07.2

© А.В. Алмаев, Б.О. Кушнарев[¶], Е.В. Черников, В.А. Новиков

Национальный исследовательский Томский государственный университет, Томск, Россия ¶ E-mail: Kuschnaryow@mail.ru

Поступило в Редакцию 16 апреля 2020 г. В окончательной редакции 6 июля 2020 г. Принято к публикации 20 июля 2020 г.

> Методом высокочастотного магнетронного распыления с последующим отжигом при T = 673 К в атмосфере воздуха синтезированы тонкие поликристаллические пленки Cr₂O₃. Диаметр зерен в тонкой пленке Cr₂O₃ составляет 40–70 nm, ширина запрещенной зоны 3.3 ± 0.2 eV. Пленки Cr₂O₃ в области температур 303–473 К демонстрируют высокие отклики на NO₂, H₂, пары ацетона и толуола, слабо реагируют на воздействие CH₄ и CO и характеризуются относительно слабой зависимостью сопротивления от влажности. Предложена качественная модель влияния газов на электрические свойства тонких пленок Cr₂O₃.

Ключевые слова: оксид хрома, тонкие пленки, магнетронное распыление, газовые сенсоры.

DOI: 10.21883/PJTF.2020.20.50154.18342

Интерес к разработке газовых сенсоров на основе металлооксидных полупроводников р-типа проводимости, к которым относится Cr₂O₃, обусловлен их низкими рабочими температурами и слабой зависимостью газочувствительных свойств от влажности [1-5]. В области низких рабочих температур $T = 423 - 573 \,\mathrm{K}$ толстые поликристаллические пленки и массивы наноструктур Cr₂O₃ характеризуются высокой чувствительностью к парам углеводородов [6,7]. Наиболее привлекательными с точки зрения быстродействия, стоимости и совмещения с микроэлектронной технологией являются сенсоры на основе тонких пленок Cr₂O₃, полученные магнетронным распылением [8]. Разработка сенсоров на основе тонких поликристаллических пленок Cr2O3 с малым размером зерен rg ограничивается отсутствием моделей сенсорного эффекта. Для решения этой проблемы в первую очередь необходимо исследовать чувствительность Cr₂O₃ к модельным газам с низкой молекулярной массой. Поэтому представленные в настоящей работе результаты посвящены синтезу тонких пленок Cr2O3 и исследованию их чувствительности к газам.

Тонкие пленки Cr₂O₃ были получены методом высокочастотного магнетронного распыления мишени хрома (99.97%) в кислородно-аргоновой плазме. В качестве подложки использовалась сапфировая пластина толщиной 330 µm и диаметром 50 mm. При напылении пленок температура подложки поддерживалась на уровне комнатной. Рабочее давление и мощность установки составляли $7 \cdot 10^{-3}$ mbar и 70 W соответственно. Концентрация кислорода в смеси $O_2 + Ar$ была равна 56.1 ± 0.5 vol.%. Расстояние между подложкой и мишенью 70 mm. Время напыления пленки составляло 45 min. После напыления пленка подвергалась отжигу в атмосфере воздуха при температуре 673 К в течение 3 h. Толщина полученной пленки составляла 200 nm. На поверхности пленок Cr₂O₃ формировались платиновые контакты на расстоянии 1.8 mm.

Для исследования газочувствительных свойств пленок использовалась камера объемом 950 cm³, через которую прокачивалась смесь чистого сухого воздуха и целевого газа. Концентрация целевого газа в смеси задавалась при помощи генератора газовых смесей. Чистый сухой воздух генерировался при помощи специальной установки. Суммарный поток газовой смеси через камеру составлял 1000 cm³/min. Концентрации паров ацетона, толуола и высокая влажность задавались барботированием. Измерение временных зависимостей сопротивления и вольт-амперных характеристик (ВАХ) при различных условиях осуществлялось источником-измерителем Keithley 2636А. Нагрев образцов проводился при помощи нагревательного столика, встроенного в камеру. Смещение, подаваемое на структуры при измерении временны́х зависимостей сопротивления, составляло 5 V.

Пленка Cr_2O_3 без отжига имела зеленоватый оттенок. После отжига пленка становилась прозрачной. Методом атомно-силовой микроскопии установлено, что поверхность пленок представлена зернами сферической формы с размером 40–70 nm. Рентгенодифракционный анализ (РДА) пленок без отжига показал наличие рефлексов, соответствующих кристаллографическим плоскостям Cr_2O_3 (113), (202), (312), (226) и (416). Для отожженных образцов на РДА-спектрах дополнительные пики не появляются, но обнаруживается незначительное повышение интенсивности наблюдаемых пиков. С помощью оптических измерений оценена ширина запрещенной зоны пленок $Cr_2O_3 E_g = 3.3 \pm 0.2$ eV, что совпадает с опубликованными результатами [9].

Удельное электрическое сопротивление ρ пленок при T = 303 К в атмосфере сухого чистого воздуха составляет $(4.7-7.7) \cdot 10^4 \Omega \cdot \text{сm}$. Полученное значение соответствует литературным данным [10]. Анализ зависимостей $\ln \rho$ от $10^3/T$ в области температур от 303 до 473 К позволил определить энергию активации $\Delta E \approx 1$ eV, которая, вероятно, обусловлена наличием

Resistance, $10^7 \Omega$ 3.0 Clean air 2.5 2.0 Clean air 1000 ppm H₂ 1.5 1.0 0 100 200 300 400 500 600 Time, s

300

400

T = 473 K

500

Рис. 1. Временны́е зависимости сопротивления тонких пленок Cr₂O₃ при воздействии H₂ и NO₂.

акцепторного уровня вакансий Cr в запрещенной зоне Cr₂O₃ [11]. Воздействие СО, СН₄ и H₂, а также паров углеводородов приводит к возрастанию сопротивления пленок (рис. 1). После воздействия CO, CH₄ и H₂ в области температур 303-473 К сопротивление сенсоров восстанавливается до начального уровня в атмосфере сухого чистого воздуха (R_0). При воздействии NO₂, который является окислительным газом, сопротивление пленок обратимо уменьшается (рис. 1). Такое поведение сопротивления при воздействии газов характерно для металлооксидов *p*-типа. После воздействия NO₂ и паров углеводородов сопротивление Cr2O3 не восстанавливается до начального уровня. Хемосорбированные молекулы NO₂ и продукты диссоциативной адсорбции паров углеводородов характеризуются высокой энергией связи с поверхностью полупроводника, и для их десорбции необходимы высокие температуры. Кривые на рис. 1 получены для образцов из одной пластины, различия R₀ обусловлены несовершенством технологии.

Температурные зависимости отклика пленок Cr_2O_3 на различные газы представлены на рис. 2. Откликом на восстановительные газы считали отношение

$$[(R_{r.g.} - R_0)/R_0] \cdot 100\%,$$

где $R_{r.g.}$ — стационарное сопротивление пленки Cr_2O_3 при воздействии восстановительного газа (r.g.), а откликом на NO₂ — отношение

$$[(R_0 - R_{\rm NO_2})/R_0] \cdot 100\%$$

где R_{NO_2} — стационарное сопротивление пленки Cr₂O₃ при воздействии двуокиси азота. Образцы демонстрируют высокие отклики на воздействие 1000 ppm H₂ и 100 ppm NO₂ уже при T = 303 K. С повышением T отклик на эти газы возрастает. При воздействии CH₄ и CO отклики значительно ниже в выбранной области рабочих температур и характеризуются максимумом при T = 423 К. Значительное возрастание сопротивления Cr₂O₃ при воздействии паров ацетона и толуола проявляется начиная с T = 373 К. С повышением T от 373 до 473 К отклик на воздух с RH = 85% (RH — относительная влажность), определенный так же, как при воздействии восстановительных газов, увеличивается с 7 до 35%. RH = 85% соответствует концентрации молекул H₂O, равной 24 900 ppm.

ВАХ тонких пленок Cr₂O₃ линейна в широком диапазоне напряжений от 0 до 200 V. При воздействии газов изменяется наклон ВАХ за счет изменения сопротивления пленок без проявления каких-либо особенностей. С использованием значения относительной диэлектрической проницаемости $\varepsilon_r = 11.9 - 13.3$ и концентрации дырок в $Cr_2O_3 p = 10^{17} - 10^{18} \text{ cm}^{-3}$ [12] была проведена оценка дебаевской длины L_D. Полученное значение $L_{\rm D} \approx 6-20\,{\rm nm}$ сравнимо с r_g . Следовательно, модель сенсорного эффекта в металлооксиде *p*-типа [12], основанная на модуляции изгиба энергетических зон на границе зерен при воздействии газов, не подходит для описания результатов. Модель сенсорного эффекта для пленок SnO₂, полупроводника *n*-типа, при $r_g < L_D$ развита в работах [13-15]. Показано, что проводимость в пленках имеет полупроводниковый характер, а отклик равен отношению концентраций основных носителей заряда при воздействии газа и в чистом воздухе.

По аналогии с работой [12] предполагается, что в бескислородной среде пленки Cr₂O₃ характеризуются высоким сопротивлением. При помещении пленки в атмосферу воздуха молекулы кислорода хемосорбируются на ее поверхности, локализуются на адсорбционных центрах и ведут себя как ловушки электронов. Хемосорбция кислорода приводит к формированию энергетического

60

50

60

50

уровня E_{tO_2} в запрещенной зоне Cr_2O_3 . При захвате электрона на этот уровень в валентной зоне полупроводника появляется свободная дырка, в результате чего падает сопротивление пленки.

При появлении восстановительных газов происходит взаимодействие их молекул с хемосорбированным кислородом, в результате чего захваченные кислородом электроны возвращаются в полупроводник, где происходит рекомбинация носителей заряда, и сопротивление образцов возрастает. Cr_2O_3 обладает высокой каталитической активностью по отношению к углеводородам [16], что способствует их диссоциации на поверхности пленки. Образовавшиеся осколки молекул ацетона и толуола взаимодействуют с хемосорбированным кислородом, что приводит к возрастанию сопротивления.

Взаимодействие NO₂ с поверхностью полупроводника может проходить как с участием ранее хемосорбированного кислорода (реакция замещения хемосорбированного кислорода нитрит-ионами NO₂⁻), так и непосредственно на свободных центрах адсорбции [17]. Хемосорбированные молекулы двуокиси азота, так же как и кислорода, формируют уровень ловушек для электронов в запрещенной зоне Cr₂O₃ (E_{tNO_2}). Следует отметить, что для эффективного изменения сопротивления при адсорбции NO₂ должно выполняться условие $E_{tO_2} - E_v > E_{tNO_2} - E_v$, где E_v — потолок валентной зоны Cr₂O₃.

Для разработки количественной модели сенсорного эффекта тонких пленок Cr_2O_3 с $r_g < L_D$ необходимо проведение дальнейших исследований. Из проведенных исследований следует перспективность использования тонких пленок Cr_2O_3 для разработки газовых сенсоров NO₂, H₂ и паров углеводородов, отличающихся низкими рабочими температурами и слабой зависимостью свойств от влажности окружающей среды.

Таким образом, методом высокочастотного магнетронного распыления мишени Cr в кислородноаргоновой плазме с последующим отжигом в атмосфере воздуха при $T = 673 \,\mathrm{K}$ в течение 3 h были сформированы тонкие поликристаллические пленки Cr₂O₃ толщиной 200 nm. Поликристаллическая структура и соответствие пленок Cr₂O₃ подтверждаются данными РДА. Диаметр зерен в пленке Cr₂O₃ составляет 40-70 nm, $E_g = 3.3 \pm 0.2 \,\text{eV}$, удельное сопротивление при $T = 303 \,\mathrm{K}$ в атмосфере сухого чистого воздуха равно $(4.7-7.7) \cdot 10^4 \,\Omega \cdot$ ст. Пленки Cr_2O_3 в области рабочих температур 303-473 К демонстрируют высокие отклики на NO_2 , H_2 , пары ацетона и толуола, характеризуются относительно слабой зависимостью сопротивления от влажности, слабо реагируют на воздействие CH₄ и СО. ВАХ структур является линейной, и при воздействии газов изменяется только ее наклон. Проводимость в полученных пленках имеет полупроводниковый характер. Предложена качественная модель влияния газов на электрические свойства тонких пленок Cr₂O₃.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Kamble V.B., Umarji A.M // J. Mater. Chem. C. 2013. V. 1.
 P. 8167–8176. DOI: 10.1039/C3TC31830C
- [2] Kim H., Lee J. // Sensors Actuators B. 2014. V. 192.
 P. 607–627. DOI: 10.1016/j.snb.2013.11.005
- [3] Абдулин Х.А., Жумагулов С.К., Исмаилова Г.А., Калкозова Ж.К., Кудряшов В.В., Серикканов А.С. // ЖТФ. 2020. Т. 90. В. 7. С. 1184–1188.
- Kim T.-H., Yoon J.-W., Kang Y.-C., Abdel-Hady F., Wazzan A.A., Lee J.-H. // Sensors Actuators B. 2017. V. 240.
 P. 1049-1057. http://dx.doi.org/10.1016/j.snb.2016.09.098
- [5] Suhail M.H., Adehmash I.K., Kareem S.M.A., Tahir D.A., Abdullah O.Gh. // Trans. Electr. Electron. Mater. 2020. V. 21. P. 355-365. https://doi.org/10.1007/s42341-020-00182-3
- [6] Kohli N, Singh O, Singh R.C. // Sensors Actuators B. 2011.
 V. 158. P. 259–264. DOI: 10.1039/C3TC31830C
- [7] Liu H., Du X., Xing X., Wang G., Qiao Z. // Chem. Commun. 2012. V. 48. P. 865–867. DOI: 10.1039/C1CC16341H
- [8] Oros C., Wisitsoraat A., Limsuwan P., Horpathum M., Patthanasettakul V. // Adv. Mater. Res. 2008. V. 55-57. P. 285–288.

DOI: 10.4028/www.scientific.net/AMR.55-57.285

- [9] Abdullah M.M., Rajab F.M., Al-Abbas S.M. // AIP Adv. 2014.
 V. 4. P. 027121. DOI: 10.1063/1.4867012
- Mahmood A., Street M., Echtenkamp W., Kwan C.P., Bird J.P., Binek C. // Phys. Rev. Mater. 2018. V. 2. P. 044401.
 DOI: 10.1103/PhysRevMaterials.2.044401
- [11] Lebreau F., Islam M.M., Diawara B., Marcus J.P. // J. Phys. Chem. C. 2014. V. 118. P. 18133–18145. DOI: 10.1021/jp5039943
- Barsan N., Simion C., Heine T., Pokhrel S., Weimar U. // J. Electroceram. 2010. V. 25. P. 11–19. DOI: 10.1007/s10832-009-9583-x
- [13] Кожушнер М.А., Боднева В.Л., Трахтенберг Л.И. // ЖФХ. 2012. Т. 86. № 8. С. 1397–1404.
- [14] Кожушнер М.А., Боднева В.Л., Белышева Т.В., Герасимов Г.Н., Громов В.Ф., Иким М.И., Paltiel Y., Спиридонова Е.Ю., Трахтенберг Л.И. // ЖФХ. 2017. Т. 91. № 3. С. 533-538.
- [15] Боднева В.Л., Кожушнер М.А., Посвянский В.С., Трахтенберг Л.И. // Хим. физика. 2019. Т. 38. № 1. С. 75-80.
- [16] Yim S.D., Chang K.-H., Nam I.-S. // Stud. Surf. Sci. Catal. 2001. V. 139. P. 173–180. DOI: 10.1016/S0167-2991(01)80195-6
- [17] Бадалян С.М., Алиханян А.С., Румянцева М.Н., Николаев С.А., Марикуца А.В., Смирнов В.В., Гаськов А.М. // Неорган. материалы. 2010. В. 46. № 3. С. 278–283.