## Адсорбция атомов I и VII групп на политипах карбида кремния

© С.Ю. Давыдов<sup>1</sup>, О.В. Посредник<sup>2</sup>

<sup>1</sup> Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

<sup>2</sup> Санкт-Петербургский государственный электротехнический университет (ЛЭТИ),

197376 Санкт-Петербург, Россия

E-mail: Sergei\_Davydov@mail.ru

Поступила в Редакцию 20 марта 2020 г. В окончательной редакции 1 июля 2020 г. Принята к публикации 13 июля 2020 г.

> В рамках модели Халдейна–Андерсона получены оценки перехода заряда и энергии адсорбции атомов щелочных металлов и галогенов на С- и Si-гранях политипов 3С-, 6*H*- и 4*H*-SiC. Выявлены вклады зонных и локальных состояний в формирование заряда адатома, металлической и ионной составляющих энергии адсорбции.

Ключевые слова: адатом, подложка, переход заряда, энергия адсорбции.

DOI: 10.21883/FTP.2020.11.50086.9391

### 1. Введение

Карбид кремния, характеризующийся большим количеством политипов с существенно различающимися ширинами запрещенных зон и высокой стойкостью к агрессивным средам, по-прежнему привлекает пристальное внимание исследователей [1-6]. Однако, несмотря на то, что адсорбционная способность материалов является их важной характеристикой, как с фундаментальной, так и с технологической точек зрения [7-10], адсорбционные свойства карбида кремния остаются малоисследоваными. В работах [11-13] мы продемонстрировали возможность описания этих свойств в рамках простых моделей адсорбции, позволяющих получить аналитические выражения, пригодные для дальнейшего использования не только теоретиками. Работы эти были во многом стимулированы экспериментальными результатами [6,14,15]. Настоящей публикацией мы начинаем систематические исследования адсорбционной способности SiC. Мы рассмотрим здесь адсорбцию атомов I и VII групп, т.е. наиболее электроположительных и электроотрицательных элементов, на полярных C- и Si-гранях политипов 3C, 6Н и 4Н карбида кремния. Основное внимание в работе уделяется оценкам перехода заряда и энергии адсорбции.

## 2. Модель и численные оценки

Модельный подход к проблеме адсорбции изложен в [16,17]. Плотность состояний  $\rho_a(\omega)$  на адатоме может быть представлена в виде контура Лорентца

$$\rho_a(\omega) = \frac{1}{\pi} \frac{\Gamma(\omega)}{[\omega - \varepsilon_a - \Lambda(\omega)]^2 + \Gamma^2(\omega)},$$
 (1)

где  $\omega$  — энергетическая переменная,  $\varepsilon_a$  — энергия уровня адсорбируемого атома,  $\Gamma(\omega) = \pi V^2 \rho_{\rm sub}(\omega)$  — функция уширения квазиуровня ( $\rho_{\rm sub}(\omega)$  — плот-

ность состояний подложки, V — матричный элемент взаимодействия адатом-подложка),  $\Lambda(\omega)$  — функция сдвига квазиуровня (гильбертова трансформанта функции  $\Gamma(\omega)$ ). Для описания плотности состояний карбида кремния воспользуемся моделью Халдейна-Андерсона [16,17]:  $\rho_{\rm sub}(\omega) = \rho_s$  для  $|\omega - E_0| \ge E_g/2$  и  $\rho_{\rm sub}(\omega) = 0$  при  $|\omega - E_0| < E_g/2$ , где  $E_0 = \chi + E_g/2$  — энергия центра запрещенной зоны относительно вакуума,  $E_g$  и  $\chi$  — ширина запрещенной зоны и электронное сродство политипа карбида кремния. Полагая  $E_0 = 0$ , получим  $\Lambda(\omega) = (\Gamma/\pi) \ln |(\omega - E_g/2)/(\omega + E_g/2)|$ , где  $\Gamma \equiv \pi V^2 \rho_s = \text{const.}$  Для политипов 3C, 6H и 4H карбида кремния соответственно имеем:  $E_g = 2.40$ , 3.00 и 3.23 эВ,  $\chi = 4.00$ , 3.45 и 3.17 эВ [18].

Рассмотрим теперь значения  $\varepsilon_a$ . Согласно [16], энергия одноэлектронного уровня адатома щелочного металла равна  $\varepsilon_a = -I + e^2/d + (\chi + E_g/2)$ , для однодырочного уровня галогена имеем  $\varepsilon_a = -A - e^2/d + (\chi + E_g/2)$ , где I — энергия ионизации [19], A — сродство атома к электрону [19], d — длина адсорбционой связи, e — величина заряда электрона. Полагаем  $d(X - C, Si) = r_a(C, Si) + r_a(X)$ , где  $r_a(C, Si)$  — атомный радиусы углерода или кремния,  $r_a(X)$  — атомный радиусов для М брались из [19], для Н (по Полингу) — из [20]). Значения  $\varepsilon_a$  представлены на рис. 1 для щелочных металлов и на рис. 2 для галогенов.

Для адсорбции атома лития на С-грани положим  $\Gamma = 1$  эВ. Значения  $\Gamma$  для адатомов других щелочных металлов определим исходя из того, что матричный элемент  $V \propto d^{-2}$  и  $\Gamma \propto V^2$ . Тогда  $\Gamma(M) = \gamma \Gamma(Li)$ , где  $\gamma = [d(Li - C, Si)/d(M - C, Si)]^4$ . В случае адсорбции галогенов нужно дополнительно учесть, что в соответствии с теорией Харрисона  $V_{\rm H} = (V_{sp\sigma} + \sqrt{3}V_{pp\sigma})/2$ , тогда как в случае адсорбции щелочных металлов  $V_{\rm M} = (V_{ss\sigma} + \sqrt{3}V_{sp\sigma})/2$  [21]. Тогда  $\Gamma({\rm H}) = \gamma' \gamma \Gamma({\rm Li})$ , где  $\gamma' = 0.97$  (здесь мы считаем все матричные элемен-



**Рис. 1.** Энергии уровней  $\varepsilon_a$ ,  $\omega_l$  и металлическая составляющая энергии адсорбции  $-E_{met}$  (в эВ, звездочки) для щелочных металлов, адсорбированных на С- (a) и Si-гранях (b) политипов 3*C*, 6*H* и 4*H* карбида кремния.

ты  $V_{ll'\sigma}$  положительными величинами, см. подробнее [16,21]).

Полагая температуру нулевой, рассчитаем числа заполнения  $n = \int_{-\infty}^{E_{\rm F}} \rho_a(\omega) d\omega$ , где  $E_{\rm F}$  — уровень Ферми адсорбционной системы и  $\rho_a(\omega)$  дается выражением (1). Положим  $n = n_v + n_l$ , где  $n_v$  и  $n_l$  представляют собой соответственно вклады валентной зоны и локального уровня, находящегося в запрещенной зоне. Согласно оценкам [22], вклад валентной зоны есть

$$n_{\nu} = \frac{1}{\pi} \operatorname{arcctg} \frac{\varepsilon_a + R}{\Gamma}, \quad R = \frac{E_g}{2} \sqrt{1 + \frac{4\Gamma}{\pi E_g}}.$$
 (2)



Рис. 2. То же, что на рис. 1, но для галогенов.

Положение локального уровня  $\omega_l$  определяется из решения уравнения

$$\omega - \varepsilon_a - \Lambda(\omega) = 0 \tag{3}$$

в области  $|\omega| \le E_g/2$  [16,17,22]. Число заполнения локального состояния равно

$$n_{l} = \left(1 + \frac{\Gamma}{\pi} \frac{E_{g}}{(E_{g}/2)^{2} - \omega_{l}^{2}}\right)^{-1} \Theta(E_{\rm F} - \omega_{l}), \qquad (4)$$

где  $\Theta(E_{\rm F}-\omega_l)$  — функция Хэвисайда. Значения  $\omega_l$  для щелочных металлов и галогенов представлены на рис. 1 и 2.

| Адсорбат/3С        | Li   | Na   | K    | Rb   | Cs   |
|--------------------|------|------|------|------|------|
| С-грань<br>Z>      | 0.89 | 0.93 | 0.97 | 0.98 | 0.98 |
| $Z^{<}$            | 0.39 | 0.43 | 0.97 | 0.98 | 0.98 |
| $-E_{\rm ads}^>$   | 1.60 | 1.46 | 1.25 | 1.20 | 1.15 |
| $-E_{\rm ads}^{<}$ | 0.61 | 0.53 | 1.25 | 1.20 | 1.15 |
| Si-грань           |      |      |      |      |      |
| $Z^{>}$            | 0.93 | 0.96 | 0.98 | 0.98 | 0.98 |
| $Z^{<}$            | 0.38 | 0.33 | 0.98 | 0.98 | 0.98 |
| $-E_{\rm ads}^>$   | 1.47 | 1.35 | 1.15 | 1.09 | 1.06 |
| $-E_{\rm ads}^{<}$ | 0.53 | 0.39 | 1.15 | 1.09 | 1.05 |
| Адсорбат/6Н        | Li   | Na   | K    | Rb   | Cs   |
| С-грань            |      |      |      |      |      |
| $Z^{>}$            | 0.89 | 0.93 | 0.97 | 0.98 | 0.98 |
| $Z^{<}$            | 0.25 | 0.22 | 0.34 | 0.78 | 0.98 |
| $-E_{\rm ads}^>$   | 1.42 | 1.46 | 1.25 | 1.20 | 1.15 |
| $-E_{\rm ads}^{<}$ | 0.46 | 0.35 | 0.51 | 0.82 | 1.15 |
| Si-грань           |      |      |      |      |      |
| $Z^{>}$            | 0.94 | 0.96 | 0.98 | 0.98 | 0.99 |
| $Z^{<}$            | 0.25 | 0.14 | 0.39 | 0.66 | 0.99 |
| $-E_{\rm ads}^>$   | 1.32 | 1.35 | 1.15 | 1.09 | 1.07 |
| $-E_{\rm ads}^{<}$ | 0.41 | 0.28 | 0.32 | 0.62 | 1.07 |
| Адсорбат/4Н        | Li   | Na   | Κ    | Rb   | Cs   |
| С-грань            |      |      |      |      |      |
| $Z^{>}$            | 0.89 | 0.93 | 0.97 | 0.98 | 0.98 |
| $Z^{<}$            | 0.21 | 0.18 | 0.26 | 0.37 | 0.73 |
| $-E_{\rm ads}^>$   | 1.60 | 1.46 | 1.25 | 1.17 | 1.15 |
| $-E_{\rm ads}^{<}$ | 0.45 | 0.32 | 0.25 | 0.29 | 0.70 |
| Si-грань           |      |      |      |      |      |
| $Z^{>}$            | 0.93 | 0.96 | 0.98 | 0.98 | 0.98 |
| $Z^{<}$            | 0.13 | 0.11 | 0.16 | 0.21 | 0.74 |
| $-E_{\rm ads}^>$   | 1.47 | 1.35 | 1.15 | 1.13 | 1.05 |
| $-E_{\rm ads}^{<}$ | 0.41 | 0.27 | 0.20 | 0.19 | 0.66 |

**Таблица 1.** Значения перехода заряда  $Z^{<(>)}$  и энергии адсорбции  $-E_{ads}^{<(>)}$  (в эВ) для щелочных металлов, адсорбированных на С- и Si-гранях политипов 3*C*, 6*H* и 4*H* политипов карбида кремния

Таблица 2. То же, что в табл. 1, но для адсорбции галогенов

Cl

Br

F

Адсорбат/3С

| $C$ -грань $Z^>$ $Z^<$ $-E^>_{ m ads}$ $-E^<_{ m ads}$ | 0.42                             | 0.36                           | 0.29                           | 0.20                           |
|--------------------------------------------------------|----------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                                                        | 0.62                             | 0.74                           | 0.75                           | 0.75                           |
|                                                        | 1.97                             | 1.11                           | 0.83                           | 0.59                           |
|                                                        | 2.50                             | 1.96                           | 1.73                           | 1.48                           |
| Si-грань $Z^>$ $Z^<$ $-E^>_{ m ads}$ $-E^<_{ m ads}$   | $-0.32 \\ -0.74 \\ 1.21 \\ 2.09$ | -0.23<br>-0.82<br>0.73<br>1.76 | -0.16<br>-0.81<br>0.58<br>1.56 | -0.10<br>-0.78<br>0.44<br>1.30 |
| Адсорбат/6Н                                            | F                                | Cl                             | Br                             | Ι                              |
| $C$ -грань $Z^>$ $Z^<$ $-E^>_{ m ads}$ $-E^<_{ m ads}$ | 0.41                             | 0.35                           | 0.28                           | 0.20                           |
|                                                        | 0.64                             | 0.78                           | 0.80                           | 0.81                           |
|                                                        | 1.95                             | 1.09                           | 0.82                           | 0.59                           |
|                                                        | 2.57                             | 2.08                           | 1.88                           | 1.64                           |
| Si-грань $Z^>$ $Z^<$ $-E^>_{ m ads}$ $-E^<_{ m ads}$   | 0.31                             | 0.22                           | 0.14                           | 0.10                           |
|                                                        | 0.78                             | 0.86                           | 0.83                           | 0.85                           |
|                                                        | 1.20                             | 0.72                           | 0.57                           | 0.44                           |
|                                                        | 2.21                             | 1.87                           | 1.61                           | 1.47                           |
| Адсорбат/4Н                                            | F                                | Cl                             | Br                             | Ι                              |
| $C$ -грань $Z^>$ $Z^<$ $-E^>_{ m ads}$ $-E^<_{ m ads}$ | 0.41                             | 0.35                           | 0.29                           | 0.20                           |
|                                                        | 0.66                             | 0.79                           | 0.81                           | 0.83                           |
|                                                        | 1.95                             | 1.09                           | 0.83                           | 0.59                           |
|                                                        | 2.63                             | 2.12                           | 1.91                           | 1.70                           |
| Si-грань $Z^>$ $Z^<$ $-E^>_{ m ads}$ $-E^<_{ m ads}$   | 0.32                             | 0.23                           | 0.16                           | 0.10                           |
|                                                        | 0.80                             | 0.88                           | 0.87                           | 0.87                           |
|                                                        | 1.21                             | 0.73                           | 0.57                           | 0.44                           |
|                                                        | 2.28                             | 1.92                           | 1.71                           | 1.52                           |

Заряд адатома Z = 1 - n при адсорбции щелочных металлов и Z = -n при адсорбции галогенов. Отметим, что значение Z численно равно переходу заряда между адатомом и подложкой. В случае адсорбции щелочных металлов электрон переходит с адатома на подложку (адатомы являются донорами), для адсорбции галогенов наблюдается обратная картина (адатомы являются акцепторами). При определении величины Z большое значение имеет тип проводимости подложки. Если предположить, что уровень Ферми расположен вблизи дна зоны проводимости (*n*-тип) и все локальные уровни заполнены, так как  $\omega_l < E_F$ , то получаем заряд  $Z^<$ , минимальный для адатомов целочных металлов и максимальный (по модулю) для адатомов галогенов. Если же уровень Ферми лежит вблизи потолка валентной

зоны (*p*-тип), так что  $\omega_l > E_F$ , то заряд  $Z^>$  щелочных металлов максимален, а заряд галогенов минимален по модулю. Значения зарядов  $Z^<$  и  $Z^>$  приведены в табл. 1 и 2.

Перейдем к оценкам энергии адсорбции  $E_{ads}$ , которую можно представить в виде суммы металлической  $E_{met}$  и ионной  $E_{ion}$  составляющих. Металлическую составляющую энергии адсорбции  $E_{met}$  оцениваем исходя из соотношения неопределенностей  $\Delta x \Delta p \sim \hbar$ , где  $\hbar$  — приведенная постоянная Планка. Полагая, что в изолированном атоме  $\Delta x \sim r_a$ , а в адсорбированном состоянии  $\Delta x \sim d$ , получим выигрыш в кинетической энергии  $\Delta E_{kin} \sim (\hbar^2/2md^2)[1 - (r_a/d)^2]$ , где m — масса свободного электрона. Это понижение в кинетической энергии, связанное с делокализацией электрона при адсорбции, принимаем за оценку металлической состав-

I

a

ляющей энергии адсорбции:

$$E_{\rm met} = -\frac{\hbar^2}{2md^2} \left(1 - \frac{r_a^2}{d^2}\right). \tag{5}$$

1.0

Значения *E*<sub>met</sub> для щелочных металлов и галогенов представлены на рис. 1 и 2.

Ионный вклад в энергию адсорбции можно оценить исходя из электростатической формулы

$$E_{\rm ion} = -\frac{(Ze)^2}{4d}.$$
 (6)

Значения энергии адсорбции  $E_{ads}^{<(>)} = E_{met} + E_{ion}^{<(>)}$ для щелочных металлов и галогенов представлены в табл. 1 и 2.

## 3. Обсуждение результатов

Прежде всего отметим, что в рядах  $Li \rightarrow Cs$  и  $F \rightarrow I$ во всех рассмотренных случаях имеет место сдвиг значений  $\varepsilon_a$  в положительном направлении (по энергии) (рис. 1 и 2). В случае щелочных металлов эта тенденция объясняется уменьшением потенциала ионизации при переходе от лития к цезию [19]. Рост  $\varepsilon_a$  в ряду галогенов связан с убылью отрицательного вклада кулоновского сдвига  $e^2/d$  из-за увеличения d. Почти тот же характер изменений имеет место для  $\omega_l$  (рис. 1 и 2), так как  $\omega_l \propto \varepsilon_a$  (см. уравнение (3), а также рис. 8.4 в [17] или рис. 1 в [22]). Когда локальный уровень достигает верхней границы запрещенной зоны Eg/2 в случае щелочных металлов (что имеет место для адсорбции на политипах 3C и 6H, см. рис. 1) и нижней границы запрещенной зоны  $-E_g/2$  в случае галогенов (при адсорбции на политипах 3C, 6H и 4H, рис. 2), рост  $\omega_l$ прекращается. Отметим, что во всех случаях различия между адсорбцией на С- и Si-гранях незначительны.

Изменения чисел заполнения носят более сложный характер. Из выражения (2) следует, что  $n_v$  уменьшается с ростом  $\varepsilon_a$ . Это приводит к монотонному уменьшению значений  $n_v$  в рядах Li  $\rightarrow$  Cs и F  $\rightarrow$  I. C другой стороны, из выражения (4) вытекает, что  $n_l$  достигает максимума при  $\omega_l = 0$  и стремится к нулю при  $\omega_l \rightarrow \pm E_g/2$ . Так как для щелочных металлов  $\varepsilon_a > 0$  и  $\omega_l > 0$ , значения  $n_l$  убывают в ряду Li  $\rightarrow$  Cs. Более того, для адсорбционных систем K, Rb, Cs/3C-SiC и Cs/6H-SiC получаем  $n_l = 0$ . Во всех остальных случаях имеем  $n_v \ll n_l$ . При адсорбции галогенов отношение  $n_v/n_l$  в ряду F  $\rightarrow$  I убывает. Для Cl, Br и I во всех случаях имеем  $n_v/n_l < 1$ . Для F то же неравенство имеет место при адсорбции на Si-гранях политипов, тогда как для C-граней имеем  $n_v/n_l > 1$ .

Перейдем к зарядам адатомов. Из табл. 1 легко видеть, что в ряду Li  $\rightarrow$  Cs во всех рассмотренных случаях заряды положительны и возрастают (некоторые слабо выраженные особенности имеют место для Na). Заряды  $Z^{<} \sim 1$  изменяются сравнительно мало, тогда как заряды  $Z^{>}$  для элементов начала и конца ряда



**Рис. 3.** Значения отношения  $\eta^{<(>)} = E_{\text{met}}/E_{\text{ads}}^{<(>)}$  для щелочных металлов, адсорбированных на С- (*a*) и Si-гранях (*b*) политипов 3*C*, 6*H* и 4*H* карбида кремния *p*-типа ( $\eta^{>}$ ) и *n*-типа проводимости ( $\eta^{<}$ ).

сильно различаются. В адсорбционных системах K, Rb, Cs/3C-SiC и Cs/6H-SiC резкий рост  $Z^{<}$  связан с обнулением вклада  $n_l$ . Для галогенов ситуация иная: заряды отрицательны, значения  $|Z^{>}|$  в ряду F  $\rightarrow$  I монотонно убывают, значения  $|Z^{<}|$  изменяются сравнительно мало (табл. 2). Отметим также, что переход заряда достаточно слабо зависит как от политипа карбида кремния, так и от грани, на которой имеет место адсорбция.

Обратимся теперь к оценкам энергии адсорбции  $E_{ads}^{<(>)}$ . Из рис. 1, *а* и 2, *а* виден спад значений металлического вклада  $|E_{met}|$  в рядах Li  $\rightarrow$  Cs и F  $\rightarrow$  I. Следует отметить, что для галогенов величины  $|E_{met}|$ 



Рис. 4. То же, что на рис. 3, но для галогенов.

значительно выше, чем для щелочных металлов. Все эти особенности связаны главным образом с изменением атомных радиусов  $r_a$  и, как следствие, длин адсорбционных связей d, которые растут при переходе от первого элемента ряда к последнему, причем для галогенов значения  $r_a$  и d меньше, чем для щелочных металлов. Результаты оценок суммарной энергии адсорбции  $E_{ads}^{<(>)}$  приведены в табл. 1 и 2. Для щелочных металлов, адсорбированных на С-грани (табл. 1), наблюдается плавный спад значений  $|E_{ads}^{>}|$  (за исключением Na/SiC(0001)). Для Si-грани изменения  $|E_{ads}^{>}|$  в ряду Li  $\rightarrow$  Cs заметно меньше, чем изменения  $|E_{ads}^{>}|$ . Вариации  $E_{ads}^{>(>)}$  при адсорбции щелочных металлов связаны, главным образом, с вариациями  $E_{ion}^{<(>)}$ . При этом  $|E_{ads}^{<(>)}|$  для С-грани

больше, чем для Si-грани. Для галогенов значения  $|E_{ads}^{<(>)}|$  плавно убывают в ряду F — I, причем  $|E_{ads}^{<(>)}|$  для Si-грани больше, чем для C-грани.

На рис. 3 и 4 представлены значения параметров  $\eta^{<(>)} = E_{\rm met}/E_{\rm ads}^{<(>)}$ , определяющих относительный вес металлического вклада в полную энергию адсорбции. Для щелочных металлов отношения  $\eta^{<(>)}$  убывают в ряду Li  $\rightarrow$  Cs для обеих граней (снова для адсорбции натрия на Si-грани наблюдаются отклонения). В ряду F  $\rightarrow$  I отношение  $\eta^{>}$  растет, а  $\eta^{<}$  убывает. Для всех адсорбатов  $\eta^{<} \leq \eta^{>}$ . Из рис. 3 и 4 можно определить также относительный вклад ионной составляющей  $E_{\rm ion}^{<(>)}/E_{\rm ads}^{<(>)}$ , равный  $1 - \eta^{<(>)}$ .

К сожалению, полученные нами оценки сравнить практически не с чем. Действительно, мы отыскали только работу [23], где энергии связи Сs и I с SiC (без упоминания о гранях и допировании) для различных адсорбционных позиций лежат соответственно в интервалах 1.66–1.91 и 3.22–3.86 эВ. Эти результаты представляются нам сильно завышенными. Интересно отметить, что в связи с возросшим интересом к двумерному гексагональному карбиду кремния (см. [24] и приведенные там ссылки) адсорбционные характеристики двумерного SiC изучены даже лучше по сравнению с его трехмерным предшественником. Так, например, в работе [25] приводятся следующие значения энергии адсорбции: 0.98 (Li), 0.37 (Na) и 0.59 зВ (K), что достаточно близко к полученным нами результатам.

## 4. Заключение

В настоящей работе мы рассматривали адсорбцию одиночного атома, т.е. пренебрегали его связью с остальными адатомами. Такой подход справедлив при покрытиях  $\theta = N_a/N_{ML} \ll 1$ , где  $N_a$  и  $N_{ML}$  — двумерные концентрации адатомов в слое и монослое. При конечных покрытиях нужно учитывать взаимодействия адатомов, среди которых самыми важными являются диполь-дипольное отталкивание, косвенный обмен через электронные состояния подложки и прямой обмен при высоких покрытиях [16,17]. При описании дипольдипольного отталкивания следует учесть, что под действием поля, создаваемого заряженными адатомами и их отражениями в подложке, уровень адатома  $\varepsilon_a$  сдвигается и принимает значение

$$\varepsilon_a(\theta) = \varepsilon_a - \theta^{3/2} Z(\theta) \xi, \tag{7}$$

где  $Z(\theta)$  — заряд адатома при покрытии  $\theta$ ,  $\xi = 2e^2 d^2 N_{ML}^{3/2} \overline{A}$  — константа диполь-дипольного взаимодействия,  $\overline{A} \sim 10$  — безразмерный множитель, слабо зависящий от геометрии адсорбированного слоя. Заменяя в формулах (2)–(4)  $\varepsilon_a$ ,  $n_v$  и  $n_l$  на  $\varepsilon_a(\theta)$ ,  $n_v(\theta)$  и  $n_l(\theta)$ , получим два самосогласованных уравнения, которые требуют отдельного рассмотрения. Легко показать, что учет дипольного отталкивания ведет к уменьшению величины заряда адатомов, т.е. к деполяризации адсорбированного слоя. Действительно, из (7) следует, что при  $Z(\theta) > 0$  уровень адатома  $\varepsilon_a(\theta)$  сдвигается вниз по шкале энергий. При этом возрастают значения  $n_v(\theta)$  и  $n_l(\theta)$ , а  $Z(\theta)$  убывает. Если же  $Z(\theta) < 0$ , уровень  $\varepsilon_a(\theta)$  сдвигается по энергии вверх, вследствие чего значения  $n_v(\theta)$ ,  $n_l(\theta)$ и  $|Z(\theta)|$  убывают. К аналогичным результатам приводят и обменные взаимодействия (см. [8,16,17]). В дальнейшем мы планируем рассмотреть роль дипольдипольного отталкивания адатомов подробнее.

Итак, в настоящей работе мы рассмотрели адсорбцию элементов I и VII групп на обеих гранях трех политипов карбида кремния и получили оценки перехода заряда и энергии адсорбции, выявив роли валентной зоны и локальных состояний. Подчеркнем, что использованный нами в настоящей работе модельный подход предназначен именно для такого рода задач, т.е. для задач, в которых выявляется тенденция изменения какой-либо физической характеристики, а не ее численное значение в каких-либо конкретных условиях.

Следует, однако, отметить, что любая модель, по определению, не может быть лишена недостатков. Что касается использованной нами здесь модели, то в ней полностью игнорируется геометрическая структура адсорбционной системы (за исключением длины адсорбционной связи). Это является общим свойством подходов, основанных на гамильтониане Андерсона [16,17,22], хотя, вообще говоря, кристаллография адсорбционной системы (включая релаксацию и реконструкцию приповерхностных слоев) может быть учтена в модельной плотности состояний. Такой учет, однако, ведет к увеличению числа трудно определяемых параметров задачи, что нежелательно.

#### Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

## Список литературы

- Silicon Carbide: recent major advances, ed. by W.J. Choyke, H. Matsunami, G. Pensl (Berlin–Heidelberg, Springer, 2004). http://www.springer.de
- [2] Advances in Silicon Carbide. Processing and Applications, ed. by S.E. Saddow, A. Agarwal (Boston–London, Artech House, 2004). www.artechhouse.com
- [3] A.A. Lebedev. Semicond. Sci. Technol., 21, R17 (2006).
- [4] G. Liu, B.R. Tuttle, S. Dhar. Appl. Phys. Rev., 2, 021307 (2015).
- [5] Y.H. Woo, T. Yu, Z.X. Chen. Appl. Phys. Rev., 108, 071301 (2010).
- [6] Г.В. Бенеманская, П.А. Дементьев, С.А. Кукушкин, А.В. Осипов, С.Н. Тимошнев. Письма ЖТФ, 45, 17 (2019).
- [7] Л.А. Большов, А.П. Напартович, А.Г. Наумовец, А.Г. Федорус. УФН, 122, 125 (1977).
- [8] О.М. Браун, В.К. Медведев. УФН, 157, 631 (1989).
- [9] A. Dobrowski. Adv. Colloid Interface Sci., 93, 135 (2001).
- [10] M. Kralik. Chem. Papers, 68, 1625 (2014).

- [11] С.Ю. Давыдов, О.В. Посредник. ФТТ, 61, 1538 (2019).
- [12] С.Ю. Давыдов, О.В. Посредник. ФТТ, 62, 298 (2020).
- [13] С.Ю. Давыдов, О.В. Посредник. Письма ЖТФ, 46 (1), 16 (2020).
- [14] С.А. Кукушкин, А.В. Осипов, Н.А. Феоктистов. ФТТ, 56, 1457 (2014).
- [15] С.А. Кукушкин, В.И. Николаев, А.В. Осипов, Е.В. Осипова, А.И. Печников, Н.А. Феоктистов. ФТТ, 58, 1812 (2016).
- [16] С.Ю. Давыдов. Теория адсорбции: метод модельных гамильтонианов (СПб., Изд-во СПбГЭТУ "ЛЭТИ", 2013). twirpx.com/file/1596114/
- [17] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. Элементарное введение в теорию наносистем (СПб., Лань, 2014).
- [18] С.Ю. Давыдов. ФТП, 53, 706 (2019).
- [19] Физические величины. Справочник, под ред. Е.С. Григорьева, Е.З. Мейлихова (М., Энергоатомиздат, 1991).
- [20] Краткий справочник физико-химических величин, под ред. К.П. Мищенко, А.А. Равделя (Л., Химия, 1974).
- [21] С.Ю. Давыдов, Г.И. Сабирова. Письма ЖТФ, 37, 51 (2011).
- [22] С.Ю. Давыдов, С.В. Трошин. ФТТ, 49, 1508 (2007).
- [23] C. Li, C. Fang. Progr. Nucl. Energy, 100, 164 (2017).
- [24] С.Ю. Давыдов. ФТП, **54**, 446 (2020).
- [25] R.J. Baierlea, C.J. Ruppa, J. Anversa. Appl. Surf. Sci., 435, 338 (2018).

Редактор Л.В. Шаронова

# Adsorption of I and VII groups atoms on the silicon carbide polytypes

S.Yu. Davydov<sup>1</sup>, O.V. Posrednik<sup>2</sup>

<sup>1</sup> loffe Institute,

- 194021 St. Petersburg, Russia
- <sup>2</sup> St. Petersburg State Electrotechnical University (ETU), 197376 St. Petersburg, Russia

**Abstract** Within the scope of the Haldane–Anderson model the estimates of charge transfer and adsorption energy for alkali metals and halogens atoms on the C- and Si-faces of 3C-, 6H- and 4H-SiC polytypes are obtained. Band and local states contributions to the formation of adatom's charge and ionic and metallic parts of the adsorption energy are clarified.