.А., Гущин С.В. и др. // Опт. и спектр. 2018. Т. 125. С. 516.