Инжекционный фотодиод на основе гетероструктуры *n*-CdS/*p*-CdTe

© Ш.А. Мирсагатов[¶], Р.Р. Кабулов, М.А. Махмудов

Физико-технический Институт, Научно-производственное объединение "Физика–Солнце" Академии наук Республики Узбекистан, 100084 Ташкент, Узбекистан

(Получена 1 августа 2012 г. Принята к печати 19 сентября 2012 г.)

Показана возможность создания инжекционных фотодиодов с перестраиваемым спектром фоточувствительности в спектральном диапазоне 500–800 nm на основе *n*-CdS/*p*-CdTe-гетероструктуры. Установлено, что такая структура в коротковолновой области спектра, $\lambda = 500$ нм, имеет самую высокую спектральную чувствительность $S_{\lambda} \approx 3$ A/BT в прямом направлении при напряжении смещения V = +120 мB и $S_{\lambda} \approx 2$ A/BT в обратном направлении при напряжении смещения V = -120 мB. Интегральная чувствительность прибора $S_{int} = 2400$ A/люмен при освещении белым светом $E = 4 \cdot 10^{-2}$ лк, напряжении смещения V = +4.6 В и температуре T = 293 К. При освещении же монохроматическим светом от лазера ЛГ-75 длиной волны $\lambda = 625$ nm $S_{int} = -1400$ A/BT (мощность освещения $P = 18 \cdot 10^{-6}$ BT/см², напряжение смещения V = +4.6 В и температура T = 293 К). Высокие значения S_{λ} и S_{int} обеспечивают высокую эффективность превращения световой энергии в электрическую при малых уровнях освещенности ($P < 18 \cdot 10^{-6}$ BT/см²).

1. Введение

Гетероструктура n-CdS/p-CdTe является одной из перспективных структур для изготовления дешевого, тонкопленочного и высокоэффективного солнечного элемента (СЭ) для наземного применения [1]. Максимальное значение фототока на СЭ из СdTe при стандартном спектре AM1 (нормированным на 100 мВт/см² солнечного излучения) составляет 30.5 мА/см², а теоретически его кпд (*η*) составляет более 29% [1]. Исследовательская группа NREL сообщила о рекордном значении $\eta = 16.5\%$ СЭ из СdTe, имевшего величину тока короткого замыкания 25.7 мА/см² и напряжение холостого хода 850 мВ [2]. Несмотря на хорошую воспроизводимость и высокое значение кпд, дальнейшее улучшение фотовольтаических характеристик тонкопленочных солнечных элементов на основе гетероперехода CdTe/CdS ограничивается многими нерешенными вопросами, связанными с качеством гетерограницы n-CdS/p-CdTe и созданием омического контакта к тыльной поверхности солнечного элемента. Проблема контакта тыльной поверхности солнечного элемента в какой-то мере решена благодаря использованию таких материалов, как Sb₂Te₃ или As₂Te₃ [3-5]. Эти полупроводники позволяют получать омические контакты и очень низкое контактное сопротивление в сочетании с CdTe *p*-типа.

На границе гетероструктуры *n*-CdS/*p*-CdTe в результате взаимной диффузии S в CdTe и Te в CdS образуется переходная область, состоящая из твердого раствора (TP) CdS_xTe_{1-x} [6,7]. Твердый раствор CdS_xTe_{1-x} является высокоомным, а толщина этого слоя ~ 2 мкм [8], и он в основном определяет электронные процессы в структуре в целом, в том числе и механизм переноса тока [9].

Данная работа посвящена использованию свойства промежуточного слоя гетероструктуры *n*-CdS/*p*-CdTe

для создания инжекционных фотоприемников с перестраиваемым спектром фоточувствительности. Инжекционные фотодиоды — новый класс фотоприемников с внутренним усилением — созданы и исследованы для многих полупроводников (легированные германий и кремний, арсенид галлия, антимонид индия, твердые растворы соединений $A^{III}B^V$, $A^{II}B^{VI}$ и другие материалы) [10–12]. В литературе не имеется сведений о создании и исследовании инжекционных фотоприемников на основе гетероструктуры *n*-CdS/*p*-CdTe, работающих при комнатной температуре. Данные исследования могут быть полезными в свете создания СЭ на основе гетероструктур *n*-CdS/*p*-CdTe.

2. Методика эксперимента

Инжекционный фотодиод представляет собой диод с длинной базовой областью из высокоомного полупроводника [12]. Длина базы в несколько раз превышает длину диффузионного смещения неосновных носителей тока, при этом p-n-переход включается в пропускном направлении. Инжекционный фотодиод работает в режиме высоких уровней инжекции. При этом проводимость базовой области определяется инжектированными носителями. Ранее были исследованы механизмы тока в n-CdS/p-CdTe гетероструктурах с толстым и протяженным слоем промежуточного твердого раствора. Для этих структур соблюдается соотношение $W/L \approx 3-5$ и $W/L \approx 10$ (W — длина базы, L — диффузионная длина неосновных носителей) [13,14].

Для проведения представленных исследований были изготовлены 20 In-*n*-CdS/*p*-CdTe-Mo гетероструктур по технологии, описанной в работе [7]. Все структуры показали идентичные характеристики. Базовым материалом для структур служили пленки *p*-CdTe, выращенные методом сублимации в потоке водорода на поверхности подложки. Подложка из молибдена (Mo) также служила

[¶] E-mail: mirsagatov@rambler.ru; krr1982@bk.ru

тыльным собирающим контактом. Удельное сопротивление *p*-CdTe пленок составляло $\rho \approx 10^3 - 10^4 \,\mathrm{Om} \cdot \mathrm{cm}$, а ее толщина равнялась $d \approx 70$ мкм. Эти пленки состоят из блоков микрокристаллов со столбчатой структурой зерен, ориентированных по направлению роста и разориентированных по азимуту. Размеры зерен находятся в пределах от 150 до 250 мкм, так что зерна охватывают всю толщину пленки. Пленка сульфида кадмия *n*-типа проводимости наносилась на поверхность пленки p-CdTe вакуумным испарением толщиной $d \approx 2-3$ мкм. Верхний "П"-образный собирающий электрод формировался методом термического испарения в вакууме 10⁻⁵ Торр на поверхности пленки CdS. Эффективная площадь входного окна n-CdS/p-CdTe-гетероструктуры, через которую осуществлялось освещение, составляла 4 мм². Световые и темновые вольт-амперные характеристики (ВАХ) структур n-CdS/p-CdTe измерялись при комнатной температуре в прямом и обратном направлениях в широких пределах изменения тока и напряжения. Прямым направлением тока в структуре считалось то, когда к Мо-контакту подавалось положительное напряжение смещения, а обратным — когда было приложено отрицательное напряжение смещения. Освещение производилось в широких пределах освещенности белым светом от лампы накаливания (E = 0.04 - 1.15 лк) и при освещении монохроматическим светом от лазера ЛГ-75 с длиной волны 625 нм ($P = 18 \cdot 10^{-6} - 3260 \cdot 10^{-6} \text{ BT/cm}^2$). Спектральная зависимость фоточувствительности гетероструктур исследовалась монохроматором ЗМР-3 при комнатной температуре. Источником освещения служила лампа накаливания.

3. Результаты исследования и их обсуждение

Изготовленные гетероструктуры n-CdS/p-CdTe имели выпрямляющее свойство. Коэффициент выпрямления, определяемый как отношение прямого и обратного тока при постоянном напряжении ($V = 4 \, \text{B}$), составлял более 3 порядков. Темновые вольт-амперные характеристики гетероструктуры n-CdS/p-CdTe, построенные в двойном логарифмическом масштабе, как в прямом, так и в обратном направлениях описываются степенными зависимостями типа $I \propto V^{\alpha}$ (рис. 1). Результаты показывают, что ВАХ можно разделить на 5 участков с различными значениями α [13,14]: $\alpha_1 = 1$ (омического), $\alpha_2 = 2$ (квадратичного), $\alpha_3 = 5$, $\alpha_4 = 2$ (квадратичного) и $\alpha_5 = 3.5$. Используя метод анализа, проведенный в работах [13,14], из омического и квадратичного участков ВАХ были определены параметры переходной области твердого раствора CdS_xTe_{1-x} : произведение подвижности на время жизни для дырок $\mu_p \tau_p = 3.2 \cdot 10^{-7} \, \mathrm{cm}^2 / \mathrm{B}$ и произведение подвижности на концентрацию электронов $\mu_n n = 1.04 \cdot 10^{10} \, 1/(c \cdot B \cdot cm)$. Согласно данным [13], при значениях $\mu_p \tau_p = 3.2 \cdot 10^{-7} \, \text{см}^2/\text{B}$ рекомбинационные процессы протекают через простые локальные

Рис. 1. Прямая ветвь темновой вольт-амперной характеристики *n*-CdS/*p*-CdTe гетероструктуры в двойном логарифмическом масштабе. Зависимости *I* от V^{α} с различными наклонами: *I* — $\alpha = 1, 2 - 2, 3 - 5.4, 4 - 2, 5 - 3.5.$

центры. В работах [13,14] проведен подробный анализ возникновения степенных участков ВАХ с $\alpha > 2$. Возникновение таких участков связано с многослойностью твердого раствора CdS_xTe_{1-x} , где каждый слой имеет определенный состав, различающийся по ширине запрещенной зоны, уровню легирования и толщине. Скорость рекомбинации неравновесных носителей в таких твердых растворах при высоких уровнях возбуждения определяется не только простыми локальными центрами, но и дефект-примесными комплексами. Появление второго квадратичного участка на ВАХ, согласно теории [15], определяется выходом скорости рекомбинации $U = N_r/\tau_i$ на полное насыщение.

3.1. Спектральная зависимость фоточувствительности структуры *n*-CdS/*p*-CdTe

На рис. 2 показана спектральная зависимость фоточувствительности гетероструктуры n-CdS/p-CdTe при подаче напряжения смещения различной величины и полярности. Кривая 1 — без смещения, 2 - V = +40 мB, 3 - V = +80 мB, 4 - V = +120 мB (прямые смещения), 5 — V = -40 мB, 6 — V = -80 мB и 7 — V = -120 мB (обратные смещения). Из рис. 2 видно, что кривые фоточувствительности в прямом направлении напряжения смещения дважды пересекают ось абсцисс. При этом инверсия знака фотоэдс происходит в коротковолновой U_{f1} (U_{f1} — точка инверсии фотоэдс в коротковолновой части спектра) и длинноволновой U_{f2} областях спектра (Uf2 — точка инверсии фотоэдс в длинноволновой части спектра). Например, при подаче напряжения смещения $U_{\text{bias}} = +40 \text{ мB}$ инверсия знака фотоэдс происходит при $\lambda = 560.6$ нм в коротковолновой области спектра, а в длинноволновом диапазоне при $\lambda = 808.2$ нм. Точка знака инверсии фотоэдс (U_{f1}) ,

Рис. 2. Спектральные зависимости фоточувствительности *n*-CdS/*p*-CdTe гетероструктуры при различных значениях приложенного напряжения смещения U_{bias} , мВ: 1 - 0, 2 - (+40), 3 - (+80), 4 - (+120), 5 - (-40), 6 - (-80) и 7 - (-120).

наблюдаемая в коротковолновой части спектра, с ростом величины напряжения смещения сдвигается в длинноволновую часть спектра. Вторая точка инверсии (U_{f2}) , наоборот, сдвигается в сторону коротковолновой части спектра. Следует отметить, что скорость сдвига точек инверсии (U_{f1}) и (U_{f2}) в зависимости от приложенного напряжения по оси " λ " является разной. Например, U_{f1} при изменении напряжения смещения от 10 до 120 мВ сдвигается в сторону длинных волн на 121 нм, а U_{f2} на 16 нм в сторону коротких длин волн. При этом эффективная разрешающая способность для точки U_{f1} составляет ~ 1.37 нм/мВ, а у $U_{f2} - \sim 0.15$ нм/мВ. На кривой распределения фототока также ясно можно видеть, что с ростом величины напряжения смещения изменяется полярность и эффективное значение фототока. Интегральный ток состоит из фототока и инжекционного тока, которые направлены в противоположных направлениях. Поэтому динамика изменения фототока с длиной волны оптического излучения и увеличение инжекционного тока с ростом напряжения смещения сложным образом накладываются друг на друга. Этот эффект заметно проявляется в коротковолновой области и в области максимальной фоточувствительности структуры. В коротковолновой части спектрального распределения ток с малых значений напряжения смещения меняет свой знак и его величина возрастает с увеличением V. Чем больше значение напряжения смещения, тем в большей части коротковолнового диапазона ток изменяет свой знак, т.е. свое направление. Значение фототока в области максимума спектрального распределения стремительно уменьшается. Анализ динамики изменения кривой спектрального распределения фоточувствительности в зависимости от приложенного напряжения показывает, что в данной структуре происходит усиление первичного фототока в пропускном направлении с

ростом напряжения. В качестве доказательства этого была измерена спектральная фоточувствительность на максимуме ($\lambda = 750$ нм, см. рис. 2) кривой спектральной чувствительности при V = 0. При этом измерение показывает, что при мощности падающего излучения $P = 1.02 \cdot 10^{-5}$ Вт/см² из монохроматора 3МР-3 ток короткого замыкания равен $I_{sc} = 2.94 \cdot 10^{-8}$ А, а напряжение холостого хода $U_{oc} = 36$ мВ. Освещаемая площадь составляла $S \approx 0.2$ мм². Далее, используя мощность падающего излучения и $I_{sc} = 2.94 \cdot 10^{-8}$ А определяем, что спектральная чувствительность имеет величину $S_{\lambda} = 1.44$ А/Вт. В то же время спектральная чувствительность для идеального фотоприемника, определенная по формуле (1) в работе [16], составляет величину 0.604 А/Вт при условиях, что $\eta_{\lambda} = 1, R_{\lambda} = 0$:

$$S_{\lambda} = \frac{q}{hc} \,\lambda \eta_{\lambda} (1 - R_{\lambda}), \qquad (1)$$

где q — модуль заряда электрона, λ — длина волны излучения, η_{λ} — внутренний квантовый выход и R_{λ} коэффициент отражения при данной величине длины волны оптического излучения. Под идеальным фотоприемником [16] понимается такой фотоприемник, у которого в формировании фототока участвуют все падающие фотоны на поверхность фотоприемника. Обычно такие фотоприемники отсутствуют, поскольку они идеализированы. Поэтому можно полагать, что гетероструктура n-CdS/p-CdTe имеет большую спектральную чувствительность в результате внутреннего усиления фототока, т.е. за счет перераспределения потенциала между n-CdS (твердый раствор) и базой — ТР CdS_xTe_{1-x} из-за модуляции сопротивления базы структуры при освещении. Из рис. 2 следует, что самое высокое усиление фототока, равное 3 А/Вт, наблюдается в коротковолновой части спектра фоточувствительности, и оно обусловлено вкладом сопротивления состава ТР, примыкающего к слою *n*-CdS, в общее сопротивление структуры.

При обратном напряжении смещения спектральная чувствительность S_{λ} при $\lambda = 500$ нм начинает возрастать и, достигнув максимума спектральной чувствительности при $\lambda = 650$ нм, начинает плавно уменьшается с дальнейшим возрастанием длины волны излучения. Вблизи края поглощения, в длинноволновой части спектра $(\lambda \approx 800 \,\mathrm{нm})$, наблюдается резкое уменьшение фоточувствительности. При этом с увеличением обратного напряжения смещения спектральная чувствительность во всем диапазоне спектральной чувствительности возрастает, что свидетельствует о совпадении направлений фототока и инжекционных токов. Однако величины S_{λ} в прямом и обратном направлениях смещения отличаются при одном и том же значении напряжения смещения. Значение спектральной чувствительности в обратном направлении смещения обычно меньше, чем в прямом направлении тока. Разница их определяется свойствами фронтального и тылового барьеров, а также свойствами слоев твердых растворов, где поглощаются фотоны и генерируются электронно-дырочные пары, и каким барьером они разделяются. Другими словами, разница спектральной чувствительности структуры объясняется инжекционными свойствами барьеров между твердым раствором CdS и твердым раствором MoO₃ (см. рис. 2, кривые 4 и 7). Следует отметить, что составы пленок твердых растворов, контактирующих со слоями CdS и MoO₃, разные [17].

3.2. Вольт-амперная характеристика при освещении лазерным излучением

Вольт-амперные характеристики гетероструктуры *n*-CdS/*p*-CdTe были исследованы при различных уровнях освещенности монохроматическим светом от лазерного источника ЛГ-75 длиной волны $\lambda = 625 \, {\rm mm}$ при следующих мощностях излучения: $P = 18 \cdot 10^{-6}$, $40 \cdot 10^{-6}$, $268 \cdot 10^{-6}$ и $3260 \cdot 10^{-6}$ Вт/см². Было обнаружено, что световые вольт-амперные характеристики гетероструктуры n-CdS/p-CdTe при освещении лазерным излучением по форме не отличаются от темновых, однако они отличаются по величине тока при заданном значении напряжения смещения. В таблице представлены результаты определения показателя степени α для случая освещения от лазерного источника. В этом случае отсутствуют как линейный участок, так и первый квадратичный участок. Полученные экспериментальные результаты показывают, что при облучении базовая область структуры (TP CdS_xTe_{1-x}) изменяет свое сопротивление и переходит на новое качественное состояние, а в рекомбинационных процессах принимают участие сложные комплексы, о чем свидетельствуют крутые участки ВАХ со значением $\alpha \ge 2$ [13,14].

На рис. З представлена зависимость интегральной чувствительности (S_{int}) от напряжения смещения при различных мощностях лазерного облучения. Вид зависимости S_{int} от V в прямом и обратном направлениях смещения качественно отличаются не только по

Значение параметра α в зависимости $J \propto V^{\alpha}$ на различных участках вольт-амперной характеристики при различных уровнях освещенности

Параметр α в $J \propto V^{\alpha}$, освещенность	α_1	α_2	α ₃	$lpha_4$	α_5
E = 0	1	2	5.4	1.7	3.5
0.04 лк, белый	_	4.26	6.5	1.72	3.7
0.152 лк, белый	_	_	6.8	2	3.4
0.48 лк, белый	_	_	8	1.73	3
$P = 18 \cdot 10^{-6} \mathrm{Bt/cm^2},$	_	_	6.8	1.2	2.82
$\lambda = 625$ HM $P = 40 \cdot 10^{-6}$ BT/cm ² , $\lambda = 625$ HM	_	_	6	1.38	3.13
$P = 268 \cdot 10^{-6} \mathrm{Bt/cm^2},$	_	_	8.8	1.53	3
$\lambda = 625 \text{ hm}$ $P = 3260 \cdot 10^{-6} \text{ Bt/cm}^2,$ $\lambda = 625 \text{ hm}$	_	—	8	1.56	3.3

Рис. 3. Фоточувствительность гетероструктуры *n*-CdS/*p*-CdTe при различном напряжении смещения и уровне освещения от лазерного излучения длиной волны 625 нм. *P*, BT/cm²: $I = 18 \cdot 10^{-6}$, $2 = 40 \cdot 10^{-6}$, $3 = 268 \cdot 10^{-6}$, $4 = 3260 \cdot 10^{-6}$.

форме, но и по количественным показателям. В обратном направлении смещения величина S_{int} достигает самого высокого значения при низкой энергии облучения ($P = 18 \cdot 10^{-6} \,\mathrm{Bt/cm^2}$), которое равно 30 А/Вт при V = -4 В. Далее с ростом энергии лазерного облучения величина S_{int} уменьшается и становится равной 3 А/Вт при $P = 3260 \cdot 10^{-6} \,\text{Вм/см}^2$. В прямом направлении ВАХ зависимость S_{int} от напряжения смещения имеет сложный вид. При малой энергии лазерного облучения интегральная чувствительность при V = 0.9 В достигает максимума, после чего, с увеличением напряжения смещения, ток в цепи фотоприемника начинает резко уменьшаться и изменяет свое направление. В результате этого эффекта интегральная чувствительность также изменяет знак и далее с увеличением напряжения смещения стремительно растет по величине и становится равной 1400 А/Вт при V = +4.6 В. Такое поведение интегральной чувствительности обусловлено увеличением инжекционного тока. При этом в зависимости S_{int} от Vимеются участки подъема и падения, которые, вероятно, связаны с рекомбинационными процессами на границе слоев твердого раствора, образующих между собой изотипные гетеропереходы. Следует отметить, что изменение знака интегральной чувствительности происходит при малых энергиях лазерного облучения ($P = 18 \cdot 10^{-6}$ и 40 · 10⁻⁶ Вт/см²). При больших энергиях лазерного облучения изменения знака тока в цепи фотоприемника не происходит — чем больше энергия лазерного облучения, тем меньше значения S_{int} (см. рис. 3, кривые 3 и 4). При больших энергиях лазерного облучения и при больших напряжениях смещения доля разделенных фотоносителей тыловым барьером (гетеропереходом *p*-CdTe-MoO₃) становится определяющей. В этом случае направления фототока и инжекционного тока в структуре совпадают, что и подтверждается экспериментом. Следовательно, в структуре происходит внутреннее усиление и важнейшим показателем является то, что величина интегральной чувствительности намного больше, чем интегральной чувствительности обычных фотоприемников. Следует отметить, что при энергии лазерного луча $P = 268 \cdot 10^{-6} \text{ BT/cm}^2$ интегральная чувствительность равна 70 А/Вт при V = 4 В. Это свидетельствует о том, что происходит перераспределение потенциала между фронтальным барьером и базой структуры, в результате этого происходят дополнительная инжекция носителей и внутреннее усиление фототока. При энергии же лазерного облучения $P = 3260 \cdot 10^{-6} \text{ BT/cm}^2$ величина S_{int} равна нескольким единицам А/Вт. Этот факт показывает, что перераспределение потенциалов между барьерами происходит незначительно.

3.3. ВАХ при освещении белым светом

Исследованы ВАХ при освещении белым светом от лампы накаливания при различных уровнях освещенности E: -0.04, 0.15 и 0.48 лк (рис. 4). При этом установлено, что темновые и световые ВАХ гетероструктур n-CdS/p-CdTe по своей форме идентичны и отличаются они только по значениям токов. Анализ световых ВАХ показывает, что они имеют пять степенных участков $I \propto V^{\alpha}$ с различными величинами α . В таблице представлены рассчитанные значения α для различных участков и уровней освещенности. Из этой таблицы видно, что с увеличением освещенности исчезают линейный участок и первый квадратичный участок. На третьем участке значение α возрастает от 5 до 8. На четвертом участке ВАХ сохраняется квадратичность. На пятом участке величина α уменьшается от 3.5 до 3. Из этих данных следует, что с увеличением уровня освещенности исследуемая структура переходит в новое качественное состояние и рекомбинационные процессы в структуре

Рис. 4. Прямые ветви световой вольт-амперной характеристики *n*-CdS/*p*-CdTe гетероструктуры при различных уровнях освещенности белым светом *E*, лк: 1 - 0.04, 2 - 0.15, 3 - 0.49 и 4 - 1.15.

Рис. 5. Зависимости фоточувствительности гетероструктуры *n*-CdS/*p*-CdTe от напряжения смещения при различных уровнях освещенности белого света *E*, лк: I = 0.04, 2 = 0.15, 3 = 0.49 и 4 = 1.15.

начинают протекать не только через простые локальные центры, но также и через сложные комплексы, в которые захватываются носители заряда [13,15].

На рис. 5 представлены экспериментальные результаты интегральной чувствительности гетероструктуры n-CdS/p-CdTe от приложенного напряжения и освещенности. При обратном направлении ВАХ, т.е. при подаче отрицательного напряжения смещения на Мо-контакт, происходит усиление фототока, которое уменьшается с увеличением освещенности. Например, при *E* = 0.04 лк интегральная чувствительность $S_{\text{int}} \approx 350 \text{ А/люмен}$ (или $S_{\text{int}} \approx 3.85 \cdot 10^4 \text{ A/Bt}$ [18]) при V = -4 В, а при E = 1.15 лк $S_{int} \approx 1.6$ А/люмен $(\sim 176 \,\text{A/Bt})$ при $V = -4 \,\text{B}$. Из этих данных следует, что, во-первых, направления инжекционного тока и фототока совпадают; во-вторых, при больших уровнях освещенности (*E* ≥ 1.15 лк) практически не происходит перераспределение потенциала между базой структуры и тыловым барьером при освещении. В прямом направлении ВАХ усиление фототока от напряжения смещения происходит сложным образом независимо от уровня освещенности. При освещении белым светом E = 0.04 лк интегральная чувствительность достигает максимальной величины при $V = 1 \, \text{B}$, $S_{\text{int}} = 400 \text{ А/люмен} \ (\sim 4.4 \cdot 10^4 \text{ А/Вт}),$ после чего величина фототока падает с дальнейшим увеличением напряжения смещения. Затем величина S_{int} вновь начинает возрастать с $V = +4 \,\mathrm{B}$ и при $V = +4.6 \,\mathrm{B}$ достигает величины $S_{\rm int} \approx 2400$ А/люмен ($\sim 2.7 \cdot 10^5$ А/Вт). В зависимости S_{int} от напряжения смещения V наблюдается несколько максимумов и минимумов, которые приобретают отчетливый контур при уровнях освещенности *E* = 0.15 и *E* = 0.49 лк. Появление максимумов связано с процессами поглощения фотонов в слоях твердого раствора, а минимумы с процессами поглощения на границе раздела изотипных гетеропереходов, образованных между различными составами ТР $CdS_{X}Te_{1-x}$. При этом отметим, что месторасположения всех максимумов и минимумов при всех условиях освещенности находятся в одном месте на оси напряжений.

4. Заключение

Создан инжекционный фотодиод с перестраиваемым спектром фоточувствительности на основе гетероструктуры n-CdS/p-CdTe. Исследования световой ВАХ и спектральной характеристики фоточувствительности показали, что структура n-CdS/p-CdTe-Mo как в прямом, так и в обратном направлениях смещения работает как инжекционный фотодиод. Величина спектральной чувствительности такой гетероструктуры в обратной ВАХ при напряжении смещения V = -120 мВ в области длин волн 500-800 нм изменяется от 1.6 до 1.8 А/Вт. Она во много раз превышает спектральную чувствительность идеального фотоприемника $(S_{\lambda} = 0.4 - 0.64 \text{ A/Bt}$ в этой области спектра излучения). В прямом направлении ВАХ при напряжении смещения V = +120 мВ спектральная чувствительность в области длин волн 500-800 нм изменяется от 3 до 1 А/Вт. При этом наблюдается инверсия знака фотоэдс в длинноволновой и коротковолновой части спектра. Эффективная спектральная разрешающая способность *n*-CdS/*p*-CdTe гетероструктуры в коротковолновой части видимого спектра составляет 1.37 нм/мВ. В длинноволновой части спектра она равна 0.15 нм/мВ. Интегральная чувствительность гетероструктуры n-CdS/p-CdTe $S_{\rm int} \approx 2400 \, {\rm A}$ /люмен ($\sim 2.7 \cdot 10^5 \, {\rm A}/{\rm Br}$) при комнатной температуре при освещении белым светом $(E = 4 \cdot 10^{-2} \,\mathrm{лk})$ и напряжении смещения $V = +4.6 \,\mathrm{B}$. При освещении монохроматическим светом от лазерного источника ЛГ-75 длиной волны $\lambda = 625$ нм интегральная чувствительность гетероструктуры n-CdS/p-CdTe $S_{\rm int} \approx -1400 \, {\rm A/Bt}$ при комнатной температуре, мощности излучения $P = 18 \cdot 10^{-6} \, \mathrm{Br/cm^2}$ и напряжении смещения V = +4.6 В. По сравнению с аналогами созданный инжекционный фотоприемник имеет повышенные функциональные характеристики и работает при комнатных температурах. Достижение высоких функциональных характеристик фотоприемника объясняется эффектом перераспределения электрического потенциала между барьерами и базой структуры фотоприемника под действием освещения.

Список литературы

- K. Durose, P.R. Edwards, D.P. Holiday. J. Cryst. Growth, 197, 733 (1999).
- [2] X. Wu, J.C. Keane, R.G. Dhere, C. Dehert, D.S. Albin, A. Dude, T.A. Gessert, S. Asher, D.H. Levi, P. Sheldon. Proc. 17th Eur. Photovoltaic Solar Energy Conference (Munich, Germany, 2001) v. 2, p. 995.

- [3] N. Romeo, A. Bosio, R. Tedeschi, V. Canevari. Thin Sol. Films, 361, 327 (2000).
- [4] D.L. Baetzner, A. Romeo, H. Zogg. Thin Sol. Films, 387, 151 (2001).
- [5] A. Zappettini, F. Bissoli, E. Gombia, A. Bosio, N. Romeo. *Nuclear Science Symposium Conference Record* (IEEE, 2004) v. 7, p. 4518.
- [6] M.K. Herndon, A. Gupta, V.I. Kaydanov, R.T. Collins. J. Appl. Phys. Lett., 75 (22), 3503 (1999).
- [7] Ж. Жанабергенов, Ш.А. Мирсагатов, С.Ж. Каражанов. Неорг. матер., **41**, 915 (2005).
- [8] С.А. Музаффарова, Ш.А. Мирсагатов, Ж. Жанабергенов. ФТТ, 49 (6), 1111 (2007).
- [9] Ш.А. Мирсагатов, А.Ю. Лейдерман, Б.У. Айтбаев, М.А. Махмудов. ФТТ, **51** (10), 1917 (2009).
- [10] Ш.А. Мирсагатов, А.А. Мавлонов, Б.У. Айтбаев. *Матер. II Междунар. конф.* (Фергана, 8–9 сентября 2011).
- [11] В.И. Стафеев. Инжекционные диоды (М., ФГУП НПО "Орион", 2008) с. 103.
- [12] И.М. Викулин, Ш.Д. Курмашев, В.И. Стафеев. ФТП, 42 (1), 113 (2008).
- [13] Ш.А. Мирсагатов, А.Ю. Лейдерман, Б.У. Айтбаев, М.А. Махмудов. ФТТ, **51** (10), 1917 (2009).
- [14] Х.Х. Исмаилов, А.М. Абдугафуров, Ш.А. Мирсагатов, А.Ю. Лейдерман. ФТТ, 50, 11 (2008).
- [15] А.Ю. Лейдерман, М. Минбаева. ФТП, 30, 1729 (1996).
- [16] А. Амброзяк. Конструкция и технология полупроводниковых фотоэлектрических приборов (М., 1970).
- [17] Ш.А. Мирсагатов, А.К. Утениязов, А.С. Ачилов. ФТТ, 54 (9), 1643 (2012).
- [18] Э. Фриш. Оптические методы измерения (Л., Изд-во ЛГУ, 1976) ч. 1.

Редактор Т.А. Полянская

Injection photodiodes based on *n*-CdS/*p*-CdTe heterostructures

Sh.A. Mirsagatov, R.R. Kabulov, M.A. Maxmudov

Physicotechnical Institute Academy of Science of the Republic of Uzbekistan, 100084 Tashkent, Uzbekistan

Abstract Possibilities of the creation of the injection photodiodes based on *n*-CdS/*p*-CdTe heterostructures with reconfigurable spectrum of the photosensitive in spectral range of 500–800 nm are shown. It is installed the structure has highest spectral sensivity at the short wave range ($\lambda = 500 \text{ nm}$) $S_{\lambda} = 3 \text{ A/W}$ at direct voltage V = +120 mV, and $S_{\lambda} = 2 \text{ A/W}$ at inverse attached voltage V = -120 mV. Integral photosensitivity of the structure is $S_{\text{int}} = 2400 \text{ A/lumen}$ under the illumination of white light $E = 4 \cdot 10^{-2} \text{ lx}$, attached voltage V = +4.6 V (T = 293 K) and at illumination by monochromatic laser light by wavelength 625 nm $S_{\text{int}} = 2400 \text{ A/W}$ (light power $P = 18 \cdot 10^{-6} \text{ W/cm}^2$, attached voltage V = +4.6 V and temperature T = 293 K). The high values of S_{λ} and S_{int} provide high efficiency of the conversation light energy in electric energy under small level of radiation ($P < 18 \cdot 10^{-6} \text{ W/sm}^2$).