05.3 Фазовый переход сегнетоэлектрика нитрата калия в нанопористой матрице

© Ю.Ф. Марков¹, В.М. Егоров¹, Е.М. Рогинский¹, Е.В. Стукова²

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Амурский государственный университет, Благовещенск, Россия E-mail: yu.markov@mail.ioffe.ru

Поступило в Редакцию 28 апреля 2020 г. В окончательной редакции 28 мая 2020 г. Принято к публикации 10 июня 2020 г.

> Методом дифференциальной сканирующей калориметрии выполнено прецизионное исследование KNO₃, введенного в силикатную нанопористую матрицу. Обнаружены и исследованы пики теплоемкости, связанные с сегнетоэлектрическими фазовыми переходами. В рамках теории размытых фазовых переходов изучены характеристики этих переходов. Высказано предположение, что существует минимальный размер пор в нанокомпозите, при котором KNO₃ при комнатной температуре будет находиться полностью в сегнетоэлектрическом состоянии.

Ключевые слова: фазовые переходы, сегнетоэлектрик, нитрат калия, теплоемкость.

DOI: 10.21883/PJTF.2020.18.49996.18361

Исследованию сегнетоэлектрических свойств как объемного KNO3, так и мелкодисперсных порошков KNO_3 с размером частиц $\sim 40-200\,\mu m$ посвящено большое число работ [1,2], однако изучение сегнетоэлектрических композитных материалов на основе нитрата калия находится на начальном этапе. Особое место среди таких композитов занимают композиты на основе наноразмерных матриц с введенными в поры сегнетоэлектрическими частицами размером несколько нанометров, поскольку на физические свойства таких структур оказывают влияние главным образом эффекты, связанные с размерами, геометрией и упорядочением пор [3]. Такие гетероструктуры на основе упорядоченных наноразмерных матриц, заполненных сегнетоэлектриком, могут использоваться при изготовлении элементов памяти долговременных носителей информации, для микроскопических источников питания, пироприемников, высокоемкостных конденсаторов и датчиков для определения влажности [4-6].

В настоящей работе приводятся результаты исследования методом дифференциальной сканирующей калориметрии (ДСК) нанокомпозитов на основе KNO₃, внедренного в матрицы MCM-41 (MCM — mobil composition of matter), в сравнении с объемным нитратом калия. Целью работы является получение калориметрических данных о поведении соответствующих максимумов теплоемкости, изменении области существования сегнетофазы в нанокомпозиционных материалах и изменении условий ее возникновения.

Тепловые свойства образцов исследовались на калориметре DSC-2 "Perkin-Elmer" в атмосфере азота при нагревании и охлаждении. Температурная шкала калибровалась по точкам плавления льда (273.1 K) и индия (429.7 K), а шкала теплового потока — по теплоемкости лейкосапфира. Измерения проводились в области температур 300-450 К.

Как известно, в кристаллах KNO₃ существуют три полиморфные фазы [7,8], взаимные переходы между которыми сопровождаются эндотермическими и экзотермическими эффектами при нагревании и охлаждении соответственно. Все эти фазовые переходы прослеживаются для исследуемых нами образцов KNO₃ на кривых ДСК в виде пиков теплоемкости, полученных при нагревании и охлаждении (рис. 1).

Так, α-фаза (обычно обозначаемая как фаза II), имеющая при комнатной температуре и атмосферном давлении ромбическую структуру, при нагревании переходит в β -фазу, обычно обозначаемую как фаза I. Этот переход проявляется на кривой ДСК в виде пика с температурой максимума $T_{\text{max}} = 406.3 \text{ K}$ (рис. 1, кривая *1*); β -фаза имеет тригональную кальцитоподобную структуру. При охлаждении наблюдаются следующие фазовые переходы. Сначала β-фаза переходит в сегнетоэлектрическую ү-фазу (фаза III). Этому переходу на кривой ДСК соответствует экзотермический пик с $T_{\min 2} \approx 395 \,\mathrm{K}$ (рис. 1, кривая 2). При дальнейшем охлаждении у-фаза превращается в исходную (перед нагреванием) а-фазу (экзотермический пик с $T_{\min 1} \approx 382 \, \text{K}$). Полученные данные находятся в хорошем согласии с данными, приведенными в литературе для объемного KNO₃ [1].

Известно, что температурный диапазон существования сегнетоэлектричества в KNO₃ зависит от тепловой предыстории и скорости охлаждения [9] и может охватывать температурный интервал ~ 20 К. В нашем случае при скорости охлаждения v = 5 К/min этот температурный интервал $(T_{\min 2} - T_{\min 1})$ составляет ~ 13 К. Однако если использовать меньшую скорость охлаждения (v = 1 К/min), то температурный диапазон существо-

370 380 390 400 410 *T*, К **Рис. 1.** Кривые ДСК, полученные при нагревании (*I*) и охлаждении (*2*, *3*) образца КNO₃. Скорость нагревания 1 К/min (кривая *I*), скорость охлаждения 5 и 1 К/min (кривые *2* и *3* соответственно).

вания сегнетоэлектрической фазы заметно сократится (кривая 3). Из кривой 3 (рис. 1) видно, что экзотермический пик с температурой $T_{\min 1}$ сместился к пику с $T_{\min 2}$ и оба пика частично накладываются друг на друга. Использование более низких скоростей охлаждения, т.е. в случае более равновесных условий, возможно, приведет к слиянию указанных пиков. Следствием этого может быть вывод, что сегнетоэлектрическая фаза в объемном нитрате калия может существовать только в неравновесном состоянии кристалла.

На рис. 2 изображены зависимости энтальпии (ΔH) фазовых переходов от температуры при нагревании и охлаждении. Из рисунка видно, что, во-первых, существует температурный интервал или температурный гистерезис (ΔT) между кривой нагревания и кривыми охлаждения для пиков с температурами $T_{\rm max}$ и $T_{\rm min\,2}$, а во-вторых, этот гистерезис остается практически постоянным в области температур фазового перехода (его величина составляет ~ 9.5 K). Последнее указывает на симметричную форму пика теплоемкости фазового перехода.

Наличие гистерезиса позволяет на основании данных ДСК отнести этот переход к твердофазному переходу первого рода, а конечный температурный интервал и симметричная Л-образная форма пика теплоемкости позволяют классифицировать его как размытый фазовый переход [10,11]. Небольшая асимметрия пика указывает на сложную структуру перехода и представляет интерес для подробного анализа, поскольку в работе [12] показано, что для нанокомпозитов с нитратом калия сегнетоэлектрическая фаза может наблюдаться и при нагреве.

На рис. З показаны зависимости теплоемкости от температуры, полученные при нагревании образцов исходного поликристаллического KNO_3 (кривая 1) и нанокомпозита на основе KNO3, внедренного в матрицы МСМ-41 (кривая 2). Материал типа МСМ-41 является хорошо изученным представителем семейства мезопористых материалов на основе диоксида кремния. Структура материала МСМ-41 представляет собой каркас в форме пчелиных сот, диаметр которых в нашей работе составлял около 3.5-3.7 nm [13]. Из рисунка видно, что фазовый переход в композите имеет двухстадийный характер с четко выраженными температурами максимумов T_{max1} и T_{max2}. Асимметричный вид и разная интенсивность пиков указывают на сложную структуру перехода и представляют интерес для подробного анализа. Следует заметить, что на образование этой достаточно сложной структуры значительное влияние может оказывать наличие в композите возмущенного приповерхностного слоя толщиной порядка постоянных решетки KNO_3 (5–10 Å).

Анализ формы пика теплоемкости проводился на основе теории самосогласованного поля применительно к Л-образным размытым переходам первого рода. В размытых переходах изменение фазового состояния происходит в пределах определенного температурного интервала. Образование зародышей-доменов новой фазы

Образец	$T_{0 \max 1},$ K	$T_{0 \max 2},$ K	<i>B</i> ₁	<i>B</i> ₂	$\Delta C_{\max 1}, J/(\mathbf{g}\cdot\mathbf{K})$	$\Delta C_{\max 2}, J/(\mathbf{g}\cdot\mathbf{K})$
Объемный КNO ₃	404.5	406.3	1000	500	2.2	12.0
Композит	403.5	409.2	1000	200	5.0	3.8

Параметры, использованные для расчета пиков теплоемкости

Рис. 3. Эндотермические пики, отвечающие фазовому переходу при нагревании в образцах исходного KNO₃ (1) и композита (2). Жирные линии — экспериментальные данные, тонкие линии — результат расчета.

требует изменения температуры на малую величину, которая определяется энергией, необходимой для возникновения таких областей. Это и приводит к размытию перехода по температуре. Например, для сегнетоэлектрических материалов было показано, что элементарные объемы превращения сопоставимы с объемом так называемой области Кенцига ($\sim 10^{-18} - 10^{-17} \, {\rm cm}^3$) и по своему масштабу находятся на мезоскопическом уровне [14].

Температурная зависимость теплоемкости при размытом фазовом переходе может иметь следующий вид:

$$\Delta C_p(T) = 4\Delta C_m \exp\left[B(T - T_0)/T_0\right]$$
$$\times \left\{1 + \exp[B(T - T_0)/T_0]\right\}^{-2},$$

где T_0 — температура фазового перехода; ΔC_m — максимальное значение теплоемкости при $T = T_0$; B — атермический параметр [15].

Расчет теплоемкости проводился по значениям T_0 и ΔC_{\max} , соответствующим температуре и амплитуде максимума пика. Наилучшее согласие расчетных и экспериментальных зависимостей $\Delta C_p(T)$ достигалось путем вариации значений параметра *B*. Необходимым условием при этом являлось соблюдение равенства суммы энтальпий отдельных расчетных пиков экспериментально определенной ΔH . Результат расчета приведен на рис. 3 в виде тонких линий. Параметры расчета по уравнению представлены в таблице.

Как видно из рис. 3, общим для поликристаллического KNO₃ и нанокомпозита на основе KNO₃ является наличие дублета — двух пиков с разной интенсивностью с температурами максимумов T_{max1} и T_{max2}, различающимися на 2-5 К. Природа более высокотемпературного пика в дублете в обоих случаях связана с фазовым переходом в конечную *β*-фазу. Поскольку имеются данные [12], которые указывают на наличие в нанокомпозите при нагревании сегнетоэлектрической фазы, весьма вероятно, что низкотемпературный пик относится к переходу сегнетоэлектрической у-фазы в тригональную кальцитоподобную структуру β-фазы. Таким образом, во всем температурном интервале от комнатной температуры до T_{max1} может существовать двухфазная структура, состоящая из γ- и α-фаз. Эта двухфазная структура при уменьшении размера пор в композите будет, по-видимому, смещаться в сторону увеличения доли сегнетоэлектрической фазы, так как замечено тем большее уширение температурной области существования сегнетоэлектрической фазы (по сравнению с поликристаллическим KNO₃), чем меньше размер пор [4]. На это указывает и наблюдаемое в данной работе существенное увеличение энтальпии в нанокомпозите по сравнению с энтальпией поликристаллического KNO3 для низкотемпературного пика. Возможно, существует минимальный размер пор в нанокомпозите, при котором KNO3 при комнатной температуре будет находиться полностью в сегнетоэлектрическом состоянии.

Для выяснения этого предположения в настоящее время авторами проводятся исследования нанокомпозитов на основе KNO₃ с меньшими размерами пор. Это позволит в случае подтверждения высказанного в настоящей работе предположения получить материал с сегнетоэлектрическими свойствами в регулируемом в зависимости от размера нанопор температурном диапазоне.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Westphal M.J., Wood J.W., Redin R.D., Ashworth T. // J. Appl. Phys. 1993. V. 73. P. 7302–7310.
- [2] Jendoubi H., Hellali D., Zamali H., Jemal M. // J. Thermal Analys. Calorimetry. 2013. V. 111. P. 877–883.
- [3] Барышников С.В., Чарная Е.В., Милинский А.Ю., Патрушев Ю.В. // ФТТ. 2013. Т. 55. В. 12. С. 2439–2443.
- [4] Ferroelectrics-Material aspect / Ed. M. Lallart. InTech, 2011. 518 p.
- [5] Nikitchenko A.I., Azovtsev A.V., Pertsev N.A. // J. Phys.: Condens. Matter. 2018. V. 30. P. 015701 (1–9).
- [6] Nikitchenko A.I., Azovtsev A.V., Pertsev N.A. // J. Phys.: Condens. Matter. 2018. V. 30. P. 435301 (1–13).
- [7] Иона Ф., Ширане Д. Сегнетоэлектрические кристаллы.
 М.: Мир, 1965. 555 с.
- [8] Смоленский Г.А., Боков В.А., Исупов В.А., Крайник Н.Н., Пасынков Р.Е., Шур М.С. Сегнетоэлектрики и антисегнетоэлектрики. М.: Наука, 1971. 476 с.
- [9] Deshpande V.V., Karkhanavala M.D., Rao U.R.K. // J. Thermal Analys. Calorimetry. 1974. V. 6. P. 613–621.
- [10] *Фишер М.* Природа критического состояния. М.: Мир, 1973. 260 с.
- [11] Малыгин Г.А. // УФН. 2001. Т. 171. № 2. С. 187–212.
- [12] Барышников С.В., Чарная Е.В., Милинский А.Ю., Шацкая Ю.А., Michel D. // ФТТ. 2012. Т. 54. В. 3. С. 594–599.
- Beck J.S., Vartuli J.C., Roth W.J. // J. Am. Chem. Soc. 1992.
 V. 114. P. 10834–10843.
- [14] *Кенциг В.* Сегнетоэлектрики и антисегнетоэлектрики. М.: ИИЛ, 1960. 324 с.
- [15] Малыгин Г.А. // ФТТ. 2001. Т. 43. В. 10. С. 1911–1915.