02

Спектры комбинационного рассеяния света глицина и их моделирование в дискретно-континуальной модели сольватной оболочки воды

© И.В. Крауклис^{1,¶}, А.В. Тулуб¹, А.В. Головин¹, В.П. Челибанов²

 ¹ Физический факультет, Санкт-Петербургский государственный университет, 198504 Санкт-Петербург, Россия
 ² Университет ИТМО, 197101 Санкт-Петербург, Россия
 [¶] e-mail: Kraukle@yandex.ru

Поступила в редакцию 29.05.2020 г. В окончательной редакции 29.05.2020 г.

Принята к публикации 16.06.2020 г.

Получены спектры комбинационного рассеяния света глицина в кристаллическом виде и в водном растворе. Квантово-химические расчеты на уровне B3LYP/6-311++G(3df,2p) показали, что адекватное описание рамановских спектров глицина достигается с помощью дискретно-континуальной модели сольватной оболочки воды. Предложена модель стабилизации цвиттер-ионного состояния глицина с участием одной молекулы воды, связанной водородными связями с группами $-COO^-$ и $-NH_3^+$. Расчет рамановских спектров комплексов глицина Gly + $n \cdot H_2O$ (где n = 1-3), а также димера глицина дает хорошее согласие с экспериментом.

Ключевые слова: аминокислоты, глицин, комбинационное рассеяние света, теория функционала плотности, сольватные оболочки.

DOI: 10.21883/OS.2020.10.50019.161-20

Введение

Молекулы аминокислот и пептидов в растворе и в кристаллическом состоянии имеют цвиттер-ионную структуру (NH_3^+ - $CHR-COO^-$), которая возникает в результате переноса протона от карбоксильной группы -COOH на аминогруппу - NH_2 , где R — радикал, в случае глицина (Gly) R = H. Первые сведения о цвиттерионной структуре белков были получены в результате анализа рентгеновских спектров порошкообразных соединений [1], адсорбированных на поверхности кремния. В дальнейшем структура аминокислот изучалась различными экспериментальными [2] и расчетными методами [3].

Спектры комбинационного рассеяния света аминокислот стали предметом детального исследования относительно недавно. В частности, в работе [4] был подробно исследован этот спектр на примере молекулы глицина в цвиттер-ионном состоянии при включении достаточно большого числа молекул воды $n \cdot H_2O$ (n = 1-5) в состав дискретной сольватной оболочки. Выбор для исследований глицина не случаен, поскольку он является простейшим из аминокислот и тщательно изучен экспериментально как в газовой фазе, так и в растворе [5–7]. Авторы ставили своей задачей достигнуть максимальной точности в воспроизведении спектра комбинационного рассеяния при возможно меньших числах n. Однако при таком подходе местоположение молекул воды определяется неоднозначно.

Ниже предполагается, что стабилизация цвиттерионного конформера глицина происходит с участием одной молекулы воды, которая связана двумя водородными связями с группами –СОО[–] и –NH₃⁺. Последовательное добавление молекул воды к этой модели приводит к еще большей стабилизации цвиттер-ионного состояния благодаря образованию дополнительных водородных связей. Такая дискретно-континуальная модель сольватной оболочки воды использовалась нами для проверки согласованности экспериментальных и расчетных спектров комбинационного рассеяния света.

Методы исследований

Для спектральных исследований были использован глицин от PanReac AppliChem для анализов, ACS. Спектры комбинационного рассеяния света кристаллического глицина и глицина с водой (в пропорции 1:1 по объёму) были получены на рамановском спектрометре OPTEC-785HL (в диапазоне частот от 400 до 3300 cm⁻¹) со спектральным разрешением 8 cm⁻¹. Измерения были повторены с включением терагерцовой области спектра на рамановском конфокальном микроспектрометре OPTEC-785TRS-2700 с разрешением 3.5 cm⁻¹.

Квантово-химические расчеты конформеров глицина проводились гибридным методом теории функционала плотности B3LYP с базисным набором 6-311++G(3df,2p) в свободном состоянии и с учетом влияния водной среды в рамках модели поляризуемого континуума (PCM=IEFPCM). Условием достижения локального минимума на поверхности потенциальной энергии (ППЭ) служило отсутствие мнимых частот нормальных колебаний. Расчеты колебательных и рамановских спектров изучаемых молекулярных структур производились тем же методом. Для расчетов использовался пакет программ GAUSSIAN 16 [8], установленный на кластере Huawei Вычислительного центра СПбГУ [9].

Результаты исследований и обсуждение

Спектры комбинационного рассеяния света глицина

Положение и форма рамановских линий на спектрах глицина, полученных на спектрометрах OPTEC-785HL и OPTEC-785TRS-2700, хорошо совпадают с учетом разного разрешения приборов. Для спектров, снятых на спектрометре OPTEC-785HL, наблюдается относительно большой (до 10% от интенсивности основных пиков) фон флюоресценции, который резко уменьшается при добавлении воды. На рис. 1 представлены спектры глицина и глицина с водой (OPTEC-785TRS) в диапазоне 4-1700 ст⁻¹. Добавление воды к глицину приводит к относительному уменьшению рамановских линий, особенно в областях 20-220 и 1000-1700 ст⁻¹. Положение линий в основном сохраняется, хотя для некоторых полос, например в областях 75-90 и 165-180 cm⁻¹, резко изменяются относительные интенсивности линий. По-видимому, это связано с тем, что молекулы воды при взаимодействии с внешними атомами глицина приводят к разному изменению силовых постоянных для разных колебаний. На всех спектрах не наблюдаются линии при 1770 cm⁻¹ (валентные колебания C=O в -СООНгруппе).

В областях 2100 и 2600 сm⁻¹ в спектрах порошка глицина наблюдаются очень слабые и широкие пики, которые уменьшаются при добавлении воды. Возможно, что эти пики связаны с образованием димеров, и добавление воды приводит к уменьшению их доли. В области выше 2900 сm⁻¹ наблюдаются интенсивная острая линия 2974 сm⁻¹ и существенно менее интенсивная линия 3009 сm⁻¹, соответствующие валентным колебаниям C–H, и слабая широкая полоса в области 3100–3200 сm⁻¹. Последнюю полосу следует отнести к валентным колебаниям N–H и O–H. Сравнительный анализ спектров позволяет сделать вывод о взаимодействии активных групп –СООН и –NH₂ с соседними молекулами глицина и с молекулами воды.

Расчеты структурных конформеров глицина

При моделировании структурных конформеров глицина мы опирались на данные работы [10], в которой методами MP2, MP4, CCSD и CCSD(T) были детально

Рис. 1. Спектры комбинационного рассеяния света порошка глицина (непрерывная линия) и глицина с водой (пунктир), полученные на спектрометре OPTEC-785TRS-2700.

изучены все возможные планарные (p) и непланарные (n) конформеры глицина в газовой фазе. Согласно нашим расчетам, самыми энергетически стабильными конформерами глицина в газовой фазе являются конформеры Gly(Ip) и Gly(Ip), энергетическая разность между которыми составляет всего 2.077 kJ/mol в пользу Gly(Ip). В скобках указаны обозначения этих конформеров в статье [10]. Интересно отметить, что минимальный дипольный момент $\mu = 1.16$ D наблюдается у Gly(Ip), а максимальный $\mu = 5.57$ D — у Gly(Ip).

Расчеты с учетом влияния водного растворителя в рамках континуальной модели РСМ показали стабилизацию полной энергии всех конформеров глицина в пределах 25–40 kJ/mol, причем энергия стабилизации тем больше, чем больше величина дипольного момента. Благодаря этому энергетически более выгодным на 10.407 kJ/mol становится конформер Gly(IIp) по сравнению с конформером Gly(Ip). Также наблюдается увеличение дипольного момента у всех структур в среднем в 1.36 раза по сравнению с газовой фазой.

Рассчитанные рамановские спектры основных конформеров глицина имеют интенсивный пик в области $1770 \, \mathrm{cm}^{-1}$ (валентные колебания группы C=O), который не наблюдается в эксперименте.

Моделирование цвиттер-ионного состояния глицина

Поскольку в реальных условиях (в водном растворе и в кристаллическом виде) аминокислоты представлены как системы с разделёнными зарядами (NH₃⁺-CH₂-COO⁻), то были проведены расчеты возможных цвиттер-ионных конформеров глицина в рамках континуальной модели. Оказалось, что оптимиза-

Экспериментально	наблюдаемые	рамановские	полосы	(cm^{-1})	глицина	в	воде	(1:1),	рассчита	инные	методом
B3LYP/6-311++G(30	lf,2p) рамановск	ие частоты (с	m ⁻¹) и	активности	(в скобка	х) д	цля раз	личных	моделей	цвитте	р-ионного
состояния глицина											

Эксперимент	$\operatorname{Gly}(\operatorname{ZW})$	$Gly(ZW) + H_2O \\$	$Gly(ZW) + 2H_2O \\$	$Gly(ZW) + 3H_2O \\$	Gly(ZW)+Gly(ZW)
492	501 (6.4)	492 (5.9)	509 (5.8)	509 (6.4)	495 (11.1)
603	576 (1.4)	591 (2.5)	595 (2.4)	594 (2.8)	602 (3.4)
698	679 (2.5)	660 (2.7)	659 (2.9)	675 (2.5)	649 (3.2)
893	864 (15.7)	869 (20.2)	877 (21.6)	888 (21.3)	874 (35.8)
1036	980 (11.7)	998 (7.4)	1006 (6.8)	1021 (6.1)	1001 (14.2)
1109	1103 (6.9)	1112 (2.9)	1121 (3.0)	1131 (0.9)	1119 (12.6)
1326	1361 (18.9)	1359 (22.8)	1365 (20.3)	1365 (22.6)	1331 (39.3)
1410	1430 (14.8)	1402 (22.1)	1417 (23.8)	1418 (25.2)	1388 (27.3)
1670	1672 (17.3)	1668 (4.5)	1668 (4.6)	1683 (2.5)	1699 (8.5)

Gly(ZW) + Gly(ZW)

Рис. 2. Оптимизированная геометрия цвиттер-ионного конформера глицина с одной (*a*) и тремя (*b*) молекулами воды, а также димера цвиттер-ионного конформера глицина (*c*). Расстояния на рисунках указаны в ангстремах.

1491

ция геометрии цвиттер-конформеров глицина приводит к одинаковой структуре Gly(ZW) за счет поворота группы – NH₃. Дипольный момент Gly(ZW) увеличивается до значения $\mu = 13.07$ D по сравнению с дипольным моментом $\mu = 7.20$ D самого стабильного конформера Gly(IIp), т.е. в 1.8 раза. Однако полная энергия цвиттер-ионного конформера Gly(ZW), полученная в рамках континуальной модели РМС, оказалась выше на 7.908 kJ/mol, чем у структурного конформера Gly(IIp).

Для дальнейшего моделирования цвиттер-ионного состояния была использована дискретно-континуальная модель водного растворителя, в которой молекулы воды непосредственно учитываются в первой координационной сфере молекулы глицина. Мы предположили, что стабилизация цвиттер-ионного конформера глицина происходит с участием одной молекулы воды, связанной двумя водородными связями с группами – COO[–] и –NH₃⁺ (рис. 2, *a*). Все остальные возможные позиции для молекулы воды оказались энергетически менее выгодными. При таком подходе полная энергия цвиттер-ионного состояния Gly(ZW) + H₂O становится на 15.081 кДж/моль ниже, чем у наиболее стабильного конформера Gly(IIp) + H₂O, а дипольный момент незначительно увеличивается до значения $\mu = 13.47$ D.

Кроме того, в рамках дискретно-континуальной модели водной оболочки были проведены расчеты цвиттерионного конформера глицина с двумя и тремя молекулами воды (рис. 2, *b*), а также димера цвиттер-ионного конформера глицина (рис. 2, *c*). Анализ геометрии этих структур показал, что водородные связи молекулы воды с группами $-\text{COO}^-$ и $-\text{NH}_3^+$ незначитеьно ослабевают при последовательном добавлении двух других молекул воды, при этом происходит стабилизация полной энергии всей молекулярной системы за счет дополнительных водородных связей. Дипольные моменты достигают значений $\mu = 15.42 \text{ D}$ и $\mu = 18.06 \text{ D}$ для системы с двумя и тремя молекулами воды соответственно.

Расчет рамановских спектров

Детальное сравнение рассчитанных рамановских спектров всех молекулярных систем, моделирующих цвиттер-ионное состояние глицина, с экспериментальными спектрами позволило выявить наиболее адекватные модели (таблица).

Для цвиттер-ионного конформера Gly(ZW) выявлен интенсивный пик в области 1670 сm⁻¹, который соответствует совместному колебанию групп – COO⁻ и – NH₃⁺. Однако в эксперименте в этой области (1570–1670 сm⁻¹) наблюдается несколько пиков низкой интенсивности. Это свидетельствует о возможной связи групп – COO⁻ и – NH₃⁺ с соседними молекулами воды или образовании димеров.

Добавление к цвиттер-ионному конформеру молекулы H₂O, связанной с группами –СОО⁻ и –NH₃⁺,

94* Оптика и спектроскопия, 2020, том 128, вып. 10

приводит к существенному улучшению воспроизводимости экспериментального рамановского спектра. При последовательном добавлении еще двух молекул воды полосы рассчитанного рамановского спектра еще более сближаются с экспериментальными пиками. Хорошее согласие с экспериментальным спектром комбинационного рассеяния света также обеспечивает рассчитанный рамановский спектр димера цвиттер-ионного конформера глицина.

Выводы

Сравнение экспериментальных и расчетных рамановских спектров глицина свидетельствует о наличии существенного взаимодействия наиболее активных групп $-COO^-$ и $-NH_3^+$ как внутри молекулы, так и с окружающими молекулами. Обнаружено, что дискретноконтинуальная модель цвиттер-иона глицина с включением одной молекулы воды между группами $-COO^-$ и $-NH_3^+$ является наиболее энергетически выгодной и позволяет достаточно хорошо описать экспериментальный спектр комбинационного рассеяния света. Добавление ещё двух молекул воды в состав комплекса Gly $+ n \cdot H_2O$, а также расчет димера глицина улучшает согласие с экспериментом.

Список литературы

- Chatterjee A., Zhao L., Zhang L., Pradhan D., Zhou X., Leung K.T. // J. Chem. Phys. 2008. V. 129. P. 105104. doi 10.1063/1.2976151
- [2] Serdyuck I.N., Zaccai N.R., Zaccai J. Methods in Molecular Biophysics. Cambridge University Press, 2007. 1120 p. doi 10.1017/CBO9780511811166
- [3] Quantum Biochemistry. / Ed. by *Matta C.F.* Wiley Online Library, 2010. doi 10.1002/9783527629213
- [4] Vyas V, Ojha A.K., Materny A. // Vib. Spec. 2011. V. 55.
 P. 69–76. doi 10.1016/j.vibspec.2010.08.007
- [5] Ke H.-W., Rao L., Xu X., Yan Y.-J. // J. Theor. Comput. Chem. 2008. V. 7. P. 889. doi 10.1142/S0219633608004192
- [6] Gil A., Bertran J., Sodupe M. // J. Chem. Phys. 2006. V. 124. P. 154306.
- [7] Kryachko E.S., Nguyen M.T., Zeegers-Huyskens T. // J. Phys. Chem. A. 2001. V. 105. P. 1288; ibid. 2001. V. 105. P. 1934.
- [8] Gaussian 16, Revision A.03, *M.J. Frisch, G.W. Trucks, H.B. Schlegel* et. al. Gaussian, Inc., Wallingford CT, 2016.
- [9] Вычислительный центр СПбГУ: http://www.cc.spbu.ru/
- [10] Csaszar A.G. // J. Am. Chem. Soc. 1992. V. 114. P. 9568.