17,09

Энергетический спектр и спектр оптического поглощения фуллерена С₂₈ в модели Хаббарда

© А.В. Силантьев

Марийский государственный университет Йошкар-Ола, Россия E-mail: kvvant@rambler.ru

Поступила в Редакцию 2 марта 2020 г. В окончательной редакции 27 марта 2020 г. Принята к публикации 1 апреля 2020 г.

В рамках модели Хаббарда в приближении статических флуктуаций получены антикоммутаторные функции Грина и энергетические спектры фуллерена C_{28} и эндоэдрального фуллерена $Zr@C_{28}$ с группой симметрии T_d . С использованием методов теории групп проведена классификация энергетических состояний, а также определены разрешенные переходы в энергетических спектрах молекул C_{28} и $Zr@C_{28}$.

Ключевые слова: модель Хаббарда, функции Грина, энергетический спектр, наносистемы, фуллерен С28.

DOI: 10.21883/FTT.2020.11.50076.042

1. Введение

В настоящее время большое число исследований посвящено изучению физических и химических свойств фуллеренов [1,2]. Данные исследования показали, что большинство фуллеренов С_п являются нестабильными молекулами, многие из которых становятся стабильными при помещении внутрь фуллерена атомов металлов и образовании эндроэдральных фуллеренов $M@C_n$. Одним из таких фуллеренов является фуллерен С₂₈. Этот фуллерен был открыт в 1993 г. в виде эндроэдрального фуллерена U@C₂₈ [3]. Дальнейшие исследования показали, что фуллерен С28 является нестабильной молекулой, которая стабилизируется при образовании эндофуллеренов M@C₂₈ с элементами Zr, W, Mo, Os, Ti, Th, U, Ce, которые способны принимать электронные конфигурации M^{4+} [4]. Исследованию свойств фуллерена С28 посвящено довольно много работ [5-8].

Как известно [9], из 28 атомов углерода можно построить два изомера фуллерена С28 с группами симметрии T_d и D₂. Изучение этих изомеров показало, что фуллерен C₂₈ с группой симметрии T_d является более стабильным, чем фуллерен С28 с группой симметрии D₂ [10]. Как видно из рис. 1, фуллерен C₂₈ с группой симметрии T_d состоит из двенадцати пентагонов и четырех гексагонов. Из диаграммы Шлегеля, изображенной на рис. 1, видно, что фуллерен С₂₈ с группой симметрии T_d содержит три неэквивалентных связи, которые обозначены через а, b и c; и три группы неэквивалентных атомов углерода: $G_1 = \{1, 3, 5, 9, 13, ..., ..., 10, ..$ 17, 19, 20, 22, 23, 25, 26}, $G_2 = \{2, 4, 6, 8, 10, 12, 14, 16, ..., 10,$ 18, 21, 24, 27}, $G_3 = \{7, 11, 15, 28\}$. Связь *а* связывает между собой два пентагона, связь b связывает пентагон и гексагон, а связь с связывает между собой два гексагона. К множеству G_1 принадлежат атомы, которые находятся в вершинах сочленения двух гексагонов и одного пентагона. К множеству G_2 принадлежат атомы, которые находятся в вершинах сочленения одного гексагона и двух пентагонов. К множеству G_3 принадлежат атомы, которые находятся в вершинах сочленения трех пентагонов.

Для описания электронных и оптических свойств углеродных наносистем [11-22] широко используется модель Хаббарда [23]. Так, например, в рамках модели Хаббарда в приближении статических флуктуаций (ПСФ) были получены энергетические спектры и спектры оптического поглощения фуллерена С₆₀ [11,21], фуллерена С70 [13,22], фуллерена С20 с группами симметрии I_h, D_{5d} и D_{3d} [14], фуллерена С₂₄ с группами симметрии O_h , D_6 и D_{6d} [15], фуллерена C_{36} [16]. Полученные в работах [11,13] результаты достаточно хорошо согласуются с экспериментальными данными. Отметим, что при интерпретации экспериментально наблюдаемых полос поглощения, наблюдаемых у фуллерена С₆₀ [24], в работе [21] удалось интерпретировать только три полосы поглощения, в то время как в работе [11] удалось дать интерпретацию десяти полос поглощения. Отметим также, что при интерпретации экспериментально наблюдаемых полос поглощения, наблюдаемых у фуллерена С₇₀ [25], в работе [22] удалось интерпретировать только три полосы поглощения, в то время как в работе [13] удалось дать интерпретацию одиннадцати полосам поглощения.

Целью настоящей работы является исследование энергетического спектра и спектра оптического поглощения фуллерена C_{28} и эндоэдрального фуллерена $Zr@C_{28}$ с группой симметрии T_d в рамках модели Хаббарда в приближении статических флуктуаций.

Рис. 1. Фуллерен C_{28} с группой симметрии T_d и его диаграмма Шлегеля с указанием положения атомов углерода и связей между атомами углерода.

2. Энергетический спектр фуллерена С₂₈

Для описания *л*-электронной системы фуллерена C₂₈ воспользуемся моделью Хаббарда [23]:

$$H = \sum_{\sigma,i} \varepsilon_i n_{i\sigma} + \sum_{\sigma,i\neq j} t_{ij} c_{i\sigma}^+ c_{j\sigma} + \frac{1}{2} \sum_{\sigma,i} U_i n_{i\sigma} n_{i\bar{\sigma}}, \quad (1)$$

где $c_{i\sigma}^+, c_{i\sigma}^-$ операторы рождения и уничтожения электронов со спином σ на узле $i; n_{i\sigma}^-$ оператор числа

частиц со спином σ на узле i; ε_i — энергия одноэлектронного атомного состояния на узле i; t_{1j} — интеграл переноса, описывающий перескоки электронов с узла i на узел j; U_i — энергия кулоновского отталкивания двух электронов, находящихся на узле i; $\bar{\sigma} \equiv -\sigma$.

Поскольку в фуллерене C_{28} с группой симметрии T_d имеется три типа неэквивалентных связей, то, как видно из диаграммы Шлегеля, изображенной на рис. 1, в рамках модели Хаббарда этим связям соответствует три интеграла переноса

$$t_{1,2} = t_{2,3} = t_{3,4} = t_{4,5} = t_{5,6} = t_{8,9} = t_{9,10} = t_{10,22}$$
$$= t_{21,22} = t_{20,21} = t_{8,20} = t_{12,13} = t_{13,14} = t_{14,25}$$
$$= t_{24,25} = t_{23,24} = t_{12,23} = t_{16,17} = t_{17,18} = t_{18,19}$$
$$= t_{19,27} = t_{26,27} = t_{16,26} = t_a,$$
$$t_{2,11} = t_{10,11} = t_{11,12} = t_{4,15} = t_{14,15} = t_{15,16} = t_{6,7}$$

$$= t_{7,8} = t_{7,18} = t_{21,28} = t_{24,28} = t_{27,28} = t_b,$$

$$t_{1,9} = t_{3,13} = t_{5,17} = t_{19,20} = t_{22,23} = t_{25,26} = t_c,$$

Поскольку в фуллерене C_{28} во всех узлах находятся только атомы углерода, то энергия одноэлектронного атомного состояния и энергия кулоновского отталкивания двух электронов, находящихся на одном узле, будут иметь одни и те же значения на всех узлах. Поэтому будем обозначать их ε и U без индексов.

Напишем в ПСФ [20] уравнения движения для операторов $c_{f\sigma}^+(\tau)$ и $c_{f\sigma}^+n(\tau)$, заданных в представлении Гейзенберга. В результате получим замкнутую систему дифференциальных уравнений:

Используя решение системы уравнений (2), найдем Фурье-образы антикоммутаторных функций Грина для всех узлов фуллерена C₂₈:

$$\langle \langle c_{j\sigma}^{+} | c_{j\sigma} \rangle \rangle = \frac{i}{2\pi} \sum_{m=1}^{24} \frac{F_{j,m}}{E - E_m + ih}.$$

$$E_k = \varepsilon + e_k, \quad E_{k+12} = E_k + U, \quad F_{j,m} = q_m Q_{j,m},$$

$$Q_{j,k+12} = Q_{j,k}, \quad k = 1 \dots 12, \quad (3)$$

$$q_m = \begin{cases} 1 - \frac{n}{2}, & m = 1 \dots 12, \\ \\ \frac{n}{2}, & m = 13 \dots 24, \\ \\ h \to 0, \end{cases}$$

где

$$e_{1} = -\frac{2}{3}\sqrt{t_{c}^{2} + 12t_{a}^{2} + 9t_{b}^{2}} \cdot \sin\left(\frac{\varphi}{3} + \frac{\pi}{6}\right) + \frac{t_{c}}{3},$$

$$e_{2} = \frac{1}{2}\left(t_{c} - \sqrt{t_{c}^{2} + 4t_{a}^{2}}\right),$$

$$e_{3} = -\frac{1}{2}\left(t_{c} + \sqrt{t_{c}^{2} + 4t_{a}^{2}}\right),$$

$$e_{4} = -\frac{2}{3}\sqrt{t_{c}^{2} + 12t_{a}^{2} + 9t_{b}^{2}} \cdot \cos\left(\frac{\varphi}{3} + \frac{\pi}{6}\right) + \frac{t_{c}}{3},$$

$$e_{5} = \frac{1}{2}\left(t_{c} + \sqrt{t_{c}^{2} + 4t_{a}^{2}}\right),$$

$$e_{6} = \frac{1}{2}\left(-t_{c} + \sqrt{t_{c}^{2} + 4t_{a}^{2}}\right),$$

$$e_{7} = -\frac{2}{3}\sqrt{t_{c}^{2} + 12t_{a}^{2} + 9t_{b}^{2}} \cdot \cos\left(\frac{\varphi}{3}\right) + \frac{t_{c}}{3},$$

$$e_{8} = x_{1},$$

$$e_{9} = x_{2},$$

$$e_{10} = x_{3},$$

$$e_{11} = x_{4},$$

$$e_{12} = x_{5},$$

$$\varphi = \arccos\left(\frac{t_{c}(t_{c}^{2} + 18t_{a}^{2} - 27t_{b}^{2})}{(t_{c}^{2} + 12t_{a}^{2} + 9t_{b}^{2})^{3/2}}\right),$$

$$(4)$$

$$Q_{x,m} = \frac{1}{12}\frac{e_{m}^{2} - 3t_{b}^{2}}{3e_{m}^{2} - 2e_{m}t_{c} - 3t_{b}^{2} - 4t_{a}^{2}},$$

$$m = 1, 4, 7;$$

 $Q_{x,m} = \frac{1}{4}$

$$\times \frac{2e_m^4 - e_m^2(5t_a^2 + 6t_b^2) + 11t_a^2t_b^2}{5e_m^4 - 3e_m^2(5t_a^2 + 3t_b^2 + t_c^2) + 2e_mt_a^2t_c + 4t_a^4 + 11t_a^2t_b^2 + 3t_b^2t_c^2}, m = 8, 9, 10, 11, 12; Q_{x,2} = \frac{1}{12} \frac{\sqrt{t_c^2 + 4t_a^2} - t_c}{\sqrt{t_c^2 + 4t_a^2}}; Q_{x,3} = \frac{1}{8} \frac{\sqrt{t_c^2 + 4t_a^2} + t_c}{\sqrt{t_c^2 + 4t_a^2}}; Q_{x,5} = \frac{1}{12} \frac{\sqrt{t_c^2 + 4t_a^2} + t_c}{\sqrt{t_c^2 + 4t_a^2}}; Q_{x,6} = \frac{1}{8} \frac{\sqrt{t_c^2 + 4t_a^2} - t_c}{\sqrt{t_c^2 + 4t_a^2}}; Q_{y,m} = \frac{1}{12} \frac{e_m^2 - e_mt_c}{3e_m^2 - 2e_mt_c - 3t_b^2 - 4t_a^2}, m = 1, 4, 7;$$

$$Q_{y,m} = \frac{1}{4}$$

$$\times \frac{e_m^4 - e_m^2(5t_a^2 + 3t_b^2 + 2t_c^2) + e_m t_a^2 t_c + 3t_b^2 t_c^2}{5e_m^4 - 3e_m^2(5t_a^2 + 3t_b^2 + t_c^2) + 2e_m t_a^2 t_c + 4t_a^4 + 11t_a^2 t_b^2 + 3t_b^2 t_c^2},$$

$$m = 8, 9, 10, 11, 12;$$

$$Q_{y,2} = \frac{1}{12} \frac{\sqrt{t_c^2 + 4t_a^2} + t_c}{\sqrt{t_c^2 + 4t_a^2}};$$

$$Q_{y,3} = \frac{1}{8} \frac{\sqrt{t_c^2 + 4t_a^2} - t_c}{\sqrt{t_c^2 + 4t_a^2}};$$

$$Q_{y,5} = \frac{1}{12} \frac{\sqrt{t_c^2 + 4t_a^2} - t_c}{\sqrt{t_c^2 + 4t_a^2}};$$

$$Q_{y,6} = \frac{1}{8} \frac{\sqrt{t_c^2 + 4t_a^2} + t_c}{\sqrt{t_c^2 + 4t_a^2}};$$

$$Q_{z,2} = Q_{z,3} = Q_{z,5} = Q_{z,6} = 0;$$

$$Q_{z,m} = \frac{1}{4} \frac{e_m^2 - e_m t_c - 4t_a^2}{3e_m^2 - 2e_m t_c - 3t_b^2 - 4t_a^2}, \quad m = 1, 4, 7; \quad (5)$$

$$Q_{z,m} = \frac{3}{4}$$

$$\times \frac{e_m^4 - e_m^2(5t_a^2 + t_c^2) + e_m t_a^2 t_c + 4t_a^4}{5t_a^4 - 3t_a^2(5t_a^2 + t_a^2 + t_a^2) + 2t_a^2 + 4t_a^4 + 11t_a^2 t_a^2 + 3t_a^2 t_a^2};$$

$$5e_m^4 - 3e_m^2(5t_a^2 + 3t_b^2 + t_c^2) + 2e_mt_a^2t_c + 4t_a^4 + 11t_a^2t_b^2 + 3t_b^2t_c^2$$

 $m = 8, 9, 10, 11, 12;$
 $x \in G_1, y \in G_2, z \in G_3.$

Здесь x₁, x₂, x₃, x₄, x₅ являются корнями уравнения

$$x^{5} - (5t_{a}^{2} + 3t_{b}^{2} + t_{c}^{2})x^{3} + t_{a}^{2}t_{c}x^{2} + (11t_{a}^{2}t_{b}^{2} + 4t_{a}^{4} + 3t_{b}^{2}t_{c}^{2})x - 7t_{a}^{2}t_{b}^{2}t_{c} = 0.$$

Как известно, энергетический спектр квантовой системы определяется полюсами функции Грина [26]. Следовательно, энергетический спектр фуллерена С28 с группой симметрии T_d определяется величинами E_m, которые входят в функцию Грина (3). Энергетические состояния фуллерена С₂₈ с группой симметрии Т_d можно классифицировать в соответствии с неприводимыми представлениями группы T_d. Как известно, группа T_d имеет два одномерных неприводимых представления $a_1, a_2,$ одно двумерное неприводимое представление е и два трехмерных неприводимых представления t_1, t_2 [27]. Можно показать, что энергетическим состояниям фуллерена С₂₈, определяемым полюсами функции Грина (3), соответствуют следующие неприводимые представления группы T_d : $E_1 \rightarrow a_1, E_2 \rightarrow e, E_3 \rightarrow t_1, E_4 \rightarrow a_1,$ $E_5 \rightarrow e, E_6 \rightarrow t_1, E_7 \rightarrow a_1, E_8 \rightarrow t_2, E_9 \rightarrow t_2, E_{10} \rightarrow t_2,$ $E_{11} \rightarrow t_2, E_{12} \rightarrow t_2, E_{13} \rightarrow a_1, E_{14} \rightarrow e, E_{15} \rightarrow t_1, E_{16} \rightarrow a_1,$ $E_{17} \rightarrow e, E_{18} \rightarrow t_1, E_{19} \rightarrow a_1, E_{20} \rightarrow t_2, E_{21} \rightarrow t_2, E_{22} \rightarrow t_2,$ $E_{23} \rightarrow t_2, E_{24} \rightarrow t_2.$

Важной физической характеристикой энергетического спектра квантовой системы является степень вырождения его энергетических уровней. Для того чтобы найти

Таблица 1. Энергетический спектр фуллерена C_{28} с группой симметрии T_d : значения энергии уровней, кратность их вырождения и неприводимые представления группы T_d , к которым они относятся

N⁰	\bar{e}_j , eV	E_j , eV	g_j	$E(\Gamma_j)$	N⁰	\bar{e}_j , eV	E_j , eV	g_j	$E(\Gamma_j)$
1	-4.935	-9.928	1	$E_1(a_1)$	13	0.727	-4.266	1	$E_{13}(a_1)$
2	-4.563	-9.556	3	$E_{12}(t_2)$	14	1.099	-3.894	3	$E_{24}(t_2)$
3	-3.935	-8.928	2	$E_2(e)$	15	1.727	-3.266	2	$E_{14}(e)$
4	-3.888	-8.881	3	$E_{11}(t_2)$	16	1.774	-3.219	3	$E_{23}(t_2)$
5	-3.303	-8.296	3	$E_3(t_1)$	17	2.359	-2.634	3	$E_{15}(t_1)$
6	-3.095	-8.088	3	$E_{10}(t_2)$	18	2.567	-2.426	3	$E_{22}(t_2)$
7	-3.082	-8.075	1	$E_4(a_1)$	19	2.580	-2.413	1	$E_{16}(a_1)$
8	-2.359	-7.352	2	$E_5(e)$	20	3.303	-1.690	2	$E_{17}(e)$
9	-1.727	-6.720	3	$E_6(t_1)$	21	3.935	-1.058	3	$E_{18}(t_1)$
10	-1.477	-6.470	3	$E_8(t_2)$	22	4.185	-0.808	3	$E_{20}(t_2)$
11	-1.133	-6.126	3	$E_{9}(t_{2})$	23	4.529	-0.464	3	$E_{21}(t_2)$
12	-1.108	-6.101	1	$E_7(a_1)$	24	4.554	-0.439	1	$E_{19}(a_1)$

степень вырождения энергетических уровней фуллерена C₂₈, воспользуемся следующим соотношением [11,20]:

$$g_i = \sum_{j=1}^{N} \mathcal{Q}_{j,i},\tag{6}$$

где N — число узлов в наносистеме.

Подставив $Q_{j,i}$ (5) в формулу (6), получим для степеней вырождения энергетических уровней фуллерена C_{28} следующие значения:

$$g_{1} = g_{4} = g_{7} = g_{13} = g_{16} = g_{19} = 1,$$

$$g_{2} = g_{5} = g_{14} = g_{17} = 2,$$

$$g_{3} = g_{6} = g_{8} = g_{9} = g_{10} = g_{11} = g_{12} = g_{15} = g_{18}$$

$$= g_{20} = g_{21} = g_{22} = g_{23} = g_{24} = 3.$$
 (7)

Таким образом, соотношения (4) и (7) описывают энергетический спектр фуллерена C_{28} с группой симметрии T_d в модели Хаббарда в ПСФ.

Результаты данных вычислений приведены в табл. 1, а также на рис. 2, и из них следует, что энергетический спектр фуллерена C_{28} с группой симметрии T_d состоит из 24 энергетических состояний, из которых шесть энергетических состояний не вырождены, четыре энергетических состояния являются двукратно вырожденными, а 14 энергетических состояний являются трехкратно вырожденными. Отметим, что, как следует из соотношений (3) и (4), если интегралы переноса равны, $t_a = t_b = t_c$, то в этом случае $E_7 = E_9$ и $E_{19} = E_{21}$, т.е. в этом случае происходит случайное вырождение четырех энергетических состояний.

3. Обсуждение результатов

Исследования [7] показали, что расстояния между атомами углерода в фуллерене С₂₈ с группой симметрии *T_d*

Рис. 2. Энергетический спектр фуллерена C₂₈ с группой симметрии *T_d*.

имеют следующие значения:

$$x_a = 1.431 \text{ Å}, \quad x_b = 1.455 \text{ Å}, \quad x_c = 1.510 \text{ Å}.$$
 (8)

Для того чтобы найти численные значения для интегралов переноса, которые соответствуют фуллерену С₂₈, воспользуемся соотношением [13,14]

$$t_s = -8.17065 \exp(-1.69521x_s). \tag{9}$$

Подставляя (8) в соотношение (9), получим численные значения интегралов переноса для фуллерена C_{28} с группой симметрии T_d :

$$t_a = -0.72232 \,\text{eV}, \quad t_b = -0.69352 \,\text{eV},$$

 $t_c = -0.63178 \,\text{eV}.$ (10)

Для того чтобы получить энергетический спектр фуллерена C₂₈, воспользуемся формулой, которая следует из выражения для функции Грина (3):

$$E_k = \varepsilon + \frac{U}{2} + \bar{e}_k, \tag{11}$$

где \bar{e}_k — энергия k-го энергетического уровня относительно энергии $\varepsilon + U/2$:

$$\bar{e}_{k} = \begin{cases} e_{k} - \frac{U}{2}, & k = 1 \dots 12, \\ e_{k-12} + \frac{U}{2}, & k = 13 \dots 24. \end{cases}$$
(12)

Как следует из соотношений (11) и (12), для того чтобы построить энергетический спектр фуллерена C_{28} , необходимо определить еще численные значения параметров ε и U. В работе [11], исходя из экспериментально наблюдаемого оптического спектра поглощения фуллерена C_{60} и энергетического спектра этого фуллерена, полученного в рамках модели Хаббарда в ПСФ, было получено численное значение U = 5.662 eV. Отметим, что U = 5.662 eV согласуется с результатами работы [28], согласно которой значение эффективной энергии кулоновского взаимодействия двух π -электронов, находящихся на одном узле, составляет ~ 5 eV.

Для того чтобы найти численное значение параметра ε , поступим следующим образом. Как известно [29], энергия ионизации E_I , энергия сродства E_A , энергия верхней заполненной молекулярной орбитали E_{HOMO} и энергия нижней вакантной молекулярной орбитали E_{LUMO} молекулы связаны между собой следующим образом:

$$E_I = -E_{HOMO} + U_0,$$

$$E_A = -E_{LUMO} - U_0,$$
(13)

где U_0 — энергия кулоновского взаимодействия электрона с заряженными частицами, входящими в фуллерен, при его ионизации.

Подставляя (11) в (13) и решая полученную систему уравнений, получим

$$\varepsilon = -\frac{1}{2} \left(E_I + E_A + U + \bar{e}_{HOMO} + \bar{e}_{LUMO} \right), \qquad (14)$$

где \bar{e}_{HOMO} — энергия верхней заполненной молекулярной орбитали, а \bar{e}_{LUMO} — энергия нижней вакантной молекулярной орбитали относительно $\varepsilon + U/2$.

Как следует из соотношения (1), численное значение для энергии одноэлектронного атомного состояния ε не должно зависеть от типа фуллерена. Поэтому найдем численное значение параметра ε , используя данные для фуллерена C₆₀. Экспериментальные исследования фуллерена C₆₀, находящегося в газовой фазе, показали, что энергия ионизации и энергия сродства этой молекулы имеют значения $E_I = 7.61 \text{ eV}, E_A = 2.72 \text{ eV}$ [1]. В работе [11] было показано, что для фуллерена C₆₀

$$\bar{e}_{HOMO} = -\frac{U}{2} + \left(b\left(1 + \sqrt{5}\right) + 2b_1\right)/2,$$

$$\bar{e}_{LUMO} = -2b - b_1 + \frac{U}{2},$$
 (15)

где $b = 0.69 \,\mathrm{eV}, \, b_1 = 0.76 \,\mathrm{eV}.$

Подставив соответствующие численные значения в (15) и (14), мы получим

$$\varepsilon = -7.9 \,\mathrm{eV}.\tag{16}$$

Зная энергетический спектр системы, можно определить ее химический потенциал, который в модели Хаббарда в случае наполовину заполненной зоны проводимости определяется следующим образом [30]:

$$\mu = \varepsilon + \frac{U}{2}.$$
 (17)

Подставляя ε , U, а также численные значения интегралов переноса (10) в соотношения (4), (7), (11) и (12), получим численные значения величин \bar{e}_k , E_k для фуллерена C_{28} . Эти значения приведены в табл. 1.

Рассмотрим структуру энергетического спектра фуллерена C_{28} , который изображен на рис. 2. Как видно из соотношений (11) и рис. 2, энергетические состояния фуллерена C_{28} образуют две подзоны Хаббарда, каждая из которых содержит двенадцать энергетических состояний. Когда фуллерен C_{28} находится в основном состоянии, энергетические состояния, образующие нижнюю подзону Хаббарда и сосредоточенные вблизи энергии ε , заполнены, а энергетические состояния, образующие верхнюю подзону Хаббарда и сосредоточенные вблизи энергии энергии $\varepsilon + U$, не содержат электронов.

Рассмотрим теперь электронную структуру эндоэдрального фуллерена Zr@C₂₈. Проведенные в [7] исследования показали, что эндоэдральный фуллерен Zr@C₂₈, как и фуллерен C₂₈ обладает группой симметрии T_d , при этом расстояния между атомами углерода в этой молекуле имеют следующие значения:

$$x_a = 1.458 \text{ Å}, \quad x_b = 1.462 \text{ Å}, \quad x_c = 1.502 \text{ Å}.$$
 (18)

Подставляя (18) в соотношение (9), получим следующие численные значения интегралов переноса для эндоэдрального фуллерена Zr@C₂₈:

$$t_a = -0.69000 \,\text{eV}, \quad t_b = -0.68534 \,\text{eV},$$

 $t_c = -0.64041 \,\text{eV}.$ (19)

Подставляя ε , U, а также значения интегралов переноса (19) в соотношения (4), (7), (11) и (12), получим численные значения \bar{e}_k , E_k , для эндоэдрального фуллерена Zr@C₂₈. Эти значения приведены в табл. 2. Считается, что внедрение атома металла внутрь фуллерена не приводит к существенному изменению его энергетических уровней. В первом приближении можно считать, что влияние внедренного атома приводит лишь к добавлению лишних электронов в остов фуллерена [31]. При образовании эндоэдрального фуллерена Zr@C₂₈, четыре валентных электрона атома циркония переходят в оболочку фуллерена C₂₈. Эти электроны, как видно из рис. 3, займут уровни $E_{13}(a_1)$ и $E_{24}(t_2)$.

Важной физической характеристикой квантовой системы является ее спектр оптического поглощения.

Таблица 2. Энергетический спектр эндоэдрального фуллерена $Zr@C_{28}$ с группой симметрии T_d : значения энергии уровней, кратность их вырождения и неприводимые представления группы T_d , к которым они относятся

N⁰	\bar{e}_j , eV	E_j , eV	g j	$E(\Gamma_j)$	N⁰	\bar{e}_j , eV	E_j , eV	g_j	$E(\Gamma_j)$
1	-4.876	-9.869	1	$E_1(a_1)$	13	0.786	-4.207	1	$E_{13}(a_1)$
2	-4.516	-9.509	3	$E_{12}(t_2)$	14	1.146	-3.847	3	$E_{24}(t_2)$
3	-3.912	-8.905	2	$E_2(e)$	15	1.750	-3.243	2	$E_{14}(e)$
4	-3.846	-8.839	3	$E_{11}(t_2)$	16	1.816	-3.177	3	$E_{23}(t_2)$
5	-3.271	-8.264	3	$E_3(t_1)$	17	2.391	-2.602	3	$E_{15}(t_1)$
6	-3.100	-8.093	3	$E_{10}(t_2)$	18	2.562	-2.431	3	$E_{22}(t_2)$
7	-3.095	-8.088	1	$E_4(a_1)$	19	2.567	-2.426	1	$E_{16}(a_1)$
8	-2.391	-7.384	2	$E_5(e)$	20	3.271	-1.722	2	$E_{17}(e)$
9	-1.750	-6.743	3	$E_6(t_1)$	21	3.912	-1.081	3	$E_{18}(t_1)$
10	-1.504	-6.497	3	$E_8(t_2)$	22	4.158	-0.835	3	$E_{20}(t_2)$
11	-1.189	-6.182	3	$E_{9}(t_{2})$	23	4.472	-0.520	3	$E_{21}(t_2)$
12	-1.162	-6.155	1	$E_7(a_1)$	24	4.500	-0.493	1	$E_{19}(a_1)$

Используя полученные выше энергетические спектры молекул C_{28} и $Zr@C_{28}$, можно с помощью теории групп [32] найти переходы, которые обусловливают оптические спектры этих молекул. Можно показать, что в энергетическом спектре молекулы с группой симметрии T_d разрешены следующие переходы:

$$t_1 \leftrightarrow \{a_2, e, t_1, t_2\}, \quad t_2 \leftrightarrow \{a_1, e, t_1, t_2\}.$$
 (20)

Из функции Грина (3), соотношений (20) и табл. 3 и 4 следует, что у фуллерена С28 имеется 107 разрешенных переходов, а у молекулы Zr@C28 имеется 104 разрешенных перехода. Остальные переходы являются запрещенными. Из рис. 2 и 3 видно, что в результате внедрения атома циркония в фуллерен С28 четыре электрона, перешедших с атома циркония на фуллерен С₂₈, заполняют четыре нижних свободных энергетических состояния в верхней подзоне Хаббарда. Это приводит к тому, что семнадцать разрешенных переходов из нижней подзоны Хаббарда в верхнюю подзону Хаббарда, имеющихся в фуллерене С28, исчезают, при этом в эндоэдральном фуллерене Zr@C28 появляются четырнадцать новых разрешенных переходов в верхней подзоне Хаббарда, отсутствующих в фуллерене С₂₈. Таким образом, в формировании оптического спектра фуллерена С₂₈ участвуют разрешенные переходы из нижней подзоны Хаббарда в верхнюю подзону Хаббарда, а в формировании оптического спектра эндоэдрального фуллерена Zr@C28 участвуют, как разрешенные переходы из нижней подзоны Хаббарда в верхнюю подзону Хаббарда, так и разрешенные переходы в пределах верхней подзоны Хаббарда. Как видно из табл. 4, разрешенные переходы у эндоэдрального фуллерена Zr@C28 в пределах верхней подзоны Хаббарда формируют главным образом оптический спектр в инфракрасной и видимой областях спектра, а разрешенные переходы из нижней подзоны Хаббарда в верхнюю подзону Хаббарда, как и у

Рис. 3. Энергетический спектр эндофуллерена $Zr@C_{28}$ с группой симметрии T_d .

фуллерена C_{28} , формируют главным образом оптический спектр в ультрафиолетовой области спектра.

4. Заключение

Исследование фуллерена C_{28} и эндоэдрального фуллерена $Zr@C_{28}$ с группами симметрии T_d в рамках модели Хаббарда в приближении статических флуктуаций показало, что в обеих молекулах нижняя подзона Хаббарда полностью занята, в то время как верхняя подзона Хаббарда в фуллерене C_{28} свободна, в эндоэдральном фуллерене $Zr@C_{28}$ в верхней подзоне Хаббарда имеется четыре электрона. Кроме того, данные исследования показали, что в формировании оптических спектров поглощения молекул C_{28} и $Zr@C_{28}$ участвуют 107

N₂	Переход	ΔE , eV	N₂	Переход	ΔE , eV	N₂	Переход	ΔE , eV	N₂	Переход	ΔE , eV
1	$E_{13} - E_{9}$	1.860	28	$E_{24} - E_3$	4.403	55	$E_{18} - E_{6}$	5.662	82	$E_{22} - E_{12}$	7.130
2	$E_{13} - E_8$	2.204	29	$E_{17} - E_9$	4.436	56	$E_{20} - E_8$	5.662	83	$E_{16} - E_{12}$	7.142
3	$E_{24} - E_7$	2.207	30	$E_{13} - E_{11}$	4.615	57	$E_{21} - E_9$	5.662	84	$E_{17} - E_{11}$	7.191
4	$E_{24} - E_9$	2.232	31	$E_{15} - E_5$	4.717	58	$E_{16} - E_{10}$	5.674	85	$E_{18} - E_3$	7.239
5	$E_{24} - E_8$	2.577	32	$E_{17} - E_8$	4.781	59	$E_{19} - E_{9}$	5.687	86	$E_{20} - E_4$	7.267
6	$E_{24} - E_6$	2.826	33	$E_{14} - E_{10}$	4.822	60	$E_{23} - E_2$	5.709	87	$E_{20} - E_{10}$	7.280
7	$E_{14} - E_9$	2.860	34	$E_{23} - E_4$	4.857	61	$E_{22} - E_3$	5.871	88	$E_{20} - E_3$	7.488
8	$E_{23} - E_7$	2.882	35	$E_{23} - E_{10}$	4.869	62	$E_{20} - E_6$	5.912	89	$E_{22} - E_1$	7.502
9	$E_{23} - E_9$	2.907	36	$E_{22} - E_5$	4.926	63	$E_{21} - E_8$	6.006	90	$E_{21} - E_4$	7.612
10	$E_{14} - E_8$	3.204	37	$E_{24} - E_{11}$	4.987	64	$E_{19} - E_8$	6.031	91	$E_{21} - E_{10}$	7.624
11	$E_{23} - E_8$	3.251	38	$E_{17} - E_6$	5.030	65	$E_{24} - E_1$	6.034	92	$E_{19} - E_{10}$	7.649
12	$E_{14} - E_6$	3.453	39	$E_{14} - E_3$	5.030	66	$E_{15} - E_{11}$	6.246	93	$E_{18} - E_{11}$	7.823
13	$E_{24} - E_5$	3.458	40	$E_{24} - E_2$	5.035	67	$E_{21} - E_6$	6.256	94	$E_{21} - E_3$	7.833
14	$E_{15} - E_9$	3.491	41	$E_{18} - E_{9}$	5.065	68	$E_{14} - E_{12}$	6.289	95	$E_{17} - E_{12}$	7.866
15	$E_{23} - E_6$	3.501	42	$E_{23} - E_3$	5.078	69	$E_{18} - E_5$	6.294	96	$E_{18} - E_2$	7.871
16	$E_{22} - E_7$	3.675	43	$E_{13} - E_{12}$	5.290	70	$E_{15} - E_2$	6.294	97	$E_{20} - E_{11}$	8.073
17	$E_{22} - E_9$	3.700	44	$E_{20} - E_7$	5.293	71	$E_{23} - E_{12}$	6.337	98	$E_{20} - E_2$	8.120
18	$E_{16} - E_9$	3.712	45	$E_{20} - E_9$	5.318	72	$E_{17} - E_{10}$	6.398	99	$E_{21} - E_{11}$	8.417
19	$E_{13} - E_{10}$	3.822	46	$E_{18} - E_8$	5.412	73	$E_{22} - E_{11}$	6.455	100	$E_{19} - E_{11}$	8.442
20	$E_{15} - E_8$	3.836	47	$E_{15} - E_{10}$	5.453	74	$E_{16} - E_{11}$	6.467	101	$E_{21} - E_2$	8.464
21	$E_{22} - E_8$	4.044	48	$E_{14} - E_{11}$	5.615	75	$E_{22} - E_2$	6.502	102	$E_{18} - E_{22}$	8.498
22	$E_{16} - E_8$	4.057	49	$E_{21} - E_7$	5.637	76	$E_{20} - E_5$	6.543	103	$E_{20} - E_{12}$	8.747
23	$E_{15} - E_6$	4.085	50	$E_{22} - E_4$	5.650	77	$E_{17} - E_3$	6.607	104	$E_{21} - E_{12}$	9.092
24	$E_{23} - E_5$	4.133	51	$E_{22} - E_{10}$	5.662	78	$E_{23} - E_1$	6.709	105	$E_{19} - E_{12}$	9.117
25	$E_{24} - E_4$	4.182	52	$E_{24} - E_{12}$	5.662	79	$E_{21} - E_5$	6.888	106	$E_{20} - E_1$	9.120
26	$E_{24} - E_{10}$	4.194	53	$E_{23} - E_{11}$	5.662	80	$E_{15} - E_{12}$	6.921	107	$E_{21} - E_1$	9.464
27	$E_{22} - E_6$	4.294	54	$E_{15} - E_3$	5.662	81	$E_{18} - E_{10}$	7.030			

Таблица 3. Разрешенные переходы в энергетическом спектре фуллерена C_{28}

Таблица 4. Разрешенные переходы в энергетическом спектре эндоэдрального фуллерена Zr@C₂₈

N⁰	Переход	ΔE , eV	N₂	Переход	ΔE , eV	N₂	Переход	ΔE , eV	N⁰	Переход	ΔE , eV
1	$E_{14} - E_{24}$	0.604	27	$E_{22} - E_8$	4.066	53	$E_{18} - E_6$	5.662	79	$E_{22} - E_{12}$	7.080
2	$E_{23} - E_{24}$	0.670	28	$E_{16} - E_8$	4.070	54	$E_{20} - E_8$	5.662	80	$E_{16} - E_{12}$	7.082
3	$E_{23} - E_{13}$	1.030	29	$E_{15} - E_6$	4.141	55	$E_{21} - E_9$	5.662	81	$E_{17} - E_{11}$	7.118
4	$E_{15} - E_{24}$	1.244	30	$E_{23} - E_5$	4.206	56	$E_{16} - E_{10}$	5.667	82	$E_{18} - E_3$	7.183
5	$E_{22} - E_{24}$	1.416	31	$E_{22} - E_6$	4.312	57	$E_{19} - E_{9}$	5.689	83	$E_{20} - E_4$	7.254
6	$E_{16} - E_{24}$	1.420	32	$E_{17} - E_9$	4.461	58	$E_{23} - E_2$	5.728	84	$E_{20} - E_{10}$	7.258
7	$E_{22} - E_{13}$	1.776	33	$E_{17} - E_8$	4.775	59	$E_{22} - E_3$	5.834	85	$E_{20} - E_3$	7.430
8	$E_{17} - E_{24}$	2.125	34	$E_{15} - E_5$	4.781	60	$E_{20} - E_6$	5.908	86	$E_{22} - E_1$	7.438
9	$E_{18} - E_{24}$	2.766	35	$E_{14} - E_{10}$	4.850	61	$E_{21} - E_8$	5.977	87	$E_{21} - E_4$	7.568
10	$E_{14} - E_9$	2.939	36	$E_{23} - E_4$	4.911	62	$E_{19} - E_8$	6.004	88	$E_{21} - E_{10}$	7.573
11	$E_{23} - E_7$	2.978	37	$E_{23} - E_{10}$	4.916	63	$E_{21} - E_6$	6.223	89	$E_{19} - E_{10}$	7.600
12	$E_{23} - E_9$	3.005	38	$E_{22} - E_5$	4.953	64	$E_{15} - E_{11}$	6.237	90	$E_{21} - E_3$	7.744
13	$E_{20} - E_{24}$	3.012	39	$E_{17} - E_6$	5.022	65	$E_{14} - E_{12}$	6.266	91	$E_{18} - E_{11}$	7.758
14	$E_{14} - E_8$	3.254	40	$E_{14} - E_3$	5.022	66	$E_{18} - E_5$	6.302	92	$E_{17} - E_{12}$	7.787
15	$E_{23} - E_8$	3.319	41	$E_{23} - E_3$	5.087	67	$E_{15} - E_2$	6.302	93	$E_{18} - E_2$	7.824
16	$E_{21} - E_{24}$	3.327	42	$E_{18} - E_{9}$	5.101	68	$E_{23} - E_{12}$	6.332	94	$E_{20} - E_{11}$	8.005
17	$E_{19} - E_{24}$	3.354	43	$E_{20} - E_7$	5.320	69	$E_{17} - E_{10}$	6.371	95	$E_{20} - E_2$	8.070
18	$E_{20} - E_{13}$	3.372	44	$E_{20} - E_9$	5.347	70	$E_{22} - E_{11}$	6.408	96	$E_{21} - E_{11}$	8.319
19	$E_{14} - E_6$	3.500	45	$E_{18} - E_8$	5.416	71	$E_{16} - E_{11}$	6.413	97	$E_{19} - E_{11}$	8.346
20	$E_{23} - E_6$	3.566	46	$E_{15} - E_{10}$	5.490	72	$E_{22} - E_2$	6.474	98	$E_{21} - E_2$	8.385
21	$E_{15} - E_9$	3.580	47	$E_{14} - E_{11}$	5.596	73	$E_{20} - E_5$	6.549	99	$E_{18} - E_{12}$	8.428
22	$E_{21} - E_{13}$	3.687	48	$E_{21} - E_7$	5.635	74	$E_{17} - E_3$	6.543	100	$E_{20} - E_{12}$	8.674
23	$E_{22} - E_7$	3.724	49	$E_{22} - E_4$	5.657	75	$E_{23} - E_1$	6.692	101	$E_{21} - E_{12}$	8.989
24	$E_{22} - E_9$	3.751	50	$E_{22} - E_{10}$	5.662	76	$E_{21} - E_5$	6.863	102	$E_{19} - E_{12}$	9.016
25	$E_{16} - E_9$	3756	51	$E_{23} - E_{11}$	5.662	77	$E_{15} - E_{12}$	6.906	103	$E_{20} - E_1$	9.034
26	$E_{15} - E_8$	3.894	52	$E_{15} - E_3$	5.662	78	$E_{18} - E_{10}$	7.012	104	$E_{21} - E_1$	9.349

и 104 разрешенных перехода соответственно. Данные исследования также показали, что оптический спектр поглощения фуллерена C_{28} находится в видимой и ультрафиолетовой областях, а у эндоэдрального фуллерена $Zr@C_{28}$ оптический спектр поглощения находится в инфракрасной, видимой и ультрафиолетовой областях.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund. Science of fullerenes and carbon nanotubes. Academic Press, San Diego (1996).
- [2] A. Hirsch, M. Brettreich. Fullerenes: Chemistry and Reactions. Wiley-VCH Verlag GmbH & Co.GaA, Weinheim (2005).
- [3] T. Guo, M.D. Diener, Y. Chai, M.J. Alford, R.E. Haufler, S.M. McClure, T. Ohno, J.H. Weaver, G.E. Scuseria, R.E. Smalley. Science 257, 1661 (1993).
- [4] А.Н. Еняшин, В.В. Ивановская, Ю.Н. Макурин, А.Л. Ивановский. ФТТ 48, 1522 (2004).
- [5] А.Н. Еняшин, А.Л. Ивановский. Письма в ЖЭТФ 86, 609 (2007).
- [6] P.W. Dunk, N.K. Kaiser, M. Mulet-Gas, A. Rodríguez-Fortea, J.M. Poblet, H. Shinohara, C.L. Hendrickson, A.G. Marshall, H.W. Kroto. J. Am. Chem. Soc. 134, 9380 (2012).
- [7] A. Miralrio, L.E. Sansores. J. Comput. Theor. Chem. 1083, 53 (2016).
- [8] A. Gomez-Torres, R. Esper, P.W. Dunk, R. Molares-Martínez, A. Rodríguez-Fortea, L. Echegoyen, J.M. Poblet. Helv. Chim. Acta. 46, 1 (2019).
- [9] P.W. Fowler, D.E. Manolopoulous. An atlas of fullerenes. Clarendon, Oxford (1995).
- [10] R.K. Mishra, Y.-T. Lin, S.-L. Lee. Chem. Phys. Lett. 313, 437 (1999).
- [11] А.В. Силантьев. ЖЭТФ 148, 749 (2015).
- [12] Г.С. Иванченко, Н.Г. Лебедев. ФТТ 49, 183 (2007).
- [13] А.В. Силантьев. Изв. вузов. Физика. 60, 6, 50 (2017).
- [14] А.В. Силантьев. ФТТ 61, 2, 395 (2019).
- [15] А.В. Силантьев. ФТТ 62, 3, 473 (2020).
- [16] А.В. Силантьев. Изв. вузов. Физика. 62, 6, 3 (2019).
- [17] А.В. Силантьев. Изв. вузов. Поволжский регион. Физ.-мат. науки. 2, 164 (2015).
- [18] А.В. Силантьев. Изв. вузов. Физика. 57, 11, 37 (2014).
- [19] А.В. Силантьев. Изв. вузов. Поволжский регион. Физ.-мат. науки. 1, 168 (2015).
- [20] А.В. Силантьев. Изв. вузов. Физика. 56, 2, 70 (2013).
- [21] Г.И. Миронов, А.И. Мурзашев. ФТТ 53, 2273 (2011).
- [22] Б.В. Лобанов, А.И. Мурзашев. ФТТ 59, 2, 411 (2017).
- [23] J. Hubbard. Proc. Roy. Soc. London A 276, 238 (1963).
- [24] E. Menendez-Proupin, A. Delgado, A.L. Montero-Alejo, J.M. Garcia de la Vega. Chem. Phys. Lett. 593, 72 (2014).
- [25] J.P. Hare, H.W. Kroto, R. Taylor. Chem. Phys. Lett. 177, 394 (1991).
- [26] С.В. Тябликов. Методы квантовой теории магнетизма. Наука, М. (1975).
- [27] И.Г. Каплан. Симметрия многоэлектронных систем. Наука, М. (1969).

- [28] R.A. Harris, L.M. Falicov. J. Chem. Phys. 51, 5034 (1969).
- [29] I.F. Torrente, K.J. Franke, J.I. Pascual. J. Phys.: Condens. Matter 20, 184001 (2008).
- [30] S.G. Ovchinnikov, V.V. Val'kov. Hubbard Operators in the Theory of Strongly Correlated Electrons. Imperial College Press, San Diego (2004).
- [31] А.В. Елецкий. УФН 170, 2, 113 (2000).
- [32] М. Хамермеш. Теория групп и ее применение к физическим проблемам. Мир, М. (1966).

Редактор Е.Ю. Флегонтова