# УДК 621.315.592

# Формирование структур с бескаталитическими нитевидными нанокристаллами CdTe

© И.П. Сошников<sup>\*+</sup>•<sup>¶</sup>, В.А. Петров<sup>\*</sup>, Ю.Ю. Проскуряков<sup>‡</sup>, Д.А. Кудряшов<sup>\*+</sup>, А.В. Нащекин<sup>+</sup>, Г.Э. Цырлин<sup>\*+</sup>•, R. Treharne<sup>‡</sup>, K. Durose<sup>‡</sup>

\* Санкт-Петербургский Академический университет — научно-образовательный центр нанотехнологий Российской академии наук, 194021 Санкт-Петербург, Россия

<sup>+</sup> Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

• Институт аналитического приборостроения Российской академии наук,

190083 Санкт-Петербург, Россия

<sup>‡</sup> University of Liverpool,

L69 3BX Liverpool, United Kingdom

(Получена 20 ноября 2012 г. Принята к печати 30 ноября 2012 г.)

Проведено исследование процессов бескаталитического синтеза структур с СdTe нитевидными нанокристаллами с использованием метода магнетронного осаждения. Показано, что при осаждении магнетронным распылением CdTe на подложки с пористым слоем SiO<sub>2</sub> могут формироваться CdTe нитевидные нанокристаллы. Сделаны оценки пористости слоев SiO<sub>2</sub> с толщиной от 2 до 15 нм, полученных осаждением магнетронным распылением.

### 1. Введение

Теллурид кадмия (CdTe) является одним из основных материалов для производства солнечных элементов низкой стоимости [1-3], что обусловлено теоретически предсказываемым кпд однопереходных приборных структур на основе CdTe до 30% [1,4]. В настоящее время реализованы структуры со слоями CdTe, обеспечивающие кпд до 18% [1,5,6]. Одним из возможных способов повышения эффективности фотопреобразования является переход от планарной морфологии к трехмерной, в частности, с нитевидными нанокристаллами (ННК) [7-11]. Традиционные методы формирования ННК с использованием катализаторов роста (например, золота) [8,9,11–17] обладают существенным недостатком, заключающимся в неконтролируемом растворении материала катализатора в выращиваемых нанокристаллах, что может приводить к непредсказуемому изменению их оптоэлектронных свойств и, как следствие, к ухудшению электрофизических характеристик приборных структур.

В литературе широко представлены исследования процессов формирования и электрофизических характеристик планарных структур со слоями CdTe [18–29]. Традиционно для их роста используются методы жидкостной химии, сублимации и газофазной эпитаксии [29]. Исследования процессов формирования структур с CdTe ННК и их свойств представлены меньше [8,30–32]. В большинстве таких работ рассматривается получение CdTe HHK методами электрохимического осаждения или каталитического роста. Применительно к росту ННК методы жидкостной химии по сравнению с вакуумными методами обладают существенными ограничениями по контролю размеров, формы, легирования и кристаллической структуры ННК [31]. В то же время исследования процессов вакуумного бескаталитического роста СdTe ННК практически не представлены.

Указанные аспекты обусловливают важность и актуальность исследований процессов бескаталитического формирования структур с CdTe HHK для развития физики и технологии перспективных приборных структур фотовольтаики, таких как солнечные элементы и рентгеновские сенсоры.

#### 2. Методика эксперимента

В работе предлагается дизайн структуры и соответствующая методика роста, исключающие Au катализ и основанные на возможности бескаталитического роста ННК CdTe через окна в ультратонких слоях диоксида кремния SiO<sub>2</sub>.

В качестве подложек использовалось стандартное кальциево-натриевое стекло толщиной 8 мм (Pilkington TEC15).

На первом этапе методом магнетронного распыления при температуре подложки около  $300^{\circ}$ С наносился слой In<sub>2</sub>O<sub>3</sub> : Sn (ITO) толщиной 100—500 нм. На втором этапе поверх слоя ITO осаждался слой CdTe толщиной около 100 нм. Температура роста составляла  $350^{\circ}$ С. На третьем этапе поверх слоя CdTe осаждался ультратонкий слой SiO<sub>2</sub> различной толщины: 2, 5, 10 и 15 нм. На заключительном этапе проводилось осаждение слоя CdTe с эффективной толщиной около 50 нм при различных температурах (390, 430, 470°C).

Все слои, входящие в предложенный дизайн, были получены методом магнетронного распыления на уста-

<sup>¶</sup> E-mail: ipsosh@beam.ioffe.ru

новке AJA Orion Phase II-J, оснащенной двумя рабочими камерами, что позволяет разделить процессы с кислородсодержащей и бескислородной средой. Система оснащена радиально-симметричными магнетронными распылительными системами с диаметрами 3 дюйма (около 76 мм). В качестве источников материала для слоев CdTe, ITO и SiO2 использованы стандартные поликристаллические мишени с чистотой 7N. Осаждение слоев ITO и SiO<sub>2</sub> проводилось в разряде переменного тока плазмообразующей смеси газов Ar/O2. Осаждение слоев CdTe реализовано в разряде постоянного тока плазмообразующего газа Ar. Эффективная скорость осаждения CdTe составляет около 17 нм/мин. Скорость осаждения ITO и SiO<sub>2</sub> составляет около 2 и 0.5 нм/мин соответственно. Чистота исходных плазмообразующих газов составляет не хуже 99.999%. Остаточное давление в камере поддерживалось на уровне  $5 \cdot 10^{-3}$  мбар.

Исследование поверхностной морфологии проводилось методами растровой электронной микроскопии (РЭМ) на микроскопах Jeol JSM-7001F и C.Zeiss Supra25. Рентгеновский микроанализ с целью определения химического состава проводился на микроскопе Jeol JSM-7001F.

# 3. Результаты и обсуждение

С целью изучения процессов роста и морфологии структур на каждом этапе вышеописанной методики были получены вспомогательные промежуточные образцы.

На рис. 1 показан пример РЭМ-изображения образца со слоем ITO на подложке Si(100) с окисленной поверхностью. Как можно видеть, такие слои имеют аморфную структуру с возможной текстурой в направлении, нормальном к поверхности, и закрывают поверхность подложки сплошным образом. Проводимость таких слоев составляет порядка  $10^{-4}-10^{-3}$  Ом · см.

Исследование морфологии слоев SiO<sub>2</sub> в сложной структуре SiO<sub>2</sub>/CdTe/ITO/стекло (рис. 2) является проблематичным вследствие многофакторности и неоднозначности результатов. Поэтому специально была изучена морфология слоев SiO<sub>2</sub>, осажденных магнетронным распылением на поверхности GaAs (100), что обеспечивает нормальный контраст при исследованиях методом РЭМ. На рис. 3 продемонстрирован пример морфологии слоя SiO<sub>2</sub> толщиной около 5 нм на поверхности подложки GaAs (100). Видно, что поверхность имеет покрытие

Зависимость среднего размера и плотности окон в слоях  $SiO_2$ , осажденных на поверхности GaAs (100), от толщины искомого слоя

| Параметры                                                                   | Толщина слоя, нм                              |                                               |                  |                  |
|-----------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------|------------------|
|                                                                             | 2                                             | 5                                             | 10               | 15               |
| Плотность окон, 10 <sup>9</sup> см <sup>-2</sup><br>Средний размер окон, нм | $\begin{array}{c} 1.8 \\ \sim 50 \end{array}$ | $\begin{array}{c} 1.2 \\ \sim 30 \end{array}$ | $0.2 \\ \sim 20$ | $0.05 \ \sim 20$ |



**Рис. 1.** Электронно-микроскопическое изображение поперечного сечения образца со структурой ITO/Si (100), полученной в результате осаждения магнетронным распылением в высокочастотном разряде (13.56 МГц) плазмообразующей смеси  $Ar/O_2$  (10:1).



**Рис. 2.** Электронно-микроскопические изображения образцов со структурой SiO<sub>2</sub>/CdTe(50 нм)/ITO(100 нм)/стекло: a — вид сверху образца с толщиной слоя SiO<sub>2</sub> 2 нм; b — вид в изометрии образца с толщиной слоя SiO<sub>2</sub> 5 нм.

с разрывами (окнами) с характерными размерами от 10 до 50 нм. Плотность окон составляет порядка  $10^9 \, \mathrm{cm}^{-2}$ . Анализ морфологии образцов в системе SiO<sub>2</sub>/GaAs (см. таблицу) показывает, что для применений в экс-



**Рис. 3.** Электронно-микроскопическое изображение в геометрии вид сверху образца со слоем SiO<sub>2</sub> толщиной 5 нм, осажденным на поверхности GaAs (100) методом магнетронного распыления мишени SiO<sub>2</sub> в высокочастотном разряде (13.56 МГц) плазмообразующей смеси  $Ar/O_2(10:1)$ .



**Рис. 4.** Электронно-микроскопическое изображение в изометрии образца  $CdTe(50 \text{ hm})/SiO_2(5 \text{ hm})/CdTe(50 \text{ hm})/ITO(100 \text{ hm})/стекло, полученного при температуре осаждения верхнего слоя CdTe 430°C.$ 



**Рис. 5.** Электронно-микроскопическое изображение в геометрии вид сверху образца  $CdTe(50 \text{ нм})/SiO_2(5 \text{ нм})/CdTe(50 \text{ нм})/ITO(100 \text{ нм})/стекло, полученного при температуре осаждения верхнего слоя CdTe 470°C.$ 

периментах по росту ННК CdTe наиболее эффективная толщина слоя SiO<sub>2</sub> составляет около 5 нм.

Сопоставление поверхностной морфологии итоговых образцов с осажденными при температурах 390, 430 и 470°С верхними слоями СdTe показывает, что при температуре 390°С формирование ННК СdTe практически не наблюдается. Наблюдаемые потенциальные центры роста ННК, по-видимому, закрываются сверху аморфным слоем CdTe. В то же время при температуре 430°С (рис. 4) наблюдается образование ННК СdTe с характерными размерами порядка 50 нм в диаметре и 200-400 нм в высоту при плотности  $10^9$  см<sup>-2</sup>. При температуре роста 470°С (рис. 5) наблюдается формирование ННК с последующим заращиванием слоем CdTe. Плотность заращенных ННК составляет порядка 10<sup>9</sup> см<sup>-2</sup>. Полученный результат свидетельствует о низких длинах поверхностной диффузии адатомов при формировании ННК CdTe.

## 4. Заключение

Таким образом, в работе предложен дизайн структуры с бескаталитическими нитевидными нанокристаллами. Продемонстрирована возможность реализации предложенной структуры методом осаждения магнетронным распылением. В частности, показано, что при осаждении магнетронным распылением CdTe на подложки с пористым слоем SiO<sub>2</sub> при температуре подложки в диапазоне от 400 до 470°C могут формироваться HHK CdTe. Сделаны оценки пористости слоев SiO<sub>2</sub> с толщиной от 2 до 15 нм, полученных осаждением магнетронным распылением на поверхности подложек GaAs (100).

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (контракты № 02.740.11.0383, 16.740.11.0019 и 14.740.11.0592, 13.G25.31.0054), научных программ президиума РАН, грантов РФФИ и программ FP7 SOBONA и FUNPROB.

# Список литературы

- Ж.И. Алфёров, В.М. Андреев, В.Д. Румянцев. ФТП, 38 (8), 937 (2004).
- [2] CdTe and Related Compounds; Physics, Defects, Heteroand Nano-structures, Crystal Growth, Surfaces and Applications, ed. by R. Triboulet, P. Siffert (Elsevier, 2010).
- [3] Semiconductor Nanomaterials for Flexible Technologies: From Photovoltaics and Electronics to Sensors and Energy Storage, ed. by Y. Sun, J.A. Rogers (Elsevier, 2010).
- [4] C.H. Henry. J. Appl. Phys., **51** (8), 4494 (1980).
- [5] L.L. Kazmerski. Efficiencies determined by certified agencies/laboratories National Renewable Energy Laboratory (NREL) (Golden, CO 6 November 2012).
- [6] 17.3 Percent Efficiency Confirmed by NREL (Business Wire, July 26, 2011).
- [7] P.J. Pauzauskie, P. Yang. Materials Today, 9 (10), 36 (2006).
- [8] J.A. Czaban, D.A. Thompson, R.R. LaPierre. Nano Lett., 9 (1), 148 (2009).

- [9] G.E. Cirlin, A.D. Bouravleuv, I.P. Soshnikov, Yu.B. Samsonenko, V.G. Dubrovskii, E.M. Arakcheeva, E.M. Tanklevskaya, P. Werner. Nanoscale Res. Lett., 5, 360 (2009).
- [10] B.M. Kayes, H.A. Atwater, N.S. Lewis. J. Appl. Phys., 97 (11), 114 302 (2005).
- [11] K.-Q. Peng, S.-T. Lee. Adv. Mater., 23 (2), 198 (2011).
- [12] R.S. Wagner, W.C. Ellis. Appl. Phys. Lett., 4 (5), 89 (1964).
- [13] Е.И. Гиваргизов, А.А. Чернов. Кристаллография, 18 (1), 147 (1973).
- [14] Е.И. Гиваргизов. Рост нитевидных и пластинчатых кристаллов из пара (М., Наука, 1977).
- [15] V.G. Dubrovskii, G.E. Cirlin, I.P. Soshnikov, A.A. Tonkikh, N.V. Sibirev, Yu.B. Samsonenko, V.M. Ustinov. Phys. Rev. B, 71 (20), 205 325 (2005).
- [16] И.П. Сошников. Письма ЖТФ, 31, вып. 15, 29 (2005).
- [17] S. Neretina, R.A. Hughes, J.F. Britten, N.V. Sochinskii, J.S. Preston, P. Mascher. Nanotechnology, 18 (27), 275 301 (2007).
- [18] P. Liu, V. P Singh, C. A Jarro, S. Rajaputra. Nanotechnology, 22 (14), 145 304 (2011).
- [19] V. Consonni, G. Rey, J. Bonaimé, N. Karst, B. Doisneau, H. Roussel, S. Renet, D. Bellet. Appl. Phys. Lett., 98, 111 906 (2011).
- [20] A.A. Al-Ghamdi, M.S. Abd El-sadek, A.T. Nagat, F. El-Tantawy. Sol. St. Commun., 152, 1644 (2012).
- [21] R.D. Gould, C.J. Bowler. Thin Sol. Films, 164, 281 (1988).
- [22] W. Huber, A. Lopez-Otero. Thin Sol. Films, 58 (1), 21 (1979).
  [23] J.D. Major, K. Durose. Sol. Energy Mater. and Solar Cells,
- **95** (12), 3165 (2011). [24] T.L. Chu, S.S. Chu. Sol.-St. Electron., **38** (3), 533 (1995).
- [25] I. Mora-Seró, R. Tena-Zaera, J. González, V. Muñoz-Sanjosé. J. Cryst. Growth, 262, 19 (2004).
- [26] R.G. Dhere, M. Bonnet-Eymard, E. Charlet, E. Peter, J.N. Duenow, J.V. Li, D. Kuciauskas, T.A. Gessert. Thin Sol. Films, 519 (21), 7142 (2011).
- [27] J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H.-J. Schimper, A. Klein, T. Modes, O. Zywitzki, W. Jaegermann. J. Appl. Phys., **110**, 064 508 (2011).
- [28] W. Wang, G. Zhang, X. Li. Chem. Lett., 37 (8), 848 (2008).
- [29] R.H. Bube. In: Encyclopedia of Materials: Science and Technology (Elsevier, 2001) p. 873.
- [30] T. Ohgai, L. Gravier, X. Hoffer, J.-P. Ansermet. J. Appl. Electrochem., 35 (5), 479 (2005).
- [31] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan. Adv. Mater., 15 (5), 353 (2003).
- [32] X. Jin, M. Kruszynska, J. Parisi, J. Kolny-Olesiak. Nano Research, 4 (9), 824 (2011).

Редактор Т.А. Полянская

# Fabrication of the structures with non-catalytic CdTe nanowires

*I.P.* Soshnikov<sup>\*+•</sup>, V.A. Petrov<sup>\*</sup>, Y.Y. Proskuryakov<sup>‡</sup>, D.A. Kudryashov<sup>\*+</sup>, A.V. Nashchekin<sup>+</sup>, G.E. Cirlin<sup>\*+•</sup>, R. Treharne<sup>‡</sup>, K. Durose<sup>‡</sup>

\* St. Petersburg Academic University — Nanotechnology Research and Education Centre, Russian Academy of Sciences,
194021 St. Peterburg, Russia
+ loffe Physical Technical Institute, Russian Academy of Sciences,
194021 St. Petersburg, Russia
• Institute for Analytical Instrumentation, Russian Academy of Sciences,
190083 St. Petersburg, Russia
‡ University of Liverpool,

L69 3BX Liverpool, United Kingdom

**Abstract** In this work we investigate the non-catalytic synthesis of the structures with CdTe nanowires by means of magnetron sputtering deposition. We demonstrate that the structures with non-catalytic CdTe nanowires can be obtained on substrates with porous layer of SiO<sub>2</sub> using magnetron sputtering deposition. The porosity of SiO<sub>2</sub> layers with thicknesses from 2 to 15 nm fabricated by magnetron sputtering deposition is estimated.