01

Расчёт сверхтонкой магнитной аномалии в многоэлектронных атомах

© Е.А. Коновалова¹, Ю.А. Демидов^{1,2}, М.Г. Козлов^{1,2}

¹ Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра "Курчатовский институт",

188300 Гатчина, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ",

197376 Санкт-Петербург, Россия

e-mail: lenaakonovalova@gmail.com

Поступила в редакцию 06.02.2020 г. В окончательной редакции 30.03.2020 г. Принята к публикации 04.05.2020 г.

Прецизионные измерения отношения констант сверхтонкой структуры для состояний $s_{1/2}$ и $p_{1/2}$ позволяют оценить разность сверхтонких магнитных аномалий для этих уровней. Настоящая работа посвящена восстановлению абсолютных величин сверхтонких магнитных аномалий из их разности. Учет поправки на сверхтонкую магнитную аномалию к *g*-фактору позволяет более чем на порядок увеличить точность определения *g*-факторов короткоживущих изотопов.

Ключевые слова: сверхтонкая магнитная аномалия, эффект Бора-Вайскопфа, эффект Брейта-Розенталь.

DOI: 10.21883/OS.2020.10.50009.36-20

1. Введение

В последние годы точность, достигаемая в экспериментах по лазерной спектроскопии, в совокупности с развитием атомной теории позволила перейти к проверке различных ядерных моделей [1,2]. Магнитные дипольные константы сверхтонкой структуры (СТС) А зависят от распределения заряда и намагниченности внутри атомного ядра. В приближении точечного ядра отношение постоянных СТС для двух изотопов равно отношению их g-факторов $g_I = \frac{\mu}{\mu_N I}$, где μ и I — магнитный момент и спин ядра; μ_N — ядерный магнетон. Рассматривая ядра конечных размеров, необходимо учитывать распределение намагниченности по ядру и зависимость электронной волновой функции от радиуса ядра. Первая поправка называется магнитной (Бора-Вайскопфа [3]), вторая — зарядовой (Брейта-Розенталь [4,5]). Эти поправки нарушают пропорциональность между константами СТС и ядерными д-факторами, что получило название сверхтонкой магнитной аномалии (СМА):

$${}^{1}\Delta^{2} \equiv \frac{A^{(1)}g_{I}^{(2)}}{A^{(2)}g_{I}^{(1)}} - 1, \qquad (1)$$

где $A^{(1)}$, $A^{(2)}$ — константы СТС двух изотопов, $g_I^{(1)}$ и $g_I^{(2)}$ — соответствующие *g*-факторы.

При извлечении ядерных *g*-факторов из экспериментальных данных поправкой на СМА часто пренебрегают из-за отсутствия теоретических оценок на её величину. С другой стороны, поправка на СМА обычно мала (менее 1%) [6], и только недавно измерения для короткоживущих ядер достигли такого уровня точности. Также исследования констант СТС могут послужить полезным инструментом для понимания явления сосуществования форм в атомных ядрах [7]. Таким образом, разработка новых методов атомных вычислений констант СТС, учитывающих СМА, становится актуальной и своевременной.

2. Поправки на конечный размер ядра

Наблюдаемые константы сверхтонкой структуры *А* могут быть записаны в следующей форме [8]:

$$A = g_I \mathcal{A}_0 (1 - \delta) (1 - \epsilon). \tag{2}$$

Здесь g_1 — ядерный *g*-фактор, $g_1 \mathcal{A}_0$ — константа сверхтонкой структуры в случае точечного ядра, δ и ϵ – безразмерные поправки на распределение заряда (BR) и намагниченности (BW) в ядре. Константа \mathcal{A}_0 не зависит от ядерного *g*-фактора.

В случае водородоподобных ионов выражение для \mathcal{A}_0 известно в аналитической форме [9,10]:

$$\mathcal{A}_0 = \frac{\alpha(\alpha Z)^3}{j(j+1)} \frac{m}{m_p} \frac{\varkappa(2\varkappa(n_r+\gamma)-N)}{N^4\gamma(4\gamma^2-1)} mc^2.$$
(3)

Здесь α — постоянная тонкой структуры, Z — заряд ядра, m и m_p — массы электрона и протона, j – полный момент электрона, $\varkappa = (l - j)(2j + 1)$ — релятивистское квантовое число, $N = \sqrt{(n_r + \gamma)^2 + (\alpha Z)^2}$ эффективное главное квантовое число, $n_r = n - |\varkappa|$ радиальное квантовое число, n — нерелятивистское главное квантовое число, $\gamma = \sqrt{\varkappa^2 - (\alpha Z)^2}$. Заметим, что \mathcal{A}_0 для состояний с $j = \frac{1}{2}$ обращается в бесконечность при $\gamma = \frac{1}{2}$ или $Z \approx 118$.

При одинаковых *n* отношения $\mathcal{A}_{0, s_{1/2}}/\mathcal{A}_{0, p_{1/2}}$ и $\mathcal{A}_{0, p_{1/2}}/\mathcal{A}_{0, p_{3/2}}$ равны:

$$\frac{\mathcal{A}_{0, s_{1/2}}}{\mathcal{A}_{0, p_{1/2}}} = 3 + 2\left(\frac{\alpha Z}{n - 1 + \gamma_{1/2}}\right)^2;$$

$$\frac{\mathcal{A}_{0, p_{1/2}}}{\mathcal{A}_{0, p_{3/2}}} = \frac{\gamma_{3/2}(4\gamma_{3/2}^2 - 1)}{2\gamma_{1/2}(4\gamma_{1/2}^2 - 1)}\left(1 + 3(\alpha Z)^2\frac{5n - 4}{20n^2}\right).$$
 (4)

Здесь учтено, что γ для состояний $s_{1/2}$ и $p_{1/2}$ совпадают, а для состояний $p_{1/2}$ и $p_{3/2}$ отличаются друг от друга. Уравнение (4) согласуется с результатами, полученными для многоэлектронных систем в квазиклассическом приближении [11].

Будем рассматривать ядро как равномерно заряженный и намагниченный шар радиуса $R = \left(\frac{5}{3}\langle r^2 \rangle\right)^{1/2}$, где $r_{\rm rms} = \langle r^2 \rangle^{1/2}$ — среднеквадратичный радиус ядра. Распределение намагниченности по ядру обусловлено спиновой поляризацией нуклонов и орбитальным движением протонов.

Плотность заряда внутри ядра относительно стабильна для различных изотопов [12], тогда как распределение намагниченности сильно зависит от спина ядра и нуклонной конфигурации каждого изотопа. Для параметризации этих эффектов согласно работам [13,14] использовался ядерный множитель d_{пис}. Тогда поправки δ и ϵ для выбранного Z и электронного состояния могут быть записаны как [15]

$$\delta(R) = b_N (R/\lambda_C)^{2\gamma - 1},$$

$$\epsilon(R, d_{\text{nuc}}) = b_M d_{\text{nuc}} (R/\lambda_C)^{2\gamma - 1}.$$
(5)

Здесь b_N и b_M — безразмерные параметры, не зависящие от радиуса и структуры ядра, которые могут быть найдены численно; λ_C — комптоновская длина волны электрона ($\hbar_C = \frac{\hbar}{m_e c}$). Ядерный множитель определен так, чтобы $d_{
m nuc} = 0$ соответствовал точечному магнитному диполю в центре ядра, $d_{\rm nuc} = 1$ — равномерно намагниченному шару радиуса R.

Параметризация констант СТС уравнениями (2), (5) включает три ядерные (g_I, d_{nuc}, R) и три атомные $(\mathcal{A}_0,$ *b_N*, *b_M*) характеристики. Атомные параметры одинаковы для различных изотопов. Информацию о ядре можно извлечь из экспериментально измеренных констант СТС, если рассчитаны атомные параметры. В изотопическом ряду радиус ядра R обычно плавно меняется и лишь на несколько процентов, таким образом поправка δ практически одинакова для всех изотопов выбранного атома.

Для расчета констант СТС необходимо задать ядерные параметры:

$$A(g_I, d_{\text{nuc}}, R) = g_I \mathscr{A}_0 \left(1 - b_N (R/\lambda_C)^{2\gamma - 1} \right)$$
$$\times \left(1 - d_{\text{nuc}} b_M (R/\lambda_C)^{2\gamma - 1} \right). \tag{6}$$

Для того, чтобы найти атомные параметры \mathcal{A}_0, b_N и b_M из (2), (5), достаточно варьировать значения $d_{\rm nuc}$ и R, приняв $g_I = 1$. Изменяя только ядерный множитель, можно найти параметр *b_M*. Для этого необходимо выполнить расчет констант СТС в рамках двух моделей ядра: точечного магнитного диполя $(d_{nuc} = 0)$ и равномерно намагниченного шара (d_{nuc} = 1) при фиксированном радиусе ядра, тогда

$$b_M = (R/\lambda_C)^{1-2\gamma} \left(1 - \frac{A(g_I, 1, R)}{A(g_I, 0, R)} \right) .$$
(7)

Для того, чтобы найти параметр b_N , нужно выполнить вычисления для различных радиусов ядра *R*:

$$b_N = \frac{(A(g_I, 0, R_2) - A(g_I, 0, R_1))\lambda_C^{2\gamma - 1}}{A(g_I, 0, R_2)R_1^{2\gamma - 1} - A(g_I, 0, R_1)R_2^{2\gamma - 1}}.$$
 (8)

После этого может быть найден третий параметр:

$$\mathcal{A}_{0} = \frac{A(g_{I}, 0, R)}{g_{I} \left(1 - b_{N} (R/\lambda_{C})^{2\gamma - 1}\right)} \,. \tag{9}$$

3. Сверхтонкая магнитная аномалия

Сравнивая константы сверхтонкой структуры для двух изотопов с ядерными g-факторами $g_I^{(1)}$ и $g_I^{(2)}$ и близкими ядерными радиусами $R^{(1,2)} = R \pm \mathfrak{r}$, можно вычислить значение СМА $^{1}\Delta^{2}$ согласно (1). В СМА $^{1}\Delta^{2}$ могут быть выделены вклады, связанные с изменением распределения заряда ${}^{1}\Delta_{BR}^{2}$ и намагниченности ${}^{1}\Delta_{BW}^{2}$ по ядру: $^{1}\Delta^{2} = ^{1}\Delta^{2}_{BR} + ^{1}\Delta^{2}_{BW}.$ Полагая ядерные

факторы обоих изотопов $d_{
m nuc}^{(1)} = d_{
m nuc}^{(2)} = 0$, получим

$$\frac{A(g_I^{(1)}, 0, R + \mathfrak{r})}{A(g_I^{(2)}, 0, R - \mathfrak{r})} \approx \frac{g_I^{(1)}}{g_I^{(2)}} + 2\mathfrak{r} \frac{\partial A(g_I^{(1)}, 0, R)/\partial R}{A(g_I^{(2)}, 0, R)}.$$
 (10)

Тогда часть СМА, связанная с изменением распределения заряда по ядру ${}^{1}\Delta_{\text{BR}}^{2}(R)$, равна

$${}^{1}\Delta_{\rm BR}^{2}(R,\mathfrak{r}) \equiv \frac{g_{I}^{(2)}A(g_{I}^{(1)},0,R+\mathfrak{r})}{g_{I}^{(1)}A(g_{I}^{(2)},0,R-\mathfrak{r})} - 1 \approx$$
$$\approx -2(2\gamma - 1)b_{N}\frac{R^{2\gamma-2}\mathfrak{r}}{\lambda_{C}^{2\gamma-1}}.$$
(11)

Если ядерные факторы двух изотопов равны $d_{
m nuc}^{(1)} = d_{
m nuc}^{(2)} = d_{
m nuc}$ (изотопы с одинаковыми спинами и похожими ядерными конфигурациями), то и для СМА $^{1}\Delta^{2}$ может быть получено аналогичное выражение:

$${}^{1}\Delta^{2} \equiv \frac{A(1, d_{\text{nuc}}, R + \mathfrak{r})}{A(1, d_{\text{nuc}}, R - \mathfrak{r})} - 1 \approx$$
$$\approx -2(2\gamma - 1)(b_{N} + d_{\text{nuc}}b_{M})\frac{R^{2\gamma - 2}\mathfrak{r}}{\lambda_{C}^{2\gamma - 1}}.$$
 (12)

Однако ядерные факторы изотопов могут достаточно сильно отличаться друг от друга $d_{\text{nuc}}^{(1)} \neq d_{\text{nuc}}^{(2)}$, тогда различием между радиусами изотопов можно пренебречь и величина СМА определяется формулой

$${}^{1}\Delta^{2} \approx (d_{\rm nuc}^{(2)} - d_{\rm nuc}^{(1)}) b_{M} \left(\frac{R}{\lambda_{C}}\right)^{2\gamma - 1} = \epsilon_{2} - \epsilon_{1}.$$
 (13)

3.1. Ядерный множитель

В этом разделе обсуждаются свойства ядерного множителя d_{nuc} в рамках одночастичной модели ядра. В работах [3,16] было показано, что поправка Бора– Вайскопфа может быть записана в виде:

$$\epsilon = b_M (R/\lambda_C)^{2\gamma - 1} \left(\left(1 + \frac{2}{5}\xi \right) \alpha_S + \frac{3}{5}\alpha_L \right) \frac{R_M^2}{R^2}, \quad (14)$$

где *ξ* – параметр спиновой асимметрии:

$$\xi = \begin{cases} \frac{2l-1}{4(l+1)}, & \text{если } I = l + \frac{1}{2} \\ \frac{2l+3}{4l}, & \text{если } I = l - \frac{1}{2}. \end{cases}$$
(15)

Коэффициенты α_S и α_L параметризуют спиновый и орбитальный вклады в ядерный *g*-фактор $g_I = \alpha_S g_S + \alpha_I g_I$, тогда

$$S_I = a_{SSS} + a_{LSL}$$
, forda

$$\alpha_S = \frac{g_S}{g_I} \frac{g_I - g_L}{g_S - g_L}, \qquad \qquad \alpha_L = 1 - \alpha_S. \tag{16}$$

R_M — радиус распределения плотности ядерной намагниченности.

Таким образом, для ядерного множителя d_{nuc} получено следующее выражение:

$$d_{\rm nuc} = \left(\left(1 + \frac{2}{5}\xi \right) \alpha_S + \frac{3}{5}\alpha_L \right) \frac{R_M^2}{R^2}.$$
 (17)

Ядерный фактор зависит от конфигурации нуклонов и может значительно изменяться при переходе от одного изотопа к другому. В то же время d_{nuc} слабо зависит от заряда ядра Z.

Простейший случай $d_{\rm nuc} \approx 1$ реализуется, когда ядерная конфигурация представлена одним валентным протоном в состоянии $s_{1/2}$, тогда I = 1/2, $\xi = 0$, $\alpha_s = 1$ и $R_M \approx R$.

Для атомов щелочных металлов вклады электронных корреляций в константы СТС могут быть учтены с высокой точностью [17–20], тогда неопределенность значения ядерного множителя становится основной причиной погрешности при расчете констант СТС. Теперь приведем несколько оценок ядерного множителя для изотопа франция ²¹¹Fr, ядерная конфигурация которого представлена одним валентным протоном в состоянии $h_{9/2}$ [1,2].

1. Используя (15)–(17), определим $\xi = \frac{2}{3}$, $\alpha_S = -0.152$, $\alpha_L = 1.152$, тогда ядерный множитель $d_{\text{nuc}} = 0.50$, полагая $R_M \approx R$, $g_L = 1$ и $g_S = g_{\text{free}} = 5.586$.

Для изотопа ²⁰⁹Ві с такой же ядерной конфигурацией ядерный множитель равен 0.47 [10].

2. В работе [21], следуя предположению Grossman et al. [2], использовались $g_L = 1.16$ и $g_S = 0.85g_{\text{free}}$, тогда $d_{\text{nuc}} = 0.33$.

3. Ядерный множитель может быть найден из отношения поправок Бора–Вайскопфа, полученных как в рамках одночастичной модели ядра, так и модели равномерно намагниченного шара. В последней модели ядерный множитель равен 1.0. Ядерный множитель, полученный таким способом, равен 0.54(21) [20].

4. Ядерный множитель $d_{\text{nuc}} = 0.85$ может быть получен из отношения радиуса распределения ядерной намагниченности к радиусу ядра ($R_M = 6.71$ fm [17] и R = 7.281(65) fm [22]), как $d_{\text{nuc}} = (R_M/R)^2$.

Представленные примеры демонстрируют, что значения ядерного множителя и поправки Бора-Вайскопфа сильно зависят от используемой ядерной модели [23,24].

3.2. Дифференциальная сверхтонкая магнитная аномалия

В некоторых изотопических рядах отношения констант СТС для низколежащих атомных состояний $\rho = A(s_{1/2})/A(p_{1/2})$ измерены с точностью, достаточной чтобы надежно извлечь дифференциальную СМА:

$${}^{1}_{s_{1/2}}\Delta^{2}_{p_{1/2}} = \frac{\rho^{(1)}}{\rho^{(2)}} - 1 \approx {}^{1}\Delta^{2}(s_{1/2}) - {}^{1}\Delta^{2}(p_{1/2}).$$
(18)

Дифференциальные СМА между изотопами с одинаковыми ядерными спинами очень малы ($\sim 10^{-4}$ для нейтрального атома Fr [6]). Пренебрегая этими небольшими изменениями, будем следить за перераспределением ядерной намагниченности (изменениями ядерных факторов) в случае изотопов с различными ядерными спинами. Тогда СМА описывается уравнением (13), и отношение сверхтонких магнитных аномалий

$$\frac{{}^{1}\Delta^{2}(s_{1/2})}{{}^{1}\Delta^{2}(p_{1/2})} \approx \frac{b_{M}(s_{1/2})}{b_{M}(p_{1/2})} \equiv \eta$$
(19)

определяется только атомными параметрами — атомный множитель [25,26].

Используя вычисленное значение η и считая известным ядерный *g*-фактор $g_I^{(1)}$, можно восстановить СМА для состояния $s_{1/2}$ и вычислить поправку на СМА к *g*-фактору второго изотопа:

$${}^{1}\Delta^{2}(s_{1/2}) \approx \frac{{}^{1}_{s_{1/2}}\Delta^{2}_{p_{1/2}}}{1 - 1/\eta}, \quad g_{I}^{(2)} = g_{I}^{(1)}\frac{A^{(2)}}{A^{(1)}}(1 - {}^{1}\Delta^{2}(s_{1/2})).$$
 (20)

Также может быть найден ядерный множитель $d_{nuc}^{(2)}$, если известен $d_{nuc}^{(1)}$ и измерена дифференциальная СМА:

$$d_{\rm nuc}^{(2)} \approx d_{\rm nuc}^{(1)} + \frac{\frac{s_{1/2}}{s_{1/2}} \Delta_{p_{1/2}}^2}{(1 - 1/\eta) b_M(s_{1/2}) (R/\lambda_C)^{2\gamma - 1}}.$$
 (21)

Таблица 1. Зависимость поправок Бора–Вайскопфа $\epsilon(d_{\text{nuc}}, R)$ (5), (7) для состояний $2s_{1/2}$ и $2p_{1/2}$ водородоподобных ионов и их отношения $\eta = \frac{\epsilon(s_{1/2})}{\epsilon(p_{1/2})}$ от заряда ядра Z, полагая $d_{\text{nuc}} = 1$. Радиусы ядер R взяты из [29]

	$\epsilon(1,R)(2s_{1/2}),\%$			$\epsilon(1,R)(2p_{1/2}),\%$			η	
Ζ	настоя-	[10]	[3]	настоя-	[10]	[3]	настоя-	[10]
	щая			щая			щая	
	работа			работа			работа	
10	0.042	0.043	0.05	-	0.0002	-	-	277.3
20	0.106	0.106	0.12	-	0.0015	-	-	73.9
30	0.203	0.205	0.23	0.006	0.006	0.01	33.1	33.2
40	0.341	0.344	0.41	0.019	0.019	0.03	18.4	18.5
50	0.553	0.561	0.67	0.048	0.048	0.08	11.5	11.6
60	0.856	0.873	1.03	0.111	0.112	0.17	7.74	7.79
70	1.335	1.353	1.51	0.245	0.245	0.36	5.45	5.52
80	1.976	2.048	2.15	0.495	0.505	0.70	3.99	4.05
90	2.969	3.077	2.88	0.987	1.004	1.27	3.01	3.07

4. Результаты и обсуждение

Этот раздел посвящен изучению общих свойств СМА. Зависимость поправки Бора-Вайскопфа от радиуса распределения ядерной намагниченности R_M и зависимость отношения поправок Бора-Вайскопфа для состояний $s_{1/2}$ и $p_{1/2}$ от заряда ядра были изучены на примере водородоподобных ионов.

Константы СТС для водородоподобных ионов получены как аналитически, так и численно, для чего применялся пакет программ [27], который использует в качестве начального приближения программу HFD [28]. В рамках одноэлектронного приближения было получено аналитическое выражение для атомного множителя η для нейтральных атомов. Известные в литературе результаты корреляционных расчётов атомного множителя для одновалентных атомов согласуются со значениями, полученными аналитически.

4.1. Водородоподобные ионы

Рисунок иллюстрирует зависимость константы СТС A/g_1 для основного состояния Fr^{86+} от ядерного радиуса R и радиуса распределения плотности ядерной намагниченности R_M . Параметры $b_N(1s_{1/2}) = 1.241(20)$ и $b_M(1s_{1/2}) = 0.208(3)$ найдены из (8) и (7). Параметр $\mathcal{A}_0(1s_{1/2})$, полученный по (9), находится в согласии с аналитическим значением [10]: 398.4(6) и 397.7 THz соответственно. Представленные на рисунке аппроксимации результатов расчетов констант СТС при различных радиусах ядра для d_{nuc} , равного 0 или 1, выполнены по (6) с использованием найденных выше параметров. Если зафиксировать $R = R_0$ и изменять R_M от R_0 до 0, то согласно (17) ядерный множитель $d_{\mathrm{nuc}}(R_M)$ и поправка Бора–Вайскопфа будут изменяться от их максимальных значений до 0 пропорционально R_M^2 .

Зависимость константы СТС $A(g_I, d_{nuc}(R_M), R)$ для основного состояния водородоподобного иона Fr от радиуса ядра R и радиуса распределения плотности ядерной намагниченности R_M для $g_I = 1$. Сплошная и штриховая линии описываются уравнением (6), когда $d_{nuc} = 0$ и 1 соответственно. Штрих-пунктирная линия сответствует случаю, когда радиус ядра $R = R_0$ зафиксирован, а $R_M \in [0, R_0]$ ($d_{nuc} \in [0, 1]$). Как следует из (17), этот график — парабола с вершиной в точке $R_M = 0$.

Таблица 2. Зависимость поправок Брейта–Розенталь $\delta(R)$ (5), (8) для состояний $2s_{1/2}$ и $2p_{1/2}$ водородоподобных ионов, их отношения $\eta_{BR} = \frac{\delta(s_{1/2})}{\delta(p_{1/2})}$ и коэффициента $k = 1 - \delta(R)(2s_{1/2}) + \delta(R)(2p_{1/2})$ от заряда ядра *Z*. Радиусы ядер *R* взяты из [29]

Ζ	$\delta(R)(2s_{1/2}),\%$		$\delta(R)(2p_{1/2})$	²), %	η_{BR}	k	
	настоящая	[10]	настоящая	[10]	настоящая	[10]	
	работа		работа		работа		
10	0.115	0.115	-	0.0003	-	383.3	1.00
20	0.299	0.295	0.0036	0.0036	82.6	81.9	1.00
30	0.601	0.593	0.0167	0.0165	36.0	35.9	0.99
40	1.08	1.06	0.0545	0.0539	19.8	19.7	0.99
50	1.90	1.86	0.156	0.154	12.2	12.1	0.98
60	3.28	3.20	0.406	0.400	8.1	8.0	0.97
70	5.83	5.60	1.05	1.01	5.6	5.5	0.95
80	10.1	9.87	2.56	2.52	3.9	3.9	0.92
90	18.3	17.7	6.50	6.30	2.8	2.8	0.87

В табл. 1 и 2 приведены результаты расчетов поправок Бора-Вайскопфа (считая $d_{\rm nuc} = 1$) и Брейта-Розенталь состояний $2s_{1/2}$ и $2p_{1/2}$ водородоподобных ионов для Z от 10 до 90. Вычисленные значения поправок ϵ и δ и их отношения $\eta = \frac{\epsilon(s_{1/2})}{\epsilon(p_{1/2})}$ и $\eta_{\rm BR} = \frac{\delta(s_{1/2})}{\delta(p_{1/2})}$ находятся в согласии с результатами, полученными аналитически в

Таблица 3. Зависимость параметров \mathcal{A}_0 (9) для состояний $2s_{1/2}$, $2p_{1/2}$ $2p_{3/2}$ водородоподобных ионов в сравнении с аналитическими значениями, полученными по (3) [10]. В последних столбцах приведены численные значения отношения $\frac{\mathcal{A}_{0, s_{1/2}}}{\mathcal{A}_{0, p_{1/2}}}$ и $\frac{\mathcal{A}_{0, p_{1/2}}}{\mathcal{A}_{0, p_{2/2}}}$ в сравнении с аналитическими результатами, полученными по (4)

Ζ	$\mathcal{A}_{0, s_{1/2}}, \mathrm{THz}$		$\mathcal{A}_{0, p_{1/2}}, \mathrm{THz}$		$\mathcal{A}_{0, p_{3/2}}, \mathrm{THz}$		$\frac{\mathcal{A}_{0, s_{1/2}}}{\mathcal{A}_{0, p_{1/2}}}$		$\frac{\mathcal{A}_{0, p_{1/2}}}{\mathcal{A}_{0, p_{3/2}}}$	
	(9)	(3)	(9)	(3)	(9)	(3)	численный расчет	(4)	численный расчет	(4)
10	0.032	0.032	0.0107	0.0107	0.002	0.002	3.00	3.00	5.04	5.04
20	0.266	0.266	0.088	0.088	0.017	0.017	3.01	3.01	5.18	5.18
30	0.954	0.954	0.315	0.315	0.058	0.058	3.02	3.02	5.43	5.43
40	2.464	2.463	0.809	0.809	0.139	0.139	3.05	3.04	5.81	5.81
50	5.409	5.408	1.761	1.760	0.275	0.276	3.07	3.07	6.39	6.38
60	10.909	10.905	3.509	3.509	0.484	0.485	3.11	3.11	7.23	7.22
70	21.200	21.185	6.718	6.717	0.785	0.787	3.16	3.15	8.54	8.49
80	41.313	41.261	12.844	12.841	1.202	1.205	3.22	3.21	10.66	10.57
90	84.547	84.369	25.660	25.637	1.761	1.767	3.29	3.28	14.51	14.31

работе [10]. Параметры η и $\eta_{\rm BR}$ быстро уменьшаются с ростом Z.

Зависимость параметров \mathcal{A}_0 для состояний $2s_{1/2}$, $2p_{1/2}$ и $2p_{3/2}$ водородоподобных ионов от заряда ядра представлена в табл. 3. Волновые функции состояний $p_{3/2}$ обращаются в 0 при r = 0, таким образом поправки Бора–Вайскопфа и Брейта–Розенталь для этих состояний равны 0. В этом случае полученные из расчетов константы СТС для $g_I = 1$ непосредственно равны \mathcal{A}_0 . Для состояний $2s_{1/2}$ и $2p_{1/2}$ параметры \mathcal{A}_0 получены из (9). При этом параметры \mathcal{A}_0 даже в случае больших Z отличаются от значений, полученных аналитически по (3), не более чем на 0.2%. Отношения $\frac{\mathcal{A}_{0,s_{1/2}}}{\mathcal{A}_{0,p_{1/2}}}$ и $\frac{\mathcal{A}_{0,p_{1/2}}}{\mathcal{A}_{0,p_{3/2}}}$ с высокой точностью описываются уравнением (4).

4.2. Тяжелые нейтральные атомы

Для расчета констант СТС необходимо знать волновую функцию внешнего электрона на малых расстояниях, поскольку электрон-нуклонное взаимодействие быстро убывает с увеличением расстояния между электроном и ядром [30,31]. Кулоновское поле ядра на таких расстояниях можно считать неэкранированным, а радиальные волновые функции состояний $s_{1/2}$ и $p_{1/2}$ пропорциональными друг другу с коэффициентом $\frac{Z\alpha}{2}(1 + \frac{Z^2\alpha^2}{4})$ [32]. Используя пропорциональность радиальных волновых функций и оценку для $\frac{\mathcal{A}_{0,s}}{\mathcal{A}_{0,p_{1/2}}} = 3$ [11], получим выражения для η и η_{BR} .

Согласно (6) параметр η может быть найден как

$$\frac{1}{\eta} = \frac{A_{s_{1/2}}(1,0,R)}{A_{p_{1/2}}(1,0,R)} \frac{A_{p_{1/2}}(1,0,R) - A_{p_{1/2}}(1,1,R)}{A_{s_{1/2}}(1,0,R) - A_{s_{1/2}}(1,1,R)}.$$
 (22)

Пренебрегая малыми поправками Брейта–Розенталь, первая дробь в выражении (22) может быть заменена на $\frac{\mathcal{A}_{0,s_{1/2}}}{\mathcal{A}_{0,p_{1/2}}}$, вторая дробь зависит от радиальных интегралов

внутри ядра, где радиальные волновые функции состояний $s_{1/2}$ и $p_{1/2}$ пропорциональны друг другу, коэффициент пропорциональности для радиальных интегралов равен $\frac{\alpha^2 Z^2}{4} \left(1 + \frac{\alpha^2 Z^2}{4}\right)^2$. Тогда выражение для η имеет вид

$$\frac{1}{\eta} = \frac{3}{4}\alpha^2 Z^2. \tag{23}$$

Принимая во внимание вклад поправок Брейта– Розенталь $k = 1 - \delta(s_{1/2}) + \delta(p_{1/2})$ и следующие слагаемые по αZ в выражении $\frac{\mathcal{A}_{0, s_{1/2}}}{\mathcal{A}_{0, p_{1/2}}}$ (4), получим

$$\frac{1}{\eta} = \frac{\alpha^2 Z^2}{4} 3k \left(1 + \frac{\alpha^2 Z^2}{4}\right)^2.$$
 (24)

Зависимсть параметра k от Z для водородоподобных ионов представлена в табл. 2. Зависимостью атомного множителя η от главного квантового числа n можно пренебречь.

Аналогичное выражение может быть получено для отношения поправок Брейта–Розенталь:

$$\frac{1}{\eta_{\rm BR}} = \frac{\mathscr{A}_{0, s_{1/2}}}{\mathscr{A}_{0, p_{1/2}}} \frac{\mathscr{A}_{0, p_{1/2}} - A_{p_{1/2}}(1, 0, R)}{\mathscr{A}_{0, s_{1/2}} - A_{s_{1/2}}(1, 0, R)}.$$
 (25)

В силу пропорциональности волновых функций для состояний $s_{1/2}$ и $p_{1/2}$ внутри ядра вторые дроби в (22) и (25) равны, тогда $\frac{\eta_{\text{BR}}}{\eta} = k$.

Атомные множители η , полученные для нейтральных атомов Au, Tl и Fr аналитически по (23), (24) и из корреляционных расчётов, находятся в согласии друг с другом (табл. 4).

Заключение

На примере водородоподобных ионов исследованы поправки к константам сверхтонкой структуры на конечный размер ядра – зарядовая (Брейта–Розенталь) и **Таблица 4.** Атомные множители η для атомов Au,Tl, Fr, полученные из уравнений (23) и (24) в сравнении с результатами расчетов водородоподобных ионов и нейтральных атомов. В случае водородоподобных ионов $\eta = \frac{\epsilon(2s_{1/2})}{\epsilon(2p_{1/2})}$, для нейтральных атомов зависимостью η от главного квантового числа можно пренебречь

η	Au	Tl	Fr
(23) (24) Водородоподобный ион Нейтральный атом	$4.01 3.69 4.10 3.3a 4.0(3)^{b}$	3.82 3.51 3.86 3.4(2)c 3.1d 2.6e	$3.313.073.263.1(1)^g3.36(5)^h$
Эксперимент	-	$2.84(78)^{f}$	_

Примечание. ^а [33]; ^b [34]; ^c [35]; ^d [14]; ^e [15]; ^f [36]; ^g [37]; ^h [38].

магнитная (Бора–Вайскопфа). Эти поправки нарушают пропорциональность между константами сверхтонкой структуры и ядерными *g*-факторами, что получило название сверхтонкой магнитной аномалии. Распределение намагниченности по ядру может сильно меняться при переходе от одного изотопа к другому. Таким образом, главный вклад в СМА вносят магнитные поправки.

Из измеренных значений дифференциальных СМА можно восстановить их абсолютные значения, если выполнить расчёт атомного множителя η – отношения поправок Бора–Вайскопфа для состояний $s_{1/2}$ и $p_{1/2}$. В работе зависимость атомного множителя от заряда ядра исследована в случае водородоподобных ионов и обобщена на случай нейтральных атомов.

Если выполнен расчёт атомного множителя η и дифференциальная аномалия измерена с достаточной точностью, то точность определения *g*-факторов короткоживущих изотопов может быть увеличена более чем на порядок. Ядерный множитель $d_{\rm nuc}$ характеризует валентную конфигурацию нуклонов. Его значение может быть получено из анализа экспериментальных данных для сложных конфигураций нуклонов, выходящих за рамки одночастичной модели ядра, и использовано для проверки различных ядерных моделей.

Финансирование работы

Работа поддержана грантом Фонда развития теоретической физики "БАЗИС" № 17-11-136-1.

Благодарности

Авторы благодарят А.Е. Барзаха и В.М. Шабаева за полезные обсуждения.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Zhang J., Tandecki M., Collister R. et al. // Phys. Rev. Lett. 2015. V. 115. N 4. P. 042501.
- [2] Grossman J.S., Orozco L.A., Pearson M.R. et al. // Phys. Rev. Lett. 1999. V. 83. N 5. P. 935.
- [3] Bohr A., Weisskopf V. F. // Phys. Rev. 1950. V. 77. P. 94-98.
- [4] Rosenthal J. E., Breit G. // Phys. Rev. 1932. V. 41. P. 459-470.
- [5] Crawford M.F., Schawlow A.L. // Phys. Rev. 1949. V. 76. N 9.
 P. 1310.
- [6] Persson J. R. // At. Data Nucl. Data Tables. 2013. V. 99. N 1.
 P. 62–68.
- [7] Andreyev A.N., Huyse M., Van Duppen P. et al. // Nature. 2000. V. 405. N 6785. P. 430–433.
- [8] Stroke H.H., Blin-Stoyle R. J., Jaccarino V. // Phys. Rev. 1961.
 V. 123. N 4. P. 1326.
- [9] Pyykkö P, Pajanne E., Inokuti M. // Int. J. Quantum Chem.
 1973. V. 7. N 4. P. 785–806.
- [10] Shabaev V. M. // J. Phys. B. 1994. V. 27. P. 5825-5832.
- [11] Сушков О.П., Фламбаум В.В., Хриплович И.Б. // Опт. и спектр. 1978. Т. 44. С. 3–11.
- [12] Andrae D. // Phys. Rep. 2000. V. 336. N 6. P. 413-525.
- [13] Büttgenbach S. // Hyperfine Interact. 1984. V. 20. N 1. P. 1–64.
- [14] Mårtesson-Pendrill A.-M. // Phys. Rev. Lett. 1995. V. 74. P. 2184.
- [15] Konovalova E.A., Kozlov M.G., Demidov Yu.A., Barzakh A.E. // Rad. Applic. 2017. V. 2. N 3. P. 181–185.
- [16] Bohr A. // Phys. Rev. 1951. V. 81. N 3. P. 331.
- [17] Safronova M.S., Johnson W.R., Derevianko A. // Phys. Rev. A. 1999. V. 60. N 6. P. 4476.
- [18] Gomez E., Aubin S., Orozco L. A. et al. // Phys. Rev. Lett. 2008. V. 100. P. 172502.
- [19] Sahoo B.K., Nandy D.K., Das B.P., Sakemi Y. // Phys. Rev. A. 2015. V. 91. N 4. P. 042507.
- [20] Ginges J.S.M., Volotka A.V., Fritzsche S. // Phys. Rev. A. 2017.
 V. 96. N 6. P. 062502.
- [21] Mårtensson-Pendrill A.-M. // Hyperfine Interact. 2000.
 V. 127. N 1–4. P. 41–48.
- [22] Johnson W.R., Soff G. // Atomic Data and Nuclear Data Tables. 1985. V. 33. N 3. P. 405–446.
- [23] Shabaev V.M., Artemyev A.N., Yerokhin V.A. et al. // Phys. Rev. Lett. 2001. V. 86. N 18. P. 3959.
- [24] Karpeshin F.F., Trzhaskovskaya M.B. // Nucl. Phys. A. 2015. V. 941. P. 66–77.
- [25] Shabaev V.M., Glazov D.A., Oreshkina N.S. et al. // Phys. Rev. Lett. 2006. V. 96. N 25. P. 253002.
- [26] Schmidt S., Billowes J., Bissell M.L. et al. // Phys. Lett. B. 2018. V. 779. P. 324–330.
- [27] Kozlov M.G., Porsev S.G., Safronova M.S., Tupitsyn I.I. // Comput. Phys. Commun. 2015. V. 195. P. 199–213.
- [28] Братцев В. Ф., Дайнека Г. Б., Тупицын И. И. // Изв. Акад. Наук СССР, сер. физ. 1977. Т. 41. С. 2655.
- [29] Angeli I., Marinova K.P. // At. Data Nucl. Data Tables. 2013.
 V. 99. N 1. P. 69–95.
- [30] Fermi E., Segrè E. // Zeitschrift für Physik. 1933. V. 82. N 11–12. P. 729–749.
- [31] Собельман И.И. Введение в теорию атомных спектров. М.: Наука, 1977. 319 с.
- [32] Хриплович И.Б. Несохранение четности в атомных явлениях. М.: Наука, 1988. 287 с.

- [33] Song S., Wang G., Ye A., Jiang G. // J. Phys. B. 2007. V. 40. N 3. P. 475.
- [34] Barzakh A. E., Andreyev A. N., Monthery M. Al. et al. // Phys. Rev. C. 2020. V. 101. P. 034308.
- [35] Prosnyak S.D., Maison D.E., Skripnikov L.V. // J. Chem. Phys. 2020. V. 152. N 4. P. 044301.
- [36] Chen T.-L., Fan I., Chen H.-C. et al. // Phys. Rev. A. 2012. V. 86. N 5. P. 052524.
- [37] Konovalova E.A., Demidov Yu.A., Kozlov M.G., Barzakh A.E. // Atoms. 2018. V. 6. N 3. P. 39.
- [38] *Roberts B.M., Ginges J.S.M.* Nuclear magnetic moments of francium 207-213 from precision hyperfine comparisons // arXiv:2001.01907. 2020.