Двух- и трехфотонный линейно-циркулярный дихроизм в полупроводниках кубической симметрии

© В.Р. Расулов, Р.Я. Расулов ¶, Р.Р. Султонов, Б.Б. Ахмедов

Ферганский государственный университет, 150100 Фергана, Республика Узбекистан [¶] E-mail: r rasulov51@mail.ru

Поступила в Редакцию 19 июня 2020 г. В окончательной редакции 13 июля 2020 г. Принята к публикации 13 июля 2020 г.

> Теоретически исследован линейно-циркулярный дихроизм двух- и трехфотонного поглощения света в полупроводниках кубической симметрии дырочной проводимости. Рассчитаны матричные элементы двухи трехфотонных оптических переходов, протекающих между подзонами валентной зоны полупроводника. При этом учтены переходы, связанные как с неодновременным поглощением отдельных фотонов, так и одновременным поглощением двух фотонов, а также определены спектральная и температурная зависимости коэффициента двух- и трехфотонного поглощения поляризованного излучения.

> Ключевые слова: линейно и циркулярно поляризованный свет, матричный элемент, оптический переход, вероятность перехода, носители тока, валентная зона, полупроводник.

DOI: 10.21883/FTP.2020.11.50082.9469

Создание лазеров и мазеров дает возможность проведения исследований по выстраиванию по импульсу и оптической ориентации моментов носителей тока при одно- и многофотонном поглощении поляризованного излучения в полупроводниках, дающих информацию о природе электрон-фотонного взаимодействия и спин-зависимой релаксации импульса электронов [1–9].

В настоящее время многофотонный линейно-циркулярный и циркулярно-циркулярный дихроизм исследован в полупроводниках при поглощении света различной частоты и поляризации [2], обусловленный межзонными оптическими переходами, т.е. оптическими переходами между валентной зоной и зоной проводимости полупроводника. В частности, в работе [2] построена теория линейно-циркулярного дихроизма многофотонного межзонного поглощения света в полупроводниках в области развитой нелинейности, т.е. в области интенсивности, развитои нелинести, ист. – $\frac{2\pi e^2 I |\mathbf{e}\mathbf{p}_{cv}|^2}{c n_\omega \omega^2 m_0^2 (\hbar \omega)^2} \ll 1$, где е и І — вектор поляризации и интенсивность света, $\mathbf{p}_{cv} = \mathbf{p}_{c\mathbf{k},v\mathbf{k}} = \mathbf{e}\mathbf{p}_{c\mathbf{k},v\mathbf{k}}$ — межзонный матричный элемент оператора импульса, n_{ω} — показатель преломления света среды на частоте ω , m_0 — масса свободного электрона.

В вышеуказанных работах не изученными остались процессы поглощения света, обусловленные двух- и трехфотонными оптическими переходами между подзонами одной, например, валентной зоны или зоны проводимости полупроводника, а также не учтено одновременное поглощение двух фотонов [10–13], чему посвящено данное сообщение. Далее проводим квантовомеханический анализ двух и трехфотонного линейноциркулярного дихроизма в полупроводниках кубической симметрии со сложной валентной зоной.

Отметим, что при поглощении линейно и циркулярно поляризованного света разрешены многоквантовые оптические переходы через виртуальные электронные состояния, находящиеся как в валентной зоне и в зоне проводимости, так и в далеко расположенных от них зонах. По закону сохранения углового момента носителей тока физическая природа оптических переходов зависит от степени поляризации света. В частности, при *N* фотонном поглощении циркулярно (линейно) поляризованного света будет происходить ориентация угловых моментов (выстраивание по импульсу) фотовозбужденных носителей тока, так что следующие фотоны будут взаимодействовать с оптически ориентированными (выстроенными по импульсу) носителями тока. По правилу отбора рассматриваемого оптического перехода носителей тока вероятность двух- и трехфотонных оптических переходов будет зависеть как от частоты, так и от степени поляризации света, и она приводит к появлению линейно-циркулярного дихроизма поглощения света. В результате получим, что в кристаллах кубической симметрии должен наблюдаться линейно-циркулярный дихроизм двух- и трехфотонного поглощении света. Заметим, что в сферическом приближении в энергетическом спектре носителей тока линейно-циркулярный дихроизм однофотонного поглощении света можно наблюдать при учете когерентного насыщения конечного состояния фотовозбужденных носителей тока [5,10–13].

Несмотря на то что однофотонное (линейное по интенсивности) поглощение поляризованного излучения в полупроводниках, обусловленное оптическими переходами между подзонами легких и тяжелых дырок валентной зоны, исследуется как теоретически, так и экспериментально уже довольно давно ([5] и ссылки в ней), вопрос о линейно-циркулярном дихроизме (см., например, работы [10–13]) двух- и трехфотонного поглощения света с учетом одновременного поглощения света остается открытым.

Поэтому далее рассмотрим двух- и трехфотонное поглощение поляризованного излучения в полупроводниках кубической симметрии, обусловленное прямыми оптическими переходами между подзонами легких и тяжелых дырок.

В пространственно однородном случае матричные элементы оператора как межзонных, так и внутризонных оптических переходов состоят из двух составляющих, одна из которых описывает однофотонные взаимодействия, а вторая описывает взаимодействия электронов с двумя одновременно поглощающимися фотонами [10–13]. Тогда, следуя данным работ [10–13], с учетом вклада эффекта когерентного насыщения в коэффициент N фотонного поглощения света $K^{(N)}(\omega, T)$ имеем

$$K^{(N)}(\omega, T) = 2\pi N \frac{\omega}{I} \rho(N\hbar\omega) F(\beta, N, \omega)$$
$$\times \sum_{m=\pm 1/2; m'=\pm 3/2} \left\langle \frac{|M_{m',m}^{(N)}(\mathbf{k})|^2}{\sqrt{1 + 4 \frac{\alpha_{\omega}}{\hbar^2 \omega^2} |M_{m',m}^{(N)}(\mathbf{k})|^2}} \right\rangle, \quad (1)$$

где $M_{m':m}^{(N)}(\mathbf{k})$ — составной матричный элемент оптического перехода из состояния $|m'\mathbf{k}\rangle$ в $|m\mathbf{k}\rangle$, $F(\beta, N, \omega) = [1 - \exp(N\hbar\omega/(k_{\rm B}T))] \exp[(E_F - E_1^{(N)})/k_{\rm B}T],$ $E_1^* = m_2\hbar\omega(m_2 - m_1), I = \frac{n_\omega\omega^2A_0^2}{2\pi c}(A_0)$ — интенсивность (амплитуда вектора потенциала) света, E_{lk} l энергетический спектр дырок в подзоне (l = 1(l = 2) — для тяжелых (легких) дырок), n_{ω} коэффициент преломления на частоте ω , $\hbar\omega$ — энергия фотона, $\rho(N\hbar\omega) = \mu_{-}k_{\omega}^{(N)}/(\pi^{2}\hbar^{2})$ — приведенная плотность состояний фотовозбужденных дырок, $k^{(N)} = (2\mu - N\omega/\hbar)^{1/2}, \ \alpha_{\omega} = 6\omega^2 T_1^{(1)} T_2^{(1)} \frac{I}{I_0}, \ I_0 = \frac{cn_{\omega}\hbar^3\omega^3}{2\pi|B|},$ $B=rac{\hbar^2(m_1-m_2)}{2m_1m_2},$ знак $\langle\ldots
angle$ означает усреднение по телесному углу волнового вектора дырок к. Остальные величины — общеизвестные. Здесь электронам в подзоне *l* = 1 (тяжелые дырки) соответствуют состояния с проекцией $m = \pm 3/2$ углового момента на направление **k**. а электронам в подзоне l = 2 (легкие дырки) — состояния с $m = \pm 1/2$. Например, для *p*-GaAs и $I_0 = 13420 \,\mathrm{\kappa Bt/cm^2}$ при $\hbar \omega = 17 \,\mathrm{M3B}, \ m_1 = 0.51 m_0$ $(m_2 = 0.09m_0)$ — эффективная масса тяжелых (легких) дырок, $E_1^{(N)} = NE_1^*.$

Закон сохранения энергии, описывающий функцию $\delta(E_{2\mathbf{k}} - E_{1\mathbf{k}} - N\hbar\omega)$, надо учитывать в конечных результатах. Как указано в работах [10–13], использование этого соотношения в начальных или промежуточных этапах расчета, например, спектральной или температурной зависимости многофотонного коэффициента поглощения света или поляризационно-зависимого фототока [14–16], может привести к ошибочным результатам.

Из (1) видно, что для определения спектральной или температурной зависимости коэффициента многофотонного поглощения света $K^{(N)}$ надо рассчитать матричные

элементы рассматриваемых оптических переходов, которые будем анализировать далее для конкретных случаев.

Исходя из данных работы [12] матричный элемент двухфотонного оптического перехода представим в виде

$$M_{m\mathbf{k},m'\mathbf{k}}^{(2)} = M_{m,m'}^{(2)} = \sum_{m''=\pm 1/2,\pm 3/2} \frac{M_{m,m''}^{(1)} M_{m'',m'}^{(1)}}{(E_{m''\mathbf{k}} - E_{m'\mathbf{k}} - \hbar\omega)} - \left(\frac{eA_0}{c\hbar}\right) [H_{\Gamma_6}^{(2)}(\mathbf{e}')]_{m,m'}, \qquad (2)$$

где $H_{\Gamma_6}^{(2)}(\mathbf{e}') = H_{\Gamma_6}^{(2)}(\mathbf{k} \to \mathbf{e}'), \quad H_{\Gamma_i}^{(2)}(\mathbf{k})$ — эффективный гамильтониан дырок в представлении Латтинжера-Кона [17,18], $e_{x'}, e_{y'}, e_{z'}$ — компоненты вектора \mathbf{e}' , где $e_{x'}, e_{y'}$ — проекции \mathbf{e}' вектора поляризации света на оси x', y', перпендикулярные к волновому вектору дырок (**k**). Отметим, что первое слагаемое (2) описывает двухквантовый межподзонный оптический переход, протекающий с поглощением двух одинарных фотонов, а второе слагамое — одновременное поглощение двух фотонов.

Так как нас интересуют оптические переходы типа $|\pm 3/2\rangle \rightarrow |\pm 1/2\rangle$, приведем выражения для матричных элементов N фотонных оптических переходов ($||M_{m,m'}^{(N)}||$), происходящих между подзонами валентной зоны полупроводника. При расчетах $||M_{m,m'}^{(N)}||$ обратим внимание на многофотонные оптические переходы, изображенные следующими фейнмановскими диаграммами: для N = 2 $\downarrow\downarrow$, $\downarrow\downarrow$, для N = 3 $\downarrow\downarrow\downarrow$, $\downarrow\downarrow$, $\downarrow\downarrow$, где диаграмма $\downarrow\downarrow$ описывает однофотонное поглощение света, а диаграмма $\checkmark\downarrow$ описывает одновременное поглощение двух фотонов.

Далее проанализируем матричные элементы для различного типа двух- и трехфотонных оптических переходов в зависимости от степени поляризации света. Сначала сгруппируем оптические переходы по их физической природе, т.е. рассмотрим как последовательное поглощение двух или трех фотонов, так и одновременное поглощение двух фотонов. Расчеты показывают, что матричный элемент двухфотонного оптического перехода типа $|\pm 3/2\rangle \rightarrow |m\rangle \rightarrow |\pm 1/2\rangle$, описываемого диаграммами 3_{2} , равен $3\sqrt{3} \left(\frac{eA_0}{c\hbar}\right)^2 Be'_{\pm}e_{z'}$, а типа $|\pm 3/2\rangle \rightarrow |m\rangle \rightarrow |\mp 1/2\rangle$ равен $-(\frac{eA_0}{c\hbar})^2 B \frac{\sqrt{3}}{2} e'^2_{\mp};$ матричный элемент двухфотонного оптического перехода типа $|\pm 3/2\rangle \Rightarrow |\pm 1/2\rangle$, описываемого диаграммой \checkmark , равен $-\left(\frac{eA_0}{c\hbar}\right)^2 B\sqrt{3}e'_z e'_{\mp}$, а типа $|\mp 3/2\rangle \Rightarrow |\pm 1/2\rangle$ равен $-\left(\frac{eA_0}{c\hbar}\right)^2 B \frac{\sqrt{3}}{2} e_{\mp}^{\prime 2}$. В результате получим выражение для квадрата модуля матричного элемента двухфотонного оптического перехода, описываемого суммой фейнмановских диаграмм 44 + 4, в виде

$$\left|M_{\pm 3/2,\pm 1/2}^{(N=2)}(\mathbf{k})\right|^2 = 75 \left(\frac{eA_0}{c\hbar}\right)^4 B^2 |e'_{\pm}e_{z'}|^2, \qquad (3)$$

а квадрат модуля матричного элемента двухфотонного оптического перехода типа $|\pm 3/2\rangle \rightarrow |m\rangle \rightarrow |\mp 1/2\rangle$,

 $|\mp 3/2
angle \Rightarrow |\pm 1/2
angle$ определяется как

$$\left|M_{\pm 3/2,\mp 1/2}^{(N=2)}(\mathbf{k})\right|^2 = \frac{3}{4} \left(\frac{eA_0}{c\hbar}\right)^4 B^2 |e'_{\mp}^2|^2, \qquad (4)$$

и после углового усреднения имеем

$$\langle |M_{\pm 3/2,\pm 1/2}^{(N=2)}(\mathbf{k})|^2 \rangle = \frac{1}{20} \left(\frac{eA_0}{c\hbar}\right)^4 B^2 \begin{cases} 8 & \text{для линейной поляризации,} \\ 7 & \text{для циркулярной поляризации.} \end{cases}$$

Тогда коэффициент линейно-циркулярного дихроизма, рассчитанный для вышеуказанных оптических переходов, равен 8/7.

Если учтем эффект когерентного насыщения [5,10–12], то вклад этого эффекта в матричный элемент вышеуказанных оптических переходов определяем как

$$\sum_{m'=\pm 1/2, m=\pm 3/2} \delta |M_{m'm}^{(N)}(\mathbf{k})|^2 = \sum_{m'=\pm 1/2, m=\pm 3/2} \frac{|M_{m'm}^{(N)}(\mathbf{k})|^2}{\sqrt{1+4\frac{\alpha_{\omega}}{\hbar^2 \omega^2}} |M_{m'm}^{(N)}(\mathbf{k})|^2} - |M_{m'm}^{(N)}(\mathbf{k})|^2}.$$
(5)

Отметим, что для определения вероятностей оптических переходов или коэффициента поглощения света требуется провести усреднение выражений (3), (4), (5) по телесным углам волнового вектора дырок. Эти угловые усреднения для $N = 2, 3, \ldots$ с учетом эффекта когерентного насыщения (с учетом (5)) аналитически не решаются. Учитывая, что для экспериментально интересуемой области интенсивности света выполняется условие $1 \gg 4 \frac{\alpha_{\omega}}{\hbar^2 \omega^2} |M_{m'm}^{(N)}(\mathbf{k})|^2$, удобно произвести интегрирование по телесным углам волнового вектора дырок, разлагая радикал (5) в ряд. В частности, для однофотонных оптических переходов имеем

$$\sum_{m'=\pm 1/2, \ m=\pm 3/2} \delta \left| M_{m'm}^{(N=1)}(\mathbf{k}) \right|^2 = -\frac{9}{4} \frac{\alpha_{\omega}}{\hbar^2 \omega^2} \left(\frac{eA_0}{c\hbar} \right)^8 \times B^4 \Big[1296 |e'_{\pm}e_{z'}|^4 + \Big(36e_{z'}^2 |e'_{\pm}|^2 + |e'_{\pm}^2|^2 \Big)^2 \Big], \tag{6}$$

и, проведя угловое интегрирование, получим следующие соотношения:

 $\left\langle \sum_{m'=\pm 1/2, \ m=\pm 3/2} \delta \left| M_{m'm}^{(N=1)}(\mathbf{k}) \right|^2 \right\rangle$ $= -\frac{9}{4} \frac{\alpha_{\omega}}{\hbar^2 \omega^2} \left(\frac{eA_0}{c\hbar} \right)^8 B^4 \frac{1}{315} \begin{cases} 29792 \ \text{для линейной } \\ \text{поляризации,} \\ 30395 \ \text{для циркулярной } \\ \text{поляризации,} \end{cases}$ где $e'_{\pm} = e_{x'} \pm ie_{y'}.$

Физика и техника полупроводников, 2020, том 54, вып. 11

Из последнего выражения видно, что вклад эффекта когерентного насыщения в коэффициент двухфотонного линейно-циркулярного дихроизма в *p*-GaAs paвeн 0.98.

Теперь переходим к анализу трехфотонных оптических переходов между подзонами тяжелых и легких дырок. Если рассмотрим оптические переходы, происходящие с поглощением трех отдельных фотонов, описываемых диаграммой 👯, то увидим, что поляризационная зависимость матричного элемента оптического перехода типа $|+3/2\rangle \rightarrow |m\rangle \rightarrow |m'\rangle \rightarrow |+1/2\rangle$ выражается как $2\sqrt{3} \left(\frac{eA_0}{c\hbar}\right)^3 \frac{(Bk)^3}{(\hbar\omega)^2} e'_+ \left(4|e_{z'}|^2 - \frac{3}{8}|e'_+|^2\right),$ где по номерам промежуточных состояний $|m\rangle, |m'\rangle$ проводится суммирование. Матричный элемент трехфотонного оптического перехода типа 🚻, где сначала поглощается один фотон, а далее одновременно по-глощаются два фотона, $-\frac{\sqrt{3}}{2} \left(\frac{eA_0}{c\hbar}\right)^3 \frac{B^2k}{\hbar\omega} e'_+ \left\{ \left[2\left(\frac{A}{B}-1\right) + 2e'_z^2 + \frac{1}{2}e'_\perp^2\right] - 4\left(\frac{A}{B}-1\right)e'_z^2 \right\}$, матричный элемент оптического перехода типа 💥, где сначала одновременно поглощаются два фотона, а далее поглощается один фотон, определяется аналогичным образом. Сумма матричных элементов последних двух переходов выражается как $-\frac{\sqrt{3}}{2} \left(\frac{eA_0}{c\hbar}\right)^3 \frac{B^2 k}{\hbar \omega} e'_+ (10e'_z^2 - e'_\perp^2).$

В результате поляризационная зависимость суммы всех трехфотонных оптических переходов, описываемых диаграммой $\underbrace{111}_{\pm} + \underbrace{11}_{\pm} + \underbrace{11}_{\hbar\omega}$, выражается как $\frac{\sqrt{3}}{2} \left(\frac{eA_0}{c\hbar}\right)^3 \times \frac{B^2k}{\hbar\omega} e'_+ \left[(-10e'_z^2 + e'_{\pm}^2) + 4 \frac{Bk^2}{\hbar\omega} (4|e_{z'}|^2 - \frac{3}{8}|e'_+|^2) \right]$. Если учтем закон сохранения энергии трехфотонного оптического перехода и $e'_{\pm}^2 = |e'_+|^2$, то последнее выражение примет вид $-\frac{\sqrt{3}}{8} \left(\frac{eA_0}{c\hbar}\right)^3 \frac{B^2k}{\hbar\omega} e'_+ (136e'_z^2 - 13e'_{\pm})$. Тогда квадрат модуля трехфотонных оптических переходов типа $\underbrace{111}_{\pm\pm}$ запишется в виде

$$\left\{ \left| M_{+1/2;+3/2}^{(1-1-1)} \right|^2 + \left| M_{-1/2;-3/2}^{(1-1-1)} \right|^2 \right\} = \left(\frac{eA_0}{c\hbar} Bk \right)^3 \frac{24}{(\hbar\omega)^4} \\ \times \left\{ \left| e'_+ \left(4|e_{z'}|^2 - \frac{3}{8}|e'_+|^2 \right) \right|^2 + \left| e'_- \left(4|e_{z'}|^2 - \frac{3}{8}|e'_-|^2 \right) \right|^2 \right\}.$$
(8)

После проведения углового усреднения по телесному углу волнового вектора дырок имеем

$$\left\langle \left\{ \left| M_{+1/2;+3/2}^{(1-1-1)} \right|^2 + \left| M_{-1/2;-3/2}^{(1-1-1)} \right|^2 \right\} \right\rangle_{\text{linear por}} \\ = \frac{297}{4} \left(\frac{eA_0}{c\hbar} \right)^6 B^3 \frac{1}{\hbar\omega}$$

для линейной,

$$\left\langle \left\{ \left| M_{+1/2;+3/2}^{(1-1-1)} \right|^2 + \left| M_{-1/2;-3/2}^{(1-1-1)} \right|^2 \right\} \right\rangle_{\text{circ. por}} \\ = \frac{405}{16} \left(\frac{eA_0}{c\hbar} \right)^6 B^3 \frac{1}{\hbar\omega}$$

Рис. 1. Спектральные зависимости $K^{(N=1)}(a)$, $K^{(N=2)}(b)$, $K^{(N=3)}(c)$ для *p*-GaAs при межподзонном поглощении линейно поляризованного света для двух температур: сплошная линия при T = 200 K, ромбики — при T = 300 K.

для циркулярной поляризации. Из последних соотношений видно, что коэффициент трехфотонного линейноциркулярного дихроизма, когда фотоны поглощаются по отдельности, равен $\eta_{\pm 1/2;\pm 3/2}^{(1-1-1)} = 44/15$.

Квадрат модуля поляризационной зависимости суммарных матричных элементов оптических переходов типа $\underbrace{111}_{A} + \underbrace{V1}_{A} + \underbrace{V1}_{A}$ упрощается при A = B, т.е. когда считаем, что эффективная масса бесконечная и принимает вид

$$\left| M_{\pm 3/2,\pm 1/2}^{(N=3)}(\mathbf{k}) \right|^{2} + \left| M_{\pm 3/2,\mp 1/2}^{(N=3)}(\mathbf{k}) \right|^{2} = \frac{9}{8} \left(\frac{eA_{0}}{c\hbar} \right)^{6} \frac{B^{3}}{(\hbar\omega)} \left| e'_{\pm}^{2} \right|^{2} \\ \times \left\{ -40e'_{z}^{2} + 84e'_{z}^{4} - 6e'_{z}^{2}e'_{\perp}^{2} + \frac{5}{2}e'_{\perp}^{4} \right\}.$$
(9)

Тогда, усредняя последнее соотношение по телесным углам волнового вектора дырок, получим

$$\Big\langle \sum_{m=\pm 3/2; \, m'=\pm 1/2} \Big| M_{m,m'}^{(3)} \Big|^2 \Big\rangle_{\text{linear}} = \frac{7764}{35} \, \xi^6 \, \frac{B}{\hbar \omega}$$

для линейной,

$$\left\langle \sum_{m=\pm 3/2; m'=\pm 1/2} \left| M_{m,m'}^{(3)} \right|^2 \right\rangle_{\text{circ}} = \frac{7125}{35} \xi^6 \frac{B}{\hbar \omega}$$

для циркулярной поляризации, где $\xi=\frac{eA_0}{c\hbar}\sqrt{B}.$

Далее определим спектральную и температурную зависимости коэффициента двухфотонного поглощения. Следуя данным работ [5,10–12], определим коэффициент

Рис. 2. Температурные зависимости $K^{(N=1)}(a)$, $K^{(N=2)}(b)$, $K^{(N=3)}(c)$ для *p*-GaAs при межподзонном поглощении линейно поляризованного света для двух длин волны света: сплошная линия при $\lambda = 10.6$ мкм, ромбики — при $\lambda = 9.5$ мкм.

фотонного поглощения поляризованного света в виде

$$K^{(N)} = \frac{2\pi}{\hbar} \frac{\hbar\omega}{I} \sum_{\mathbf{k}, m=\pm 1/2; m'=\pm 3/2} \left(f_{1\mathbf{k}}^{(N)} - f_{2\mathbf{k}}^{(N)} \right) \left| M_{m,m'}^{(N)}(k) \right|^2 \times \delta(E_{2\mathbf{k}} - E_{1\mathbf{k}} - N\hbar\omega),$$
(10)

где $f_{l\mathbf{k}}^{(N)}$ — неравновесная функция распределения дырок, участвующих в N фотонном оптическом переходе. Тогда коэффициенты двух- и трехфотонного поглощения света без учета эффекта когерентного насыщения определяются выражениями

$$K^{(N=2)} = 2\sqrt{2} \Xi_{m'm}^{(2,1)} \times \exp\left[-m_{hh}m_{lh}\hbar\omega/(m_{hh}-m_{lh})k_{\rm B}T\right] K^{(N=1)}, \quad (11)$$

 $K^{(N=3)} = 3\sqrt{3} \Xi_{m'm}^{(3,1)} \times \exp[-2m_{hh}m_{lh}\hbar\omega/(m_{hh}-m_{lh})k_{\rm B}T]K^{(N=1)}, \quad (12)$

где $K^{(N=1)}$ — коэффициент однофотонного поглощения света (см. [5,13]), $E_1^{(N=2)} = 2E_1^*$, $E_1^* = \frac{m_{hh}m_{lh}}{m_{hh}-m_{lh}} \hbar \omega$, $\Xi_{m'm}^{(2,1)} = \xi^2$ и $\Xi_{m'm}^{(3,1)} = 111 \cdot \xi^4$ для линейной, $\Xi_{m'm}^{(2,1)} = 0.65\xi^2$ и $\Xi_{m'm}^{(3,1)} = 102 \cdot \xi^4$ для циркулярной поляризации. В результате имеем, что коэффициент двухфотонного ЛЦД равен 1.52, а трехфотонного равен 1.1.

На рис. 1 приведены спектральные зависимости $K^{(N=1)}(a), K^{(N=2)}(b), K^{(N=3)}(c)$ для *p*-GaAs при межподзонном поглощении линейно поляризованного света для двух температур: T = 200 K (сплошная линия) и T = 300 K (ромбики). На рис. 2 показаны темпера-

Рис. 3. Спектральные зависимости $K^{(N=1)}$ (сплошная линия) и $K^{(N=2)}$ (ромбики) для *p*-GaAs при межподзонном поглощении линейно поляризованного света при T = 300 K.

турные зависимости $K^{(N=1)}(a)$, $K^{(N=2)}(b)$ для *p*-GaAs при межподзонном поглощении линейно поляризованного света для двух длин волн света: $\lambda = 10.6$ мкм (сплошная линия) и $\lambda = 9.5$ мкм (ромбики). Из рис. 1 и 2 видно, что спектральная (температурная) зависимость коэффициентов поглощения линейно поляризованного света с ростом энергии фотона (температуры) сначала растет и достигает максимума, далее уменьшается.

Расчеты показывают, что при уменьшении температуры в 1.5 раза максимальные значения в спектральных зависимостях $K^{(N=1)}(\omega)$, $K^{(N=2)}(\omega)$ уменьшаются в ~ 1.4 раза, в $K^{(N=3)}(\omega)$ почти не изменяются, а при уменьшении длины волны света незначительно уменьшаются максимальные значения в температурных зависимостях $K^{(N=1)}(T)$, $K^{(N=2)}(T)$ и $K^{(N=3)}(T)$. Для сопоставления $K^{(N=1)}(\omega)$, $K^{(N=2)}(\omega)$ на рис. 3 приведены спектральные зависимости $K^{(N=1)}$ (сплошная линия) и $K^{(N=2)}$ (ромбики) для *p*-GaAs при межподзонном поглощении линейно поляризованного света для T = 300 K, откуда видно, что при $\xi = 0.1$ лишь в области малых значений частот преобладает двухфотонное поглощение над однофотонным, а далее наоборот.

Аналогичная ситуация имеет место и для циркулярнополяризованного света.

Таким образом, пренебрежение одновременного поглощения двух фотонов может привести к заметной погрешности в расчетах коэффициента поглощения или других оптических величин, например фототока. В заключение отметим, что:

а) вероятности многофотонных переходов зависят от степени поляризации света, т.е. имеет место ЛЦД нелинейного по интенсивности поглощения света в полупроводнике со сложной валентной зоной;

б) температурная зависимость коэффициента двух- и трехфотонного межподзонного поглощения поляризованного излучения в полупроводнике со сложной валентной зоной в области частот, когда $\hbar \omega \gg k_{\rm B}T$, определяется температурной зависимостью коэффициента однофотонного поглощения;

в) как спектральная, так и температурная зависимости коэффициентов поглощения линейно и циркулярно поляризованного света с ростом энергии фотона (температуры) сначала растут и, достигая максимума, уменьшаются;

г) показано, что при T = 300 К и $\xi = 0.1$ лишь в области малых значений частот преобладает двухфотонное поглощение над однофотонным (а далее наоборот), а трехфотонное поглощение всегда меньше, чем однофотонное.

Благодарности

Один из авторов (РЯР) выражает благодарность Л.Е. Голубу за ценные замечания.

Финансирование работы

Данная работа частично финансирована грантом ОТ-Ф2-66.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- E.L. Ivchenko. Optical Spectroscopy of Semiconductor Nanostructures (Harrow, Alpha Science International Ltd, 2005) v. XII, p. 427.
- [2] Е.Л. Ивченко. Автореф. докт. дис. (Л., 1983) с. 148;
 Е.Л. Ивченко. ФТТ, 14 (12), 3489 (1972).
- M.I. Dyakonov (ed.). Spin Physics in Semiconductors (Springer Verlag, Heidelberg, 2008) p. 447; F. Meier, B.P. Zakharchenya (eds). Optical orientation (North-Holland, N.Y.-Tokyo, 1984) p. 534.
- [4] В.А. Шалыгин. Автореф. докт. дис. (СПб., 2013) с. 34.
- [5] Р.Я. Расулов. Диссертация на соиск. уч. ст. докт. дис. (СПб., 1993) с. 168.
- [6] R.A. Negres A., J.M. Hales, A. Kobyakov, D.J. Hagan, E.W. van Stryland. IEEE J. Quant. Electron., 38, 205 (2002).
- [7] J. He, Y. Qu, H. Li, J. Mi, W. Ji. Opt. Express, **13**, 9235 (2005).
- [8] W.C. Hurlbut, Y.-Sh. Lee, K.L. Vodopyanov, P.S. Kuo, M.M. Fejer. Optics Lett., 32, 668 (2007).
- [9] Sh. Pearl, N. Rotenberg, H.M. van Driel. Appl. Phys. Lett., 93, 131102 (2008).
- [10] V.R. Rasulov, R.Ya. Rasulov, I. Eshboltaev. Phys. Solid State, 59 (3), 463 (2017).
- [11] V.R. Rasulov, R.Ya. Rasulov, I. Eshboltaev. Russian Phys. J., 58 (12), 1681 (2016).

- [12] Р.Я. Расулов. ФТТ, 35 (6), 1107 (1993)
- [13] С.Д. Ганичев, Е.Л. Ивченко, Р.Я. Расулов, И.Д. Ярошецкий, Б.Я. Авербух. ФТТ, 35 (1), 198 (1993).
- [14] V.R. Rasulov, R.Ya. Rasulov, I. Eshboltaev. Semiconductors, 50 (2), 145 (2016).
- [15] V.R. Rasulov, R.Ya. Rasulov, I. Eshboltaev. Russian Phys. J., 59 (1), 92 (2016).
- [16] В.Р. Расулов, Р.Я. Расулов, И.М. Эшболтаев. Изв. вузов. Физика, 59 (3), 114 (2013).
- [17] Г.Л. Бир, Г.Е. Пикус. Симметрия и деформационные эффекты в полупроводниках (М., Наука, 1973) с. 584.
- [18] Е.Л. Ивченко, Р.Я. Расулов. Симметрия и реальная зонная структура полупроводников (Ташкент, Фан, 1989) с. 126.

Редактор А.Н. Смирнов

1*

Two and three photon linear circular dichroism in semiconductors with cubic symmetry

V.R. Rasulov, R.Ya. Rasulov, R.R. Sultonov, B.B. Axmedov

Ferghana State University, 150100 Ferghana, Republic of Uzbekistan

Abstract The linear-circular dichroism of two and three photon absorption of light in semiconductors of cubic symmetry of hole conductivity is theoretically investigated. The matrix elements of two and three-photon optical transitions occurring between the subbands of the semiconductor valence band are calculated. In this case, transitions associated with both non-simultaneous absorption of individual photons and simultaneous absorption of two photons are taken into account, and the spectral and temperature dependences of the coefficient of two and three-photon absorption of polarized radiation are determined.