Новые акцепторные центры фоновых примесей в *p*-CdZnTe

© С.В. Пляцко[¶], Л.В. Рашковецкий^{¶¶}

Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины, 03028 Киев, Украина

(Получена 24 мая 2012 г. Принята к печати 19 октября 2012 г.)

Низкотемпературная фотолюминесценция была использована для исследования перераспределения фоновых примесей и основных компонентов монокристаллов CdZnTe *p*-типа проводимости с удельным сопротивлением 1–50 Ом · см при взаимодействии с лазерным инфракрасным излучением. Установлен эффект увеличения ширины запрещенной зоны и образования новых акцепторных центров в результате лазерно-стимулированных изменений в системе собственных дефектов. Найдена энергия активации новых акцепторных уровней.

1. Введение

Теллурид кадмия-цинка Cd_{1-x}Zn_xTe (КЦТ) широко используется в радиационной дозиметрии, солнечной энергетике и инфракрасной фотоэлектронике. Разработка приборов и устройств на основе КЦТ предполагает использование монокристаллов и пленок КЦТ высокого структурного совершенства с определенными оптическими и электрофизическими параметрами, что очень часто является весьма трудной задачей, в первую очередь из-за технологических проблем их выращивания. Поэтому традиционно чаще всего для получения кристаллов с небходимыми параметрами используют целенаправленное легирование [1] или послеростовые дополнительные операции воздействия, такие как высокотемпературный отжиг в парах собственных компонентов (Cd или Zn) [2]. Наряду с этим ведутся поиски эффективных не разрушающих кристалл методов воздействия, с помощью которых можно контролируемо управлять его свойствами. Один из таких методов предполагает воздействие инфракрасным (ИК) лазерным излучением (длины волн $\lambda > 0.8$ мкм), для которого кристалл прозрачен. Результаты воздействия ИК лазерного излучения (ЛИ) на различные группы полупроводниковых соединений, для которых выполняется условие $hv < E_g$ (hv — энергия кванта лазерного излучения, E_g — ширина запрещенной зоны), были представлены ранее в целом ряде работ [3-5].

Проблема идентификации дефектов, которые вводятся в процессе роста монокристаллов или слоев, в настоящее время не стоит так остро, как это было на начальном этапе исследования CdTe и CdZnTe [6]. Значительные расхождения в энергии активации одних и тех же дефектов в различных кристаллах, полученных при близких режимах выращивания, вследствие низкой технологичности роста CdTe и CdZnTe привели к тому, что практически проблема переместилась из области фундаментального исследования дефектов в область усовершенствования технологии получения, очистки исходных компонентов и оснастки ростовых технологий от посторонних примесей. Важной становится проблема обеспечения однородного распределения примесей, минимизации комплексообразования, понижения макропотенциального рельефа — факторов, которые определяют механизмы проводимости и каналы рекомбинации.

Одним из известных методов, которые используются для исследования дефектной структуры монокристаллов CdTe и CdZnTe, является низкотемпературная фотолюминесценция (НФЛ), которую также применяют и для контроля качества материала при различных методах выращивания, внешнего влияния или легирования.

Однако даже при достаточно высоком спектральном разрешении при температуре T = 4.2 К идентификация полос фотолюминесценции (ФЛ) в большей степени относится к области предположений, поскольку и в нелегированном кристалле существует широкий спектр линий ФЛ, которые попадают практически в один энергетический интервал и приписываются как примесям, так и собственным дефектам и их комплексам, концентрация которых находится на уровне концентрации неконтролируемых примесей [7,8].

Более детальную информацию из анализов спектров $H\Phi Л$ можно получить в том случае, когда исследования проводятся в динамике на одном и том же кристалле в зависимости от величины фактора внешнего воздействия W или от времени воздействия t при W = const. В этом случае точкой отсчета являются свойства кристалла до воздействия ИК ЛИ.

Поэтому цель данного исследования заключалась в изучении влияния ИК ЛИ в области прозрачности матрицы кристаллов ($h\nu \ll E_g$) CdZnTe на их свойства с целью направленного изменения электрофизических и оптических характеристик кристаллов для их практического использования.

2. Эксперимент (подготовка образцов для исследований)

Для проведения исследований использовались монокристаллы $Cd_{1-x}Zn_xTe$ (x < 0.05), выращенные вертикальным методом Бриджмена. Из слитков вырезались пластины толщиной 1-1.5 мм и размером не менее

[¶] E-mail: plyatsko@isp.kiev.ua

^{¶¶} E-mail: rashlv@ukr.net

 $a \times b \ge 10 \times 10$ мм, которые затем подвергались двусторонней химико-механической полировке в бромсодержащих травителях с последующей отмывкой в 0.1N КОН для удаления пленки избыточного Те. Исходные образцы имели *р*-тип проводимости с низкой величиной удельного сопротивления, $\rho \ge 4.5$ Ом · см при T = 300 К, и с оптическим пропусканием $\tau < 0.1$ на длине волны $\lambda = 10$ мкм, $\tau = 0$ на длине волны $\lambda = 20$ мкм [5].

Для исследования лазерного воздействия использовались образцы КЦТ ориентации (111). Непосредственно перед измерениями спектров НФЛ монокристаллы раскалывались по плоскостям спайности (110). Лазерностимулированный "отжиг" образцов проводили в естественных условиях, температура исследуемых кристаллов при лазерном "отжиге" не превышала 470 К.

Спектры ФЛ исследовались при температуре жидкого гелия (4.2 K) на сколах плоскостей (110). Возбуждение осуществлялось аргоновым (длина волны $\lambda_{ex} = 488.0$ нм) или He–Ne- (длина волны $\lambda_{ex} = 632.0$ нм) лазерами. Излучение анализировалось с использованием решеточного монохроматора МДР-23.

Главное внимание было уделено исследованию поведения линий НФЛ в трех характерных спектральных областях: краевая область (связанных экситонов на нейтральном акцепторе, A^0X , и на нейтральном доноре, D^0X); область донорно-акцепторной (DA), зонно-акцепторной (eA) эмиссии; низкоэнергетичная область (A-центры). Спектры НФЛ исследовались во многих работах [6,7], в них достаточно хорошо изучено влияние термического отжига, собственных дефектов и примесей на спектры.

Фотолюминесценция кристаллов до и после инфракрасного лазерного воздействия

3.1. Краевая, донорно-акцепторная и зонно-акцепторная спектральные области

Обычно в нелегированных монокристаллах *p*-CdZnTe с малым содержанием цинка в спектрах краевой НФЛ наблюдается линия излучения связанного на нейтральном акцепторе, экситона A^0X , иногда очень слабые полосы связанного на нейтральном доноре, экситона D^0X , и свободного экситона, *FE* [9]. Связанный на нейтральном доноре экситон в специально не легированных кристаллах проявляется слабо [10], но с введением Zn интенсивность полосы D^0X становится более заметной, как считается, из-за ослабления A^0X [11].

Исходные исследуемые кристаллы имели низкое удельное сопротивление и дырочный тип проводимости с соответствующим спектром краевой НФЛ (рис. 1, кривая I). Спектр НФЛ состоял из слабой линии связанного на нейтральном акцепторе экситона A^0X (1.5910 эВ), слабо разрешаемых линий на нейтральном доноре D^0X

Рис. 1. Спектры фотолюминесценции при T = 4.5 К исходного (1) и облученных в течение 2 (2), 5 ч (3) монокристаллов CdZnTe.

Рис. 2. Область излучения DA + eA до (1) и после воздействия ИК ЛИ в течение $3 \lor (2)$.

(1.5947 эВ) и свободного экситона FE (1.5967 эВ), а также интенсивной и широкой бесструктурной полосы DA(1.5523 эВ) и V-линии (1.5877 эВ) (рис. 1), которую обычно приписывают комплексу $V_{Cd}-D$ [12,13] в CdTe. Доминирующее DA-излучение (рис. 2, кривая I) связано с низким качеством кристаллов, обусловленным значительной концентрацией мелких акцепторных центров. Этот результат хорошо коррелирует с электрофизическими исследованиями этих же кристаллов [5].

Отношение интенсивностей I_{DA}/I_{A^0X} линий DA и A^0X есть один из показателей пригодности материала для детекторного применения и должно быть значительно меньше единицы. В данном случае $I_{DA}/I_{A^0X} \approx 7$.

В результате взаимодействия ИК лазерного излучения с кристаллами CdZnTe в спектрах HФЛ происходят существенные изменения в описанных выше спектральных областях. Первое, что обращает на себя внимание, это возникновение в высокоэнергетической области спектра наряду с A^0X дополнительного экситонного пика A^0X'

2.83

CM³

3.15

_	Эконтон	hν, эВ		Ι		I/I_X		I_{A^0X}/I_{D^0X}		$\alpha_X/b_{A^0X}, 10^{15} \mathrm{cm}^3$		$\alpha_X/b_{D^0 X}, 10^{15} \mathrm{cm}$	
	Экситон	до	после	до	после	до	после	до	после	до	после	до	после
	FE	1.5967	1.5978	38.7	297	1	1						

1.06

7.12

849

5549

Таблица 1. Значение экспериментальных интенсивностей излучения экситонов I и значения $\alpha_X/b_{A^0_X}$, $\alpha_X/b_{D^0_X}$ до и после возлействия ИК ЛИ

2.86

18.68

6.7

6.6

при 1.5922 эВ. Как видно из рис. 1, линия дополнительного излучения экситона на нейтральном акцепторе A^0X' в высокоэнергетической области спектра становится доминирующей по мере увеличения времени облучения, а полоса A^0X практически полностью исчезает после нескольких часов воздействия. Наряду с этим также наблюдаются увеличение интегральной интенсивности полосы излучения экситона на нейтральном акцепторе A^0X' относительно A^0X в исходном образце и структуризация прикраевой полосы.

1.5957

1.5922

43.0

287.6

Происходят также изменения в спектрах НФЛ DAполосы. Наблюдается уменьшение ее интенсивности, а сама полоса становится структурированной. Интенсивность линии A^0X' после лазерного воздействия (after) в течение 5 ч относительно A^0X до воздействия (before) возрастает, $I_{A^0X'}^{\text{after}}/I_{A^0X}^{\text{before}} \approx 20$, а отношение $I_{DA}/I_{A^0X'} = 0.17$, что более чем на порядок величины меньше отношения I_{DA}/I_{A^0X} до лазерного воздействия. Пиковая интенсивность полосы D^0X (1.5947 эВ) после облучения также возрастает $(I_{D^0X}^{\mathrm{after}}/I_{D^0X}^{\mathrm{before}}pprox 20),$ т.е. отношение I_{A^0X}/I_{D^0X} до и после лазерного воздействия остается практически неизменным.

Кроме этих полос в спектрах НФЛ проявляются также полосы с энергией, соответствующей связанному на нейтральном доноре экситону $D^0 X'$ (1.5957 эВ), а также нижняя (X_l) при 1.5976 эВ и верхняя (X_{up}) при 1.5996 эВ экситон-поляритонные ветки свободного экситона (рис. 1, кривая 3).

Изменение интенсивностей пиков I_{A^0X} и I_{D^0X} полос $A^{0}X$ и $D^{0}X$ соответственно говорит о влиянии лазерного излучения на концентрации акцепторов N_A и доноров N_D [14–16].

Интенсивности полос можно выразить как

$$I_{A^0X} = b_{A^0X} N_{A^0} n_X, (1)$$

$$I_{D^0X} = b_{D^0X} N_{D^0} n_X, (2)$$

$$I_X = \alpha_X n_X, \tag{3}$$

где n_X и I_X — соответственно концентрация и интенсивность излучения свободных экситонов; α_X — вероятность излучательной аннигиляции свободных экситонов; b_{A^0X}, b_{D^0X} — вероятности связывания свободных экситонов с нейтральными акцепторами и нейтральными донорами (коэффициенты захвата свободного экситона нейтральным акцептором и донором соответственно).

Концентрации нейтральных акцепторов N_{A⁰}, нейтральных доноров N_{D^0} и свободных экситонов n_X определяются выражениями [15,16]

3.21

2.81

$$N_{A^0} = \frac{c_{pA}^- \delta p}{c_{pA}^- \delta p + c_{nA}^0 \delta n} N_A, \tag{4}$$

$$N_{D^0} = \frac{c_{nD}^+ \delta n}{c_{nD}^+ \delta n + c_{pD}^0 \delta p} N_D, \qquad (5)$$

$$n_X = \frac{b_X \delta p \delta n}{\alpha_X + b_{A^0 X} + b_{D^0 X} N_{D^0}},\tag{6}$$

где δn , δp — концентрации фотоносителей; c_{pA}^{-} , c_{nA}^{0} коэффициенты захвата дырки и электрона мелким акцептором, c_{pD}^0, c_{nD}^+ — коэффициенты захвата дырки и электрона мелким донором.

В сложных по составу полупроводниках выполняются неравенства $c_{pA}^{-}\delta p \gg c_{nA}^{0}\delta n$ и $c_{nD}^{+}\delta n \gg c_{pD}^{0}\delta p$, поэтому, исходя из приведенных выше выражений, можно полагать $N_{A^0} \approx N_A$ и $N_{D^0} \approx N_D$. Из экспериментов по исследованию проводимости и НФЛ до и после ИК лазерного облучения следует, что в нашем случае $N_A \gg N_D$.

Оценить лазерно-стимулированные изменения концентрации электрически активных дефектов возможно из отношения интенсивностей экситонных полос. Следует отметить, что значения α_X и b_{A^0X} , b_{D^0X} для CdZnTe не установлены. Известно лишь оценочное значение только для отношения α_X и b_{A^0X} : $\alpha_X/b_{A^0X} \approx 1 \cdot 10^{16} \,\mathrm{cm}^{-3}$ [16]. Полагая, что после ИК лазерного облучения α_X и b_{A^0X} , $b_{D^0 X}$ существенно не изменятся, будем иметь отношения интенсивностей излучения экситонов до и после лазерного воздействия с учетом приведенных рассуждений в следующем виде:

$$I_{A^0X}/I_X = \frac{b_{A^0X}}{\alpha_X} N_A,\tag{7}$$

$$I_{D^0 X}/I_X = \frac{b_{D^0 X}}{\alpha_X} N_D,$$
 (8)

$$I_{A^0X}/I_{D^0X} = \frac{b_{A^0X}}{b_{D^0X}} \frac{N_A}{N_D}.$$
 (9)

Значения экспериментальных интенсивностей излучения экситонов, их отношение, а также значения α_X/b_{A^0X} , α_X/b_{D^0X} до и после лазерного облучения приведены в табл. 1.

 $D^0 X$

 $A^0 X$

1 5947

1.5910

Из анализа данных табл. 1 и электрофизических свойств исследуемых кристаллов до и после облучения, как и ожидалось, следует, что концентрации мелких акцепторов и доноров в кристаллах возросли после облучения, причем соотношение до и после облучения практически одно и то же: $N_A/N_D \approx 6.6$. В исходном кристалле концентрация мелких акцепторных примесей определялась из температурных измерений эффекта Холла и составляла $N_A \approx 2 \cdot 10^{16}$ см⁻³. Используя данные НФЛ в табл. 1 и значения N_A , получаем до облучения концентрацию мелких доноров $N_D = 3 \cdot 10^{15}$ см⁻³, а после облучения — $N_A = 6 \cdot 10^{16}$ см⁻³ и $N_D = 9 \cdot 10^{15}$ см⁻³. Таким образом, концентрация мелких акцепторов преобладает, вследствие чего тип проводимости кристаллов после облучения остается неизменным.

Источником мелких акцепторных и донорных примесей в кристалле могут являться области, обогащенные фоновыми примесями, которые не проявляются ни в электрофизических свойствах, ни в НФЛ. Концентрации активированных лазерным излучением акцепторов и доноров в областях скопления примесей, по-видимому, близки к предельным, поскольку увеличение дозы облучения не приводит к значительному перераспределению интенсивности экситонных полос.

Важным представляется и обнаруженное изменение энергетического положения полос D^0X и A^0X , поскольку этот факт может свидетельствовать о перераспределении также и основных компонентов соединения CdZnTe, которые влияют на фундаментальные параметры кристалла.

В теллуриде кадмия энергия связи свободного экситона *FE* составляет $E_B = 10.8$ мэВ, и, поскольку исследуемые кристаллы имели содержание цинка x < 0.01, в исследуемых кристаллах ширина запрещенной зоны E_g больше энергии перехода D^0X на величину $E_B + X_{up} = 0.0128$ эВ. Аналогично можно получить и положение пика A^0X относительно ширины запрещенной зоны: $E_{A^0X} = E_g - 0.0168$ эВ.

Поэтому проанализировать изменение состава CdZnTe при воздействии ИК излучения можно достаточно корректно по положению полос люминесценции как экситона на нейтральном доноре D^0X , так и экситона на нейтральном акцепторе A^0X . В результате проведения такого анализа оказалось, что с течением времени облучения кристаллов p-CdZnTe ИК лазерным излучением ширина запрещенной зоны незначительно, но в то же время заметно (на $\Delta E_g \sim 1 \text{ мэВ}$) увеличивается (рис. 1). Для того чтобы оценить концентрацию Zn, необходимую для изменения ширины запрещенной зоны на 1 мэВ, можно воспользоваться соотношением для зависимости E_g при T = 4.2 K от содержания Zn x, которое представлено во многих работах с незначительными расхождениями в области больших концентраций цинка [17]:

$$E_g(x) = 1.606 + 0.520x + 0.254x^2.$$
(10)

Оценки показывают, что для изменения E_g на величину $\Delta E_g \approx 1$ мэВ в процессе воздействия лазерного излучения необходимо увеличить концентрацию

Физика и техника полупроводников, 2013, том 47, вып. 7

цинка в узлах решетки, который до взаимодействия находился в электронейтральных областях, на величину $\Delta N_{Zn} \approx (3-4) \cdot 10^{19} \, \mathrm{cm}^{-3}$. Аналогичный результат можно получить, воспользовавшись результатами работы [15], в которой установлена зависимость энергии пика экситона на нейтральном акцепторе от содержания Zn.

В такой же концентрации, как в CdZnTe, и с такой же скоростью dN/dt центры генерируются воздействием лазерного излучения и в других полупроводниковых соединениях при сравнимых значениях концентрации свободных носителей тока [4].

С другой стороны, смещение и проявление новых экситонных пиков люминесценции может быть также связано и с лазерно-стимулированной генерацией новых мелких акцепторов. Однако энергетическое положение пиков экситонов, связанных на мелких неконтролируемых примесях, достаточно хорошо установлено [7]. Смещение полос D^0X и A^0X наблюдается с увеличением времени облучения. При определенной дозе в спектрах НФЛ присутствуют две полосы D^0X и две полосы A^0X . С увеличением времени облучения при постоянной плотности мощности лазерного излучения новые экситонные полосы становятся доминирующими. Для известных D^0X (F, Ga, Al, In, Cl) разброс по энергии максимума не превышает 0.12 мэВ, что практически на порядок меньше наблюдаемого в эксперименте. Разброс A^0X (N, Li, Na, Sb, P, As, Ag, Cu, Au) по энергии значительно больше и составляет 12 мэВ, однако ни один из приведенных пиков люминесценции [7] не совпадает с полученными экспериментально после ИК лазерного излучения. Поэтому, поскольку лазерно-стимулированное смещение $D^{0}X$ и $A^{0}X$ зависит от времени взаимодействия кристаллов с лазерным излучением и происходит на одну и ту же величину $\Delta h v_m$, его можно связать с увеличением концентрации Zn в кристаллической решетке, что приводит к увеличению ширины запрещенной зоны. Области, обогащенные неактивным цинком, которые всегда присутствуют в кристалле [18], являются источником для лазерно-стимулированной активации компонентов этих областей.

Кроме того, наблюдается изменение интенсивности и сдвиг энергии для V-линии с увеличением времени воздействия ИК ЛИ. Предполагая, что V-линия имеет экситонное происхождение [15,16], энергию связи экситона (E_{BD}) можно вычислить из спектров НФЛ с использованием выражения $E_{BD} = hv_V - hv_{FE} = 0.0090$ эВ, где $hv_V = 1.5877 \ \text{эB}$ — энергетическое положение в спектрах V-линии и $hv_{FE} = 1.5967 \, \text{эB}$ — энергетическое положение линии свободного экситона. Поскольку значение Е_{ВД} линейно связано с энергией ионизации мелких доноров (E_i) соотношением $E_{BD} = 0.246E_i$ (правило Haynes'a) [16], получаем энергию ионизации $E_i = 0.0366$ эВ, которая является типичной для подобного рода мелких донорных центров в Cd(Zn)Te. Источники мелких примесей акцепторов и доноров в исследованных кристаллах CdZnTe находятся в областях, обогащенных фоновыми примесями, которые не проявляются в электрических свойствах и спектрах НФЛ кристаллов, не подвергнутых лазерному облучению. Концентрация доноров и акцепторов, активированных лазерным излучением из обогащенных ими областей, близка к их фоновой концентрации в кристаллах, поскольку увеличение радиационной дозы не приводит в дальнейшем к значительному изменению интенсивности экситонных полос.

3.2. Донорно-акцепторная (DA) и зонно-акцепторная (eA) фотолюминесценция

За экситонными пиками в низкоэнергетической спектральной области наблюдается ФЛ, которая связана с переходами (зона проводимости) – (нейтральный акцептор) (eA) (рис. 2) и с донорно-акцепторным излучением (DA). Правило Haynes'a [19] в теллуриде кадмия не выполняется — энергия связи нейтрального донора составляет ~ 0.25 E_D , а для энергии связи акцептора характерен большой разброс по энергии в пределах от 0.046 E_A до 0.13 E_A (E_D , E_A — энергии активации доноров и акцепторов соответственно) [7], что не дает возможности оценить энергии активации E_A из известных энергий связи для экситонов на нейтральных акцепторах. Поэтому энергия активации E_A может быть определен из энергетического положения пика eA-излучения $E_{PA}^{eA^0}$:

$$E_{\rm PL}^{eA^0} = E_g - E_A + \frac{1}{2} k T_e.$$
(11)

Для низких уровней возбуждения температуру электронов T_e можно полагать равной температуре решетки. Однако и в этом случае такая возможность может реализоваться только при хорошо разрешенных *eA*-линиях.

Реально эта спектральная область всегда является проблематичной, поскольку полосы ФЛ сильно перекрываются, а в кристаллах CdZnTe с содержанием цинка выше $x \gtrsim 0.01$ эти полосы практически никогда спектрально не разрешаются. Именно такая картина наблюдалась в кристаллах до взаимодействия с лазерным излучением (рис. 2, кривая *1*). Полоса 1.5523 эВ в спектрах являлась доминирующей и состояла из полос ФЛ eA + DA со своими фононными повторениями (табл. 2).

В кристаллах, которые были подвергнуты воздействию ИК лазерного излучения (рис. 2, кривая 2), наблюдается, во-первых, уменьшение интенсивности полос излучения eA + DA более чем в 2 раза и, вовторых, структурирование полос. Проявление структуры дало возможность по положению пиков eA и DA, полагая форму линии гауссовой, определить энергии активации акцепторов, 45.2, 51.9, 54.3 и 56.9 мэВ, и положения их фононных повторений (энергия LO-фонона во всех случаях была одна и та же $hv_{LO} = 21.5$ мэВ, в соответствии с [20]).

Само проявление структуры eA и DA вместе с их LO-фононными повторениями, а также разрешение свободного экситона FE, экситонов на нейтральном доноре

1.5005 $A^0X - 3LO$ 1.5282 $A^0X - 3LO$ 1.5270 $A^0X' - 3LO$ 1.5244 V - 3LO 1.5086 1.5097 eA + DA - 2LO D^0X и нейтральном акцепторе A^0X после воздействия на монокристаллы CdZnTe лазерным ИК излучением является достаточно убедительным подтверждением упорядочения в системе собственных дефектов и неконтролируемых примесей в решетке.

3.3. *А*-центры

Фотолюминесценция в области 1.3–1.5 эВ, которая обычно присутствует в легированных донорными примесями кристаллах и в кристаллах, содержащих Zn, до воздействия лазерного излучения не наблюдается, что достаточно хорошо согласуется и со слабой полосой связанного на нейтральном доноре экситона в исходных кристаллах.

Природа полосы люминесценции А-центров дискутируется до настоящего времени, но практически все экспериментальные результаты сводятся к тому, что по своей природе А-центры являются комплексами [11,21], включающими вакансии кадмия (одну или более) и донорный центр [22], который не является примесью замещения в металлической подрешетке [23]. Известно также, что примеси замещения в подрешетке халькогена не создают комплексы, излучающие в области полосы люминесценции 1.4 эВ [23]. Введение цинка в матрицу CdTe приводит к смещению полосы А-центров

h	<i>v</i> , эВ	Интерпретация	Энергия активации <i>Е</i> _А , эВ		
до ИК ЛИ	после ИК ЛИ	линий			
1.5876	1.5887	V-line			
	1.5672	V-LO			
	1.5457	V-2LO			
	1.5242	V-3LO			
	1.5707	$A^0X - 1LO$			
1.5523		eA + DA	0.0542		
	1.5634	eA_0	0.0452		
	1.5568	eA_1	0.0519		
	1.5544	eA_2	0.0543		
	1.5518	eA_3	0.0569		
	1.5479	$A^0X - 2LO$			
	1.5492	$A^0X - 2LO$			
	1.5497	DA_0	0.0452		
	1.5429	DA_1	0.0519		
	1.5405	DA_2	0.0543		
	1.5379	DA_3	0.0569		
	1.5353	eA_1-1LO			
	1.5329	eA_2-1LO			
1.5304		eA + DA - 1LO			
	1.5303	eA_3-1LO			

Таблица 2. Положения пиков *hv DA*, *eA* до и после воздействия ИК ЛИ, интерпретация линий и энергия активации акцепторов

Рис. 3. Спектр излучения *А*-центров в монокристаллах CdZnTe после воздействия ИК ЛИ в течение 5 ч.

в высокоэнергетичную область, что связано с более существенным сдвигом зоны проводимости (антисвязывающие состояния Cd5s и Zn4s) относительно состояний Te5p валентной зоны. Кроме того, увеличение содержания Zn в решетке способствует уменьшению концентрации электрически активных вакансий [24,25] в металлической подрешетке и должно приводить к ослаблению интенсивности линии A-центров.

В действительности в твердом растворе CdZnTe спектральная область 1.4–1.45 эВ практически всегда присутствует в НФЛ со значительным распределением интенсивности по слитку [6]. По интенсивности полосы *А*-центров определяют пригодность данного материала для применения в качестве детекторов ионизирующего излучения [6].

В облученных кристаллах в этом энергетическом интервале появляется бесфононная полоса I_0 при 1.4715 эВ и полоса I_0 при 1.4910 эВ, интенсивность которых возрастает со временем взаимодействия кристаллов с лазерным излучением (рис. 3). Полосы при 1.4715 и 1.4910 эВ имеют суперпозицию шести LO-фононных повторений (энергия фонона $hv_{LO} = 0.0215$ эВ). Присутствие большого числа фононных реплик может быть свидетельством протяженного упорядочения кристаллической решетки и указывает на сильное взаимодействие между локализованными электронами и решеткой.

Появление серии линий в области А-центров связано с взаимодействием лазерного ИК излучения с кристаллами *p*-CdZnTe, в результате которого происходит генерация большой концентрации центров рекомбинации. Источником центров рекомбинации являются нейтральные области скопления собственных дефектов и примесей, ранее в рекомбинации не принимавшие участия, которые активируются в процессе взаимодействия с лазерным излучением.

Наблюдаемые полосы при 1.4715 и 1.4910 эВ обусловлены переходами с одновременным возбуждением оптических фононов ($h\nu_{\rm LO} = 0.0215$ эВ). Интенсивность

отдельных линий, каждая из которых является гауссовой кривой, хорошо описывается распределением Пуассона $I_n = I_0 \exp(-S)(S^n/n!)$, где S — фактор Хуанга–Риса, который характеризует величину электрон-фононного взаимодействия. Наилучшее согласие с экспериментом при 4.2 К получено для S = 2.75 с шириной на полувысоте каждой гауссовой линии FWHM ~ 10 мэВ. Если предположить, что переход происходит с мелкого донора ($E_D = 14$ мэВ), положение которого, как следует из оценок в приближении эффективной массы, не зависит от химической природы примеси, то по энергетическому положению бесфононного перехода и с учетом межпримесного взаимодействия можно определить параметры центров в паре (мелкий донор с энергией $E_D \rangle - \langle глубокий акцептор с энергией <math>E_A \rangle$. Энергия фотона при межпримесной рекомбинации

$$i\nu_{\text{ZPL}} = E_g - E_A - E_D + e^2 / \varepsilon R,$$
 (12)

где *R* — межпримесное расстояние, *є* — диэлектрическая проницаемость.

Энергия ионизации акцепторв для $hv_{ZPL} = 1.4715$ и 1.4910 эВ составляет $E_A = 0.1247$ и 0.1062 эВ соответственно ($E_g(4.2 \text{ K}) = 1.608$ эВ).

Исходя из того, что концентрация донорно-акцепторных пар (N_{DA}) является малой и кулоновским взаимодействием в паре можно пренебречь, из выражения для ширины бесфононной линии FWHM = $1.34e^2/\varepsilon R_{\rm max}$ [26] (где $R_{\rm max}$ — межпримесное расстояние, определяюцее положение максимума полосы излучения) получаем расстояние между дефектами в паре $R_{\rm max} \approx 115$ и 145 Å и концентрацию донорно-акцепторных пар $N_{DA} \approx 1.5 \cdot 10^{17}$ и $7.5 \cdot 10^{16}$ см³ соответственно для полос 1.4715 и 1.4910 эВ.

Значение энергий залегания акцепторных уровней E_A в запрещенной зоне попадает в тот интервал энергий, которые обычно приписывают сложным дефектам, в состав которых входят собственные дефекты, фоновые примеси или примеси, специально введенные [8]. Поскольку кристаллы, которые исследовались, специально не легировались и до взаимодействия с лазерным излучением полосы в области *A*-центров не наблюдались, то в данном случае следует говорить о новых центрах люминесценции в решетке CdZnTe, индуцированных ИК лазерным излучением.

Природа полос при 1.4715 и 1.4910 эВ (переход мелкий донор-глубокий акцептор) в высокоэнергетичной области *A*-спектра, по-видимому, связана с существованием неконтролируемых примесей, которые в процессе лазерно-стимулированной миграции могут образовывать глубокий комплекс с вакансией кадмия или проявлять акцепторные свойства, заполняя вакансию кадмия. Положение энергетических уровней, которые принадлежат этим центрам, указывает на то, что в качестве одной из примесей замещения, в частности это может быть серебро ($E_A = E_v + 0.1084$ эВ) [27], активированное воздействием лазерного ИК излучения и которое, как и целая серия примесей Li, Na, Cu, Ga, Al и др., входит в кристалл неконтролируемо в процессе роста [28].

Рис. 4. Зависимости оптического пропускания от времени облучения образцов CdZnTe с удельным сопротивлением $\rho \leq 4.5 \text{ Om} \cdot \text{cm} (1)$ и $\rho \geq 20 \text{ Om} \cdot \text{cm} (2)$.

4. Оптическое пропускание

Используемые для оптических исследований кристаллы вырезались из тех же слитков, что и для исследования электрофизических свойств, а в некоторых случаях исследования оптических и электрофизических свойств проводились на одних и тех же образцах. Как указывалось выше, исходные кристаллы имели удельное сопротивление $\rho \gtrsim 4.5 \, \mathrm{OM} \cdot \mathrm{cm}$. Экспериментальные значения энергии уровня Ферми ($E_f \gg 5kT$) указывают на то, что газ носителей является невырожденным в исходных кристаллах и тем более в кристаллах после воздействия лазерного излучения. В этом случае спектральные зависимости коэффициента поглощения и зависимость величины пропускания можно трактовать без привлечения механизма межподзонных переходов в валентной зоне.

Наряду с исследованием спектральной зависимости оптического пропускания $\tau(\lambda)$ как определяющего параметра качества кристаллов основное внимание уделялось определению пропускания на длине волны $\lambda = 20$ мкм (τ_{20}).

На рис. 4 представлены зависимости оптического пропускания от времени t взаимодействия лазерного излучения с кристаллами $\tau_{20}(t)$. Поведение $\tau_{20}(t)$ имеет качественно подобные зависимости для всех кристаллов. Характер зависимостей $\tau_{20}(t)$ различается только в области малых времен t, когда для кристаллов с относительно высоким удельным сопротивлением наблюдается уменьшение τ_{20} . После области падения происходит монотонный рост τ_{20} с последующим переходом в область пропускания, близкую к насыщению для данной плотности мощности лазерного излучения W. С увеличением W ход зависимости $\tau_{20}(t)$ повторяется и характерен для кристаллов независимо от величины исходных значений ρ и τ_{20} . Для достижения области максимального и стабильного во времени пропускания τ_{20} необходимо время, не превышающее 10-15 ч.

Анализ спектральных зависимостей $\tau(\lambda)$ и удельного сопротивления $\rho(T)$ для облученных кристаллов указывает на изменения механизмов поглощения в кристаллах при воздействии лазерного излучения. Спектральная зависимость $\tau(\lambda)$ в результате облучения претерпевает существенные изменения. Область прозрачности кристалла со временем воздействия ИК лазерного излучения расширяется до $\lambda \ge 23$ мкм при одновременном увеличении пропускания $\tau(\lambda)$ во всей спектральной области. Четко выраженный максимум $\tau(\lambda)$ за краем фундаментального поглощения с увеличением времени взаимодействия t довольно быстро расширяется, переходя в плато $\tau(\lambda) = \text{const.}$ Величина пропускания $\tau(\lambda)$ после воздействия лазерного излучения близка к своему теоретическому пределу. Кристаллы после лазерного воздействия не подвергали ни механической, ни химической полировке, что обычно является необходимой процедурой при использовании термического отжига для удаления поверхностного слоя [16].

Сопоставление экспериментальных данных электрофических и оптических исследований и сравнение с рассчитанными значениями $\tau(\rho)$ [5] указывают на возрастание подвижности свободных дырок при комнатной температуре в процессе воздействия лазерного излучения. В кристаллах с изначально высоким пропусканием на длине волны $\lambda = 10$ мкм (τ_{10}) подвижность при 300 К увеличивается от ~ 20 до $\sim 62 \, \text{см}^2 \cdot \text{B}^{-1} \cdot \text{c}^{-1}$ и в кристаллах с низким τ_{10} пропусканием от единиц до $\sim 60 \, \text{см}^2 \cdot \text{B}^{-1} \cdot \text{c}^{-1}$. В кристаллах до облучения механизм поглощения, по-видимому, является смешанным. Однако после воздействия лазерного излучения влияние нарушений кристаллической структуры на величину коэффициента оптического поглощения в спектральной области, где $\tau = \text{const} = 0.64$, является пренебрежимо малым.

По полученным результатам однозначно можно утверждать, что лазерно-стимулированные изменения в кристалле происходят в объеме и в основном связаны с уменьшением концентрации носителей тока благодаря компенсации электрически активных собственных дефектов собственными компонентами и неконтролируемыми примесями, которые активированы лазерным излучением, а также приводят к улучшению кристаллической структуры и отсюда — к увеличению подвижности носителей тока.

5. Обсуждение результатов эксперимента и модель лазерного "отжига"

Изменения в системе точечных дефектов и ширины запрещенной зоны в кристаллах *p*-CdZnTe при взаимодействии с лазерным ИК излучением возможно только в том случае, если в кристаллах до облучения находятся внутренние источники той или иной компоненты, которая при ее активации проявляется в виде точечных дефектов или образует комплексы с собственными дефектами.

Проведенные исследования показали, что увеличение ширины запрещенной зоны в CdZnTe ни с чем другим, кроме как с увеличением концентрации атомов цинка N_{Zn} в матрице кристалла в процессе лазерного воздействия, связать нельзя. Источником атомов цинка служат существующие [18] области преципитатов в решетке и ассоциаты межузельных атомов цинка Zn_i и вакансий металлической компоненты V_M, диссоциирующие при взаимодействии с ИК лазерным излучением. Существование включений и преципитатов с повышенным содержанием металлических компонентов субмикрометровых размеров в кристаллах CdTe и CdZnTe было также установлено в [29,30] различными методами (сканирующая электронная микроскопия, оже-электронная спектроскопия, поверхностная фотовольтаическая спектроскопия, просвечивающая электронная микроскопия). Однако не следует также исключать и конкурирующий механизм увеличения ширины запрещенной зоны — заполнение вакансий Cd неактивным кадмием, который может находиться как во включениях, так и в составе комплексов кадмий-фоновая примесь.

Поскольку спектр неконтролируемых примесей при выращивании CdZnTe достаточно широк, а их концентрация сравнима с концентрацией собственных дефектов, объяснить лазерно-стимулированные преобразования НФЛ можно, используя полученные экспериментальные результаты, в рамках достаточно простой модели.

Интенсивность НФЛ в области полос DA + eA падает более чем в 2 раза при одновременном увеличении интенсивности полос A^0X , D^0X и A-центров. Проведенный анализ позволяет предположить, что акцепторные уровни, участвующие в излучательной рекомбинации DA + eA, связаны с вакансиями V_{Cd} , концентрация которых уменьшается вследствие лазерностимулированной компенсации собственными компонентами, а также вследствие возникновения A-центров, концентрация которых возрастает за счет активации неконтролируемых примесей и образования комплексов, включающих вакансию Cd и донор в подрешетке Te.

Отметим также, что изменения в спектрах НФЛ кристаллов КЦТ после ИК лазерного воздействия хорошо коррелируют с изменениями величин удельного сопротивления ρ и оптического пропускания τ [5]. Увеличение удельного сопротивления превышает 2–3 порядка при комнатной температуре и 4–8 порядков при азоте (77 К). Анализ спектральных зависимостей пропускания τ (λ) облученных кристаллов указывает на приближение величины пропускания к своему теоретическому пределу (64%) вплоть до области $\lambda = 23$ мкм. Возрастание ρ и τ является следствием увеличения концентрации глу-

боких акцепторных центров в решетке с одновременной компенсацией вакансий металла.

Как отмечалось выше, все изменения в кристаллах при их взаимодействии с ИК лазерным излучением происходят, во-первых, благодаря наличию электрически активных вакансий как в металлической подрешетке, так и в подрешетке халькогена и, во-вторых, присутствию в матрице электронейтральных областей (включений), обогащенных собственными металлическими, фоновыми примесями, а в случае легирования и примесными компонентами, а также их комплексов с собственными дефектами.

Включения представлены в матрице в различной форме со значительной дисперсией по геометрическим размерам от $\lesssim 100$ Å до 100 мкм [2,29–36]. В сильно компенсированных кристаллах ИК лазерное излучение дает вклад в проводимость и оптическое пропускание (рис. 4) только при малых дозах облучения, когда в матрице возникают мелкие лазерно-стимулированные центры.

6. Заключение

Представленные экспериментальные результаты исследования спектров низкотемпературной фотолюминесценции кристаллов *p*-CdZnTe до и после их взаимодействия с неразрушающим ИК лазерным излучением показали, что в объеме кристалла происходят существенные изменения в системе собственных точечных дефектов. Преобразования в спектрах НФЛ, просходящие в экситонной области, в области полос *DA*, *eA* и *A*-центров, связаны с низкотемпературной активацией неконтролируемых примесей и собственных компонентов полем лазерной волны.

Список литературы

- А.В. Савицкий, О.А. Парфенюк, М.И. Илашук, А.И. Савчук, С.Н. Чупыра. ФТП, 38 (5), 516 (2004).
- [2] H.R. Vydyanath, J. Elsworth, J.J. Kennedy, B. Dean, C.J. Johnson, G.T. Neugehauer, J. Sepich, P.C. Liao. J. Vac. Sci. Technol. B, 10, 1476 (1992).
- [3] Yu.S. Gromovoj, F.F. Sizov, S.V. Plyatsko, S.D. Darchuk. J. Phys.: Condens. Matter, 1, 6625 (1989).
- [4] С.В. Пляцко. ФТП, 36 (6), 666 (2002).
- [5] С.В. Пляцко, Л.В. Рашковецкий. ФТП, 40 (3), 287 (2006).
- [6] T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunet, I. Franks, R.B. James. Mater. Sci. Eng., 32, 103 (2001).
- [7] E. Molva, J.R. Chamonal, J.I. Pautrat. Phys. Status Solidi B, 109, 635 (1982).
- [8] X. Mathew. Sol. Energy Mater. Solar Cells, 76, 225 (2003).
- [9] D.P. Halliday, M.D.G. Potter, J.T. Mullins, A.W. Brinkman. J. Cryst. Growth, **220**, 30 (2000).
- [10] S. Seto, K. Suzuki, V.N. Abastillas, jr., K. Inabe. J. Cryst. Growth, 214/215, 974 (2000).
- [11] D.M. Hofmann, W. Stadler, K. Oettinger, B.K. Meyer, P. Omling, M. Salk, K.W. Benz, E. Weigel, G. Muller-Vogt. Mater. Sci. Eng. B, 16, 128 (1993).

- [12] H.Y. Shin, C.Y. Sun. J. Cryst. Growth, 186, 354 (1998).
- [13] S.H. Song, J. Wang, Y. Ishikawa, S. Seto, M. Isshiki. J. Cryst. Growth, 237–239, 1726 (2002).
- [14] T. Schmidt, K. Lischka, W. Zulehner. Phys. Rev. B, 45, 8989 (1992).
- [15] К.Д. Глинчук, А.В. Прохорович. ФТП, 37 (2), 159 (2003).
- [16] K.D. Glinchuk, N.M. Litovchenko, A.V. Prokhorovich, O.N. Strilchuk. Semicond. Phys., Quant. Electron. Optoelectron., 8 (3), 39 (2005).
- [17] J. Franc, P. Hlidek, P. Moravec, E. Belas, P. Hoschl, L. Turjanska, R. Varghova. Semicond. Sci. Technol., 15, 561 (2000).
- [18] Y. Zidon, J. Yang, Y. Shapira. Appl. Phys. Lett., 81, 436 (2002).
- [19] J.R. Haynes. Phys. Rev. Lett., 4, 361 (1960).
- [20] G. Nimtz. In: Intrinsic properties of Group IV Elements and III-V, II-VI and I-VII Compounds, ed. by O. Madelung, M. Schulz, H. Weiss. [Landolt-Bornstein, New Series, Group III, v. 22, pt. a (Springer, Berlin, 1982)] p. 225.
- [21] D.M. Hofman, P. Omling, H.G. Grimmeiss, B.K. Meyer, K.W. Benz, D. Sinerius. Phys. Rev. B, 45, 6247 (1992).
- [22] Н.В. Агринская, Е.Н. Аркадьева, О.А. Матвеев. ФТП, 5, 862 (1971).
- [23] P. Fernandez. J. Optoelectr. Adv. Mater., 5, 369 (2003).
- [24] R.B. James, T.E. Schlesinger, J. Lund, M. Schieber. In: Semiconductors and Semimetals, ed. by T.E. Schlesinger, R.B. James (Academic Press, Inc., 1995) v. 43.
- [25] J.E. Toney, B.A. Brunett, T.E. Schlesinger, J.M. Van Scyoc, R.B. James, M. Schieber, M. Goorsky, H. Yoon, E. Eissler, C.J. Johnson. Nucl. Instr. Meth. A, 380, 132 (1996).
- [26] А.Э. Юнович. В кн.: Излучательная рекомбинация в полупроводниках (М., Наука, 1972) с. 224.
- [27] T.A. Kuhn, W. Ossau, A. Waag, R.N. Bicknell-Tassius, G. Landwehr. J. Cryst. Growth, 117, 660 (1992).
- [28] А.В. Квит, Ю.В. Клевков, С.А. Медведев, В.С. Багаев, А. Пересторонин, А.Ф. Плотников. ФТП, 34, 19 (2000).
- [29] J. Shen, D.K. Aidun, L. Regel, W.R. Wilcox. J. Cryst. Growth, 132, 250 (1993).
- [30] J.R. Heffelfinger, D.L. Medlin, R.B. James. Mater. Res. Soc. Symp. Proc., 487, 33 (1998).
- [31] K.R. Zanio. In: *Semiconductors and Semimetals* (N.Y.-San Francisco–London, Academic Press, 1978) v. 13, p. 235.
- [32] H.G. Brion, C. Mewes, I. Hahn, U. Schäufele. J. Cryst. Growth, 134, 281 (1993).
- [33] P. Feychuk, O. Kopyl, I. Pavlovich, L. Shcherbak. Semicond. Phys., Quant. Electron. Optoelectron., 8 (1), 110 (2005).
- [34] P.J. Sellin, A.W. Davies, F. Boroumand, A. Lohstroh, M.E. Ozsan, J. Parkin, M. Veale. ΦΤΠ, 41 (4), 411 (2007).
- [35] P. Rudolph. Cryst. Res. Technol., 38, 542 (2003).
- [36] F. Bissoli, J.L. Weyher, A. Zappettini, M. Zha, L. Zanotti. Cryst. Res. Technol., 40, 1060 (2005).

Редактор Л.В. Шаронова

New acceptor centers of the background impurities in *p*-CdZnTe

S.V. Plyatsko, L.V. Rashkovetskyi

V.E. Lashkarev Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine

Abstract Redistribution of background impurities and constituent elements in monocrystalline *p*-type CdZnTe with specific resistivity 1 to $50 \Omega \cdot$ cm under the effect of infrared laser radiation have been studied using low-temperature photoluminescence. It was observed that exposure to laser radiation results in the band gap increase and formation of new acceptor states due to laser-induced changes in the system of intrinsic defects. Activation energy of new acceptor states has been measured.